

18ECL42 HDL Lab Dept. of ECE

1

Lab Code:18ECL52

HDL Lab
 Lab Manual

DDeeppaarrttmmeenntt ooff EElleeccttrroonniiccss && CCoommmmuunniiccaattiioonn EEnnggiinneeeerriinngg

BBaappaattllaa EEnnggiinneeeerriinngg CCoolllleeggee :::: BBaappaattllaa

((AAuuttoonnoommoouuss))
G.B.C. Road, Mahatmajipuram, Bapatla-522102, Guntur (Dist.)

Andhra Pradesh, India.
EE--MMaaiill::bbeecc..pprriinncciippaall@@bbeeccbbaappaattllaa..aacc..iinn

WWeebb::www.becbapatla.ac.in

mailto:info@gcet.edu.in
mailto:info@gcet.edu.in

18ECL42 HDL Lab Dept. of ECE

2

Contents

S.No. Title of the Experiment

1. Logic Gates.

2. Multiplexers/ De-Multiplexers.

3. Encoders/ Decoders.

4. Comparators.

5. Adders/ Subtractors.

6. Multipliers.

7. Parity Generators.

8. Design of ALU.

9. Latches.

10. Flip-Flops.

11. Synchronous Counters.

12. Asynchronous Counters.

13. Shift Registers.

14. Memories.

15. CMOS Circuits.

18ECL42 HDL Lab Dept. of ECE

3

Bapatla Engineering College :: Bapatla
(Autonomous)

Vision

 To build centers of excellence, impart high quality

education and instill high standards of ethics and

professionalism through strategic efforts of our dedicated staff,

which allows the college to effectively adapt to the ever

changing aspects of education.

 To empower the faculty and students with the knowledge,

skills and innovative thinking to facilitate discovery in

numerous existing and yet to be discovered fields of

engineering, technology and interdisciplinary endeavors.

Mission

 Our Mission is to impart the quality education at par with

global standards to the students from all over India and in

particular those from the local and rural areas.

 We continuously try to maintain high standards so as to make

them technologically competent and ethically strong

individuals who shall be able to improve the quality of life and

economy of our country.

18ECL42 HDL Lab Dept. of ECE

4

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Vision

To produce globally competitive and socially responsible

Electronics and Communication Engineering graduates to

cater the ever changing needs of the society.

Mission

 To provide quality education in the domain of Electronics

and Communication Engineering with advanced

pedagogical methods.

 To provide self learning capabilities to enhance

employability and entrepreneurial skills and to inculcate

human values and ethics to make learners sensitive

towards societal issues.

 To excel in the research and development activities

related to Electronics and Communication Engineering.

18ECL42 HDL Lab Dept. of ECE

5

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Educational Objectives (PEO’s)

PEO-I: Equip Graduates with a robust foundation in mathematics,

science and Engineering Principles, enabling them to excel in

research and higher education in Electronics and Communication

Engineering and related fields.

PEO-II: Impart analytic and thinking skills in students to develop

initiatives and innovative ideas for Start-ups, Industry and societal

requirements.

PEO-III: Instill interpersonal skills, teamwork ability,

communication skills, leadership, and a sense of social, ethical, and

legal duties in order to promote lifelong learning and Professional

growth of the students.

18ECL42 HDL Lab Dept. of ECE

6

Program Outcomes (PO’s)

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and engineering specialization to the solution of

complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and

analyze complex engineering problems reaching substantiated conclusions

using first principles of mathematics, natural sciences, and engineering

sciences.

PO3. Design/development of solutions: Design solutions for complex

engineering problems and design system components or processes that meet

the specified needs with appropriate consideration for the public health and

safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based

knowledge and research methods including design of experiments, analysis

and interpretation of data, and synthesis of the information to provide valid

conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and

modeling to complex engineering activities with an understanding of the

limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

PO7.Environment and sustainability: Understand the impact of the

professional engineering solutions in societal and environmental contexts, and

demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

PO9. Individual and Teamwork: Function effectively as an individual, and as

a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering

activities with the engineering community and with society at large, such as,

being able to comprehend and write effective reports and design

documentation, make effective presentations, and give and receive clear

instructions.

PO11. Project management and finance: Demonstrate knowledge and

understanding of the engineering and management principles and apply these

18ECL42 HDL Lab Dept. of ECE

7

to one’s own work, as a member and leader in a team, to manage projects and

in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for and have the preparation

and ability to engage in independent and life-long learning in the broadest

context of technological change.

18ECL42 HDL Lab Dept. of ECE

8

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Specific Outcomes (PSO’s)

PSO1: Develop and implement modern Electronic Technologies

using analytical methods to meet current as well as future

industrial and societal needs.

PSO2: Analyze and develop VLSI, IoT and Embedded Systems for

desired specifications to solve real world complex problems.

PSO3: Apply machine learning and deep learning techniques in

communication and signal processing.

18ECL42 HDL Lab Dept. of ECE

9

 HDL Lab
II B.Tech – II Semester (Code: 18ECL42)

Lecture

s

4 Tutorial 1 Practical 0 Credits 1

Continuous Internal

Assessment

50 Semester End Examination (3

Hours)

50

Prerequisites: Digital Electronics

Course objectives: Students will
 Describe the importance of modern programmable logic devices

 Demonstrate different styles of writing HDL code

 Use vivado tools in digital circuits modeling, simulation, functional

verification in Verilog

 Validate and synthesize a digital circuit to FPGA board using Verilog HDL

Course outcomes: After studying this course, the students will be able to

CO 1
Apply EDA tools for simulation, verification and synthesis of digital

design

CO 2 Develop Verilog RTL code for combinational digital circuits.

CO 3 Develop Verilog RTL code for sequential digital circuits.

CO 4
Implement digital systems by programmable devices, such as

FPGA

Mapping of Course Outcomes with Program Outcomes & Program
Specific Outcomes PO’s PSO’s

CO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3

CO1 3 2 2 2 3 2 3 3 3
CO2 3 2 2 2 2 3 3 3
CO3 3 2 2 2 2 3 3 3
CO4 3 2 3 2 3 3 3 3 3
AVG 3 2 2.2

5

2 3 2.2

5

 3 3 3

List of Programs:

 Implement the following in Verilog HDL

1. Logic Gates.

2. Multiplexers/ De-Multiplexers.

3. Encoders/ Decoders.

4. Comparators.

18ECL42 HDL Lab Dept. of ECE

10

5. Adders/ Subtractors.

6. Multipliers.

7. Parity Generators.

8. Design of ALU.

9. Latches.

10. Flip-Flops.

11. Synchronous Counters.

12. Asynchronous Counters.

13. Shift Registers.

14. Memories.

15. CMOS Circuits.

NOTE: A minimum of 10 (Ten) programs are to be executed and recorded to attain
eligibility for the Semester End Examination.

18ECL42 HDL Lab Dept. of ECE

11

1. Logic Gates.

Aim: To design a Logic Gates using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

AND Gate

Symbol:

Operation: The output of the AND gate is 1 only when all its

inputs are 1.

Truth Table:

A B Output (A AND B)

0 0 0

0 1 0

1 0 0

1 1 1

Source Code:

Design Block:

module AndGate (

 input wire a,

 input wire b,

 output wire and_out);

18ECL42 HDL Lab Dept. of ECE

12

 assign and_out = a & b; // AND gate operation

endmodule

Testbench:

module tb_AndGate();

 reg a;

 reg b;

 wire and_out;

 // Instantiate the AndGate module

 AndGate uut (

 .a(a),

 .b(b),

 .and_out(and_out)

);

 initial begin

 $display("Time\t a b | AND");

 $display("------------------");

 $monitor("%0d\t %b %b | %b", $time, a, b, and_out);

 // Test patterns

 a = 0; b = 0; #10;

 a = 0; b = 1; #10;

 a = 1; b = 0; #10;

 a = 1; b = 1; #10;

 $stop;

 end

endmodule

Theory:

OR Gate:

Symbol:

18ECL42 HDL Lab Dept. of ECE

13

Operation: The output of the OR gate is 1 if at least one of its

inputs is 1.

Truth Table:

A B Output (A OR B)

0 0 0

0 1 1

1 0 1

1 1 1

Source Code:

Design Block:

module OrGate (

 input wire a,

 input wire b,

 output wire or_out);

 assign or_out = a | b; // OR gate operation

endmodule

Testbench:

module tb_OrGate();

 reg a;

 reg b;

 wire or_out;

18ECL42 HDL Lab Dept. of ECE

14

 // Instantiate the OrGate module

 OrGate uut (

 .a(a),

 .b(b),

 .or_out(or_out)

);

 initial begin

 $display("Time\t a b | OR");

 $display("------------------");

 $monitor("%0d\t %b %b | %b", $time, a, b, or_out);

 // Test patterns

 a = 0; b = 0; #10;

 a = 0; b = 1; #10;

 a = 1; b = 0; #10;

 a = 1; b = 1; #10;

 $stop;

 end

endmodule

Theory:

NOT Gate:

Symbol:

Operation: The NOT gate inverts the input signal. If the input is

1, the output is 0, and vice versa.

18ECL42 HDL Lab Dept. of ECE

15

Truth Table:

A Output (NOT A)

0 1

1 0

Source Code:

Design Block:

module NotGate (

 input wire a,

 output wire not_out);

 assign not_out = ~a; // NOT gate operation

endmodule

Testbench:

module tb_NotGate();

 reg a;

 wire not_out;

 // Instantiate the NotGate module

 NotGate uut (

 .a(a),

 .not_out(not_out)

);

 initial begin

 $display("Time\t a | NOT");

 $display("----------------");

 $monitor("%0d\t %b | %b", $time, a, not_out);

 // Test patterns

 a = 0; #10;

 a = 1; #10;

18ECL42 HDL Lab Dept. of ECE

16

 $stop;

 end

endmodule

Theory:

NAND Gate:

symbol:

Operation: The output of the NAND gate is 0 only when all its

inputs are 1. It is the inverse of the AND gate.

Truth Table:

A B Output (A NAND B)

0 0 1

0 1 1

1 1 0

Source Code:

Design Block:

module NandGate (

 input wire a,

 input wire b,

 output wire nand_out);

 assign nand_out = ~(a & b); // NAND gate operation

endmodule

18ECL42 HDL Lab Dept. of ECE

17

Testbench:

module tb_NandGate();

 reg a;

 reg b;

 wire nand_out;

 // Instantiate the NandGate module

 NandGate uut (

 .a(a),

 .b(b),

 .nand_out(nand_out)

);

 initial begin

 $display("Time\t a b | NAND");

 $display("------------------");

 $monitor("%0d\t %b %b | %b", $time, a, b, nand_out);

 // Test patterns

 a = 0; b = 0; #10;

 a = 0; b = 1; #10;

 a = 1; b = 0; #10;

 a = 1; b = 1; #10;

 $stop;

 end

endmodule

Theory:

NOR Gate:

Symbol:

18ECL42 HDL Lab Dept. of ECE

18

Operation: The output of the NOR gate is 1 only when all its

inputs are 0. It is the inverse of the OR gate.

Truth Table:

A B Output (A NOR B)

0 0 1

0 1 0

1 0 0

1 1 0

Source Code:

Design Block:

module NorGate (

 input wire a,

 input wire b,

 output wire nor_out);

 assign nor_out = ~(a | b); // NOR gate operation

endmodule

Testbench:

module tb_NorGate();

 reg a;

 reg b;

 wire nor_out;

18ECL42 HDL Lab Dept. of ECE

19

 // Instantiate the NorGate module

 NorGate uut (

 .a(a),

 .b(b),

 .nor_out(nor_out)

);

 initial begin

 $display("Time\t a b | NOR");

 $display("------------------");

 $monitor("%0d\t %b %b | %b", $time, a, b, nor_out);

 // Test patterns

 a = 0; b = 0; #10;

 a = 0; b = 1; #10;

 a = 1; b = 0; #10;

 a = 1; b = 1; #10;

 $stop;

 end

endmodule

Theory:

XOR Gate:

Symbol:

Operation: The output of the XOR gate is 1 if the inputs are

different. If the inputs are the same, the output is 0.

Truth Table:

18ECL42 HDL Lab Dept. of ECE

20

A B Output (A XOR B)

0 0 0

0 1 1

1 0 1

1 1 0

Source Code:

Design Block:

module XorGate (

 input wire a,

 input wire b,

 output wire xor_out);

 assign xor_out = a ^ b; // XOR gate operation

endmodule

Testbench:

module tb_XorGate();

 reg a;

 reg b;

 wire xor_out;

 // Instantiate the XorGate module

 XorGate uut (

 .a(a),

 .b(b),

 .xor_out(xor_out)

);

 initial begin

 $display("Time\t a b | XOR");

 $display("------------------");

18ECL42 HDL Lab Dept. of ECE

21

 $monitor("%0d\t %b %b | %b", $time, a, b, xor_out);

 // Test patterns

 a = 0; b = 0; #10;

 a = 0; b = 1; #10;

 a = 1; b = 0; #10;

 a = 1; b = 1; #10;

 $stop;

 end

endmodule

Theory:

XNOR Gate:

 Symbol:

Operation: The output of the XNOR gate is 1 if the inputs are

the same. If the inputs are different, the output is 0. It is the

inverse of the XOR gate.

Truth Table:

A B Output (A XNOR B)

0 0 1

0 1 0

1 0 0

1 1 1

18ECL42 HDL Lab Dept. of ECE

22

Source Code:

Design Block:

module XnorGate (

 input wire a,

 input wire b,

 output wire xnor_out);

 assign xnor_out = ~(a ^ b); // XNOR gate operation

endmodule

Testbench:

module tb_XnorGate();

 reg a;

 reg b;

 wire xnor_out;

 // Instantiate the XnorGate module

 XnorGate uut (

 .a(a),

 .b(b),

 .xnor_out(xnor_out)

);

 initial begin

 $display("Time\t a b | XNOR");

 $display("------------------");

 $monitor("%0d\t %b %b | %b", $time, a, b, xnor_out);

 // Test patterns

 a = 0; b = 0; #10;

 a = 0; b = 1; #10;

 a = 1; b = 0; #10;

 a = 1; b = 1; #10;

 $stop;

 end

18ECL42 HDL Lab Dept. of ECE

23

endmodule

Result: Logic Gates in Verilog is designed and simulated successfully.

18ECL42 HDL Lab Dept. of ECE

24

2. Multiplexers/ De-Multiplexers.

Aim: To design a multiplexer using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A multiplexer is a data selector device that selects one input from several input

lines, depending upon the enabled, select lines, and yields one single output.A

multiplexer of 2n inputs has n select lines, are used to select which input line

to send to the output. There is only one output in the multiplexer, no matter

what’s its configuration.These devices are used extensively in the areas where

the multiple data can be transferred over a single line like in the

communication systems and bus architecture hardware. Visit this post for a

crystal clear explanation to multiplexers.

Truth table:

Circuit Diagram :

18ECL42 HDL Lab Dept. of ECE

25

Source Code:

Design Block:

module m41 (input a,

input b,

input c,

input d,

input s0, s1,

output out);

 assign out = s1 ? (s0 ? d : c) : (s0 ? b : a);

endmodule

Testbench:

module top;

wire out;

reg a;

reg b;

reg c;

reg d;

reg s0, s1;

m41 name(.out(out), .a(a), .b(b), .c(c), .d(d), .s0(s0), .s1(s1));

18ECL42 HDL Lab Dept. of ECE

26

 initial

 begin

 a=1'b0; b=1'b0; c=1'b0; d=1'b0;

 s0=1'b0; s1=1'b0;

 #500 $finish;

end

always #40 a=~a;

always #20 b=~b;

always #10 c=~c;

always #5 d=~d;

always #80 s0=~s0;

always #160 s1=~s1;

always@(a or b or c or d or s0 or s1)

$monitor("At time = %t, Output = %d", $time, out)

endmodule

Result: Multiplexer in Verilog is designed and simulated successfully.

b) Demultiplexer:

Aim:

To design a 1x4 demultiplexer using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A demultiplexer (or demux) is a device that takes a single input line and routes

it to one of several digital output lines. A demultiplexer of 2n outputs has n

select lines, which are used to select which output line to send the input. A

demultiplexer is also called a data distributor.Demultiplexers can be used to

implement general purpose logic. By setting the input to true, the demux

behaves as a decoder.A 1-to-4 demultiplexer has a single input (D), two

18ECL42 HDL Lab Dept. of ECE

27

selection lines (S1 and S0) and four outputs (Y0 to Y3). The input data goes to

any one of the four outputs at a given time for a particular combination of

select lines.This demultiplexer is also called as a 2-to-4 demultiplexer which

means that two select lines and 4 output lines.

The truth table of this type of demultiplexer is given below. From the truth

table it is clear that, when S1=0 and S0= 0, the data input is connected to

output Y0 and when S1= 0 and s0=1, then the data input is connected to

output Y1.

https://www.electronicshub.org/wp-content/uploads/2015/07/1-to-4-Demux.jpg

18ECL42 HDL Lab Dept. of ECE

28

Source Code:

Design Block:

module demux1x4(y0,y1,y2,y3,s0,s1,i);

output y0,y1,y2,y3;

input i;

input s0,s1;

assign y0=i&(~s0)&(~s1);

assign y1=i&(~s0)&(s1);

assign y2=i&(s0)&(~s1);

assign y3=i&(s0)&(s1);

endmodule

Test Bench:

module demux1x4_tb();

reg y0,y1,y2,y3;

reg s0,s1;

reg i;

demux1x4 n1(y0,y1,y2,y3,s0,s1,i);

initial

begin

 i=1;

 $display(“i=%b”,i);

end

initial

begin

s1=0;s0=0;

#5 $display(“s1=%b,s0=%b,y0=%b”,s1,s0,y0);

18ECL42 HDL Lab Dept. of ECE

29

s1=0;s0=1;

#5 $display(“s1=%b,s0=%b,y1=%b”,s1,s0,y1);

s1=1;s0=0;

#5 $display(“s1=%b,s0=%b,y2=%b”,s1,s0,y2);

s1=1;s0=1;

#5 $display(“s1=%b,s0=%b,y3=%b”,s1,s0,y3);

end

endmodule

Result: Demultiplexer in Verilog is designed and simulated successfully.

18ECL42 HDL Lab Dept. of ECE

30

3. Encoders/ Decoders.

Aim:

To design a 8x3 encoder using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

An Encoder is a combinational circuit that performs the reverse operation of

Decoder.It has maximum of 2^n input lines and ‘n’ output lines, hence it

encodes the information from 2^n inputs into an n-bit code. It will produce a

binary code equivalent to the input, which is active High. Therefore, the

encoder encodes 2^n input lines with ‘n’ bits.

8 : 3 Encoder (Octal to Binary) –

The 8 to 3 Encoder or octal to Binary encoder consists of 8 inputs : Y7 to Y0

and 3 outputs : A2, A1 & A0. Each input line corresponds to each octal digit

and three outputs generate corresponding binary code.

The truth table for 8 to 3 encoder is as follows :

18ECL42 HDL Lab Dept. of ECE

31

Logical expression for A2, A1 and A0 :

A2 = Y7 + Y6 + Y5 + Y4

A1 = Y7 + Y6 + Y3 + Y2

A0 = Y7 + Y5 + Y3 + Y1

Circuit Diagram:

The above two Boolean functions A2, A1 and A0 can be implemented using four

Input OR gates.

18ECL42 HDL Lab Dept. of ECE

32

Source Code:

Design Block:

module encoder(d0,d1,d2,d3,d4,d5,d6,d7,a,b,c);

input d0,d1,d2,d3,d4,d5,d6,d7;

output a,b,c;

 or(a,d4,d5,d6,d7);

 or(b,d2,d3,d6,d7);

 or(c,d1,d3,d5,d7);

endmodule

Test Bench:

module entb();

 reg d0,d1,d2,d3,d4,d5,d6,d7;

 wire a,b,c;

encoder n1(d0,d1,d2,d3,d4,d5,d6,d7,a,b,c);

initial

 begin

d0 = 1;d1 = 0;d2 = 0;d3 = 0;d4 = 0;d5 = 0;d6 = 0;d7 = 0;

 #5 d0 = 0;d1 = 1;d2 = 0;d3 = 0;d4 = 0;d5 = 0;d6 =0;d7 = 0;

 #5 d0 = 0;d1 = 0;d2 = 1;d3 = 0;d4 = 0;d5 = 0;d6 = 0;d7 = 0;

 #5 d0 = 0;d1 = 0;d2 = 0;d3 = 1;d4 = 0;d5 = 0;d6 = 0;d7 = 0;

 #5 d0 = 0;d1 = 0;d2 = 0;d3 = 0;d4 = 1;d5 = 0;d6 = 0;d7 = 0;

 #5 d0 = 0;d1 = 0;d2 = 0;d3 = 0;d4 = 0;d5 = 1;d6 = 0;d7 = 0;

 #5 d0 = 0;d1 = 0;d2 = 0;d3 = 0;d4 = 0;d5 = 0;d6 = 1;d7 = 0;

 #5 d0 = 0;d1 = 0;d2 = 0;d3 = 0;d4 = 0;d5 = 0;d6 = 0;d7 = 1;

 end

endmodule

Result:

8x3 Encoder using Verilog is designed and is simulated successfully.

18ECL42 HDL Lab Dept. of ECE

33

b)Decoder:

Aim:

To design 3x8 decoder using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

In Digital Electronics, discrete quantities of information are represented by

binary codes. A binary code of n bits is capable of representing up to 2^n

distinct elements of coded information. The name “Decoder” means to

translate or decode coded information from one format into another, so a

digital decoder transforms a set of digital input signals into an equivalent

decimal code at its output. A decoder is a combinational circuit that converts

binary information from n input lines to a maximum of 2^n unique output

lines.

3 Line to 8 Line Decoder

This decoder circuit gives 8 logic outputs for 3 inputs and has a enable pin.

The circuit is designed with AND and NAND logic gates. It takes 3 binary

inputs and activates one of the eight outputs. 3 to 8 line decoder circuit is also

called as binary to an octal decoder.

3 to 8 Line Decoder Block Diagram

The decoder circuit works only when the Enable pin (E) is high. S0, S1 and S2

are three different inputs and D0, D1, D2, D3. D4. D5. D6. D7 are the eight

outputs.

https://www.elprocus.com/designing-4-to-16-decoder-using-3-to-8-decoder/

18ECL42 HDL Lab Dept. of ECE

34

Circuit Diagram:

18ECL42 HDL Lab Dept. of ECE

35

3 to 8 Line Decoder Truth Table

Source Code:

Design Block:

module decoder(a,b,c,d0,d1,d2,d3,d4,d5,d6,d7);

 input a,b,c;

 output d0,d1,d2,d3,d4,d5,d6,d7;

 assign d0=(~a&~b&~c),

 d1=(~a&~b&c),

 d2=(~a&b&~c),

 d3=(~a&b&c),

 d4=(a&~b&~c),

 d5=(a&~b&c),

 d6=(a&b&~c),

 d7=(a&b&c);

endmodule

Test Bench:

module decoder_tb();

reg a,b,c;

wire d0,d1,d2,d3,d4,d5,d6,d7;

18ECL42 HDL Lab Dept. of ECE

36

decoder n1(a,b,c,d0,d1,d2,d3,d4,d5,d6,d7);

initial begin

 a = 0;b = 0;c = 0;

 #10 a = 0;b = 0;c = 1;

 #10 a = 0;b = 1;c = 0;

 #10 a = 0;b = 1;c = 1;

 #10 a = 1;b = 0;c = 0;

 #10 a = 1;b = 0;c = 1;

 #10 a = 1;b = 1;c = 0;

 #10 a = 1;b = 1;c = 1;

 end

endmodule

Result:

3x8 decoder using Verilog is designed and is simulated successfully

18ECL42 HDL Lab Dept. of ECE

37

4. Comparators.

Aim: To design a Fast Adders using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A magnitude digital Comparator is a combinational circuit that compares two

digital or binary numbers to find out whether one binary number is equal,

less than or greater than the other binary number. We logically design a circuit

for which we will have two inputs, one for A and other for B and have three

output terminals, one for A > B condition, one for A = B condition and one for A

< B condition.

4-Bit Magnitude Comparator

A comparator used to compare two binary numbers each of four bits is called a

4-bit magnitude comparator. It consists of eight inputs each for two four-bit

numbers and three outputs to generate less than, equal to and greater than

between two binary numbers.

In a 4-bit comparator the condition of A>B can be possible in the following

four cases:

1. If A3 = 1 and B3 = 0

2. If A3 = B3 and A2 = 1 and B2 = 0

3. If A3 = B3, A2 = B2 and A1 = 1 and B1 = 0

4. If A3 = B3, A2 = B2, A1 = B1 and A0 = 1 and B0 = 0

Similarly, the condition for A<B can be possible in the following four cases:

1. If A3 = 0 and B3 = 1

2. If A3 = B3 and A2 = 0 and B2 = 1

3. If A3 = B3, A2 = B2 and A1 = 0 and B1 = 1

4. If A3 = B3, A2 = B2, A1 = B1 and A0 = 0 and B0 = 1

18ECL42 HDL Lab Dept. of ECE

38

The condition of A=B is possible only when all the individual bits of one

number exactly coincide with the corresponding bits of another number.

Circuit Diagram:

18ECL42 HDL Lab Dept. of ECE

39

Source Code:

Design Block:

module comparator_4bit_bh(

 output reg EQ,

 output reg GT,

 output reg LT,

 input [3:0] a,

 input [3:0] b

);

 always @(*) begin

 LT = (a < b);

 EQ = (a == b);

 GT = (a > b);

 end

 endmodule

Testbench:

module comparator_tb;

 // Declare wires for outputs

 wire EQ;

 wire GT;

 wire LT;

 // Declare registers for inputs

 reg [3:0] a;

 reg [3:0] b;

 // Instantiate the comparator module

 comparator_4bit_bh dut(EQ,GT,LT,a,b);

 initial begin

 // Test scenario for greater than

 a = 5;

18ECL42 HDL Lab Dept. of ECE

40

 b = 3;

 #10; // Wait for 10 time units

 // Display the inputs and outputs

 $display("a = %d, b = %d, EQ = %b, GT = %b, LT = %b", a, b, EQ, GT, LT);

 // Test scenario for less than

 a = 3;

 b = 5;

 #10; // Wait for 10 time units

 // Display the inputs and outputs

 $display("a = %d, b = %d, EQ = %b, GT = %b, LT = %b", a, b, EQ, GT, LT);

 // Test scenario for equal to

 a = 4;

 b = 4;

 #10; // Wait for 10 time units

 // Display the inputs and outputs

 $display("a = %d, b = %d, EQ = %b, GT = %b, LT = %b", a, b, EQ, GT, LT);

 // Finish the simulation

 $finish;

 end

endmodule

Result: Comparator in Verilog is designed and simulated successfully.

18ECL42 HDL Lab Dept. of ECE

41

5. Adders/ Subtractors.

Aim: To design a Full Adder using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A Full Adder is a digital circuit that computes the sum of three binary bits.

Unlike a half adder, which only adds two binary numbers, a full adder includes

an additional input known as the "carry-in," allowing it to add three bits. The

three inputs are:

 A - the first bit.

 B - the second bit.

 Cin - the carry-in from a previous addition.

The outputs of a full adder are:

 Sum (S): The binary sum of the inputs.

 Carry-out (Cout): The carry that gets passed on to the next stage of

addition.

Boolean Expressions:

 Sum (S):

S=A⊕B⊕Cin

(Where ⊕ represents the XOR operation)

 Carry-out (Cout):

Cout=(A⋅B)+(Cin⋅(A⊕B))

Full adders are essential in constructing arithmetic logic units (ALUs),

where they can be cascaded together to add binary numbers of any length. This

18ECL42 HDL Lab Dept. of ECE

42

forms the basis of ripple-carry adders, which are commonly used in digital

circuits for binary addition.

Full Adder Truth Table:

 Circuit Diagram:

18ECL42 HDL Lab Dept. of ECE

43

Source Code:

Design Block:

module fa(a,b,cin,sum,cout);

 input a,b,cin;

 output sum,cout;

 assign {cout,sum}=a+b+cin;

endmodule

Test Bench:

module fa_tb();

reg a,b,cin;

wire sum,cout;

fa n1(a,b,cin,sum,cout);

 initial begin

 a = 0;b = 0;cin = 0;

 #10 a = 0;b = 0;cin = 1;

 #10 a = 0;b = 1;cin = 0;

 #10 a = 0;b = 1;cin = 1;

 #10 a = 1;b = 0;cin = 0;

 #10 a = 1;b = 0;cin = 1;

 #10 a = 1;b = 1;cin = 0;

 #10 a = 1;b = 1;cin = 1;

 end

endmodule

Result:

Full Adder using Verilog is designed and simulated successfully.

18ECL42 HDL Lab Dept. of ECE

44

b. SUBTRACTORS

Aim: To design a Full Adder using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A Full Subtractor is a combinational circuit used to perform subtraction of

three binary bits. The three inputs for a full subtractor are:

1. A - the minuend (the number from which another number is to be

subtracted).

2. B - the subtrahend (the number that is to be subtracted).

3. Bin - the borrow-in from the previous subtraction.

The two outputs of a full subtractor are:

 Difference (D): The result of the subtraction.

 Borrow-out (Bout): The borrow generated for the next stage of

subtraction.

Boolean Expressions:

 Difference (D):

D=A⊕B⊕Bin

Borrow-out (Bout):

Bout=(A ⋅B)+(B⋅Bin)+(A ⋅Bin)

Full subtractors are important in digital circuits for arithmetic operations,

particularly for subtracting multi-bit binary numbers. They are used in various

computational units, such as in the design of arithmetic logic units (ALUs) and

in binary subtraction operations.

18ECL42 HDL Lab Dept. of ECE

45

Full Subtractor Truth Table:

Circuit Diagram:

18ECL42 HDL Lab Dept. of ECE

46

Source Code:

Design Block:

module Full_Subtractor_3(output D, B, input X, Y, Z);

assign D = X ^ Y ^ Z;

assign B = ~X & (Y^Z) | Y & Z;

endmodule

Test Bench:

module Full_Subtractor_3_tb;

wire D, B;

reg X, Y, Z;

Full_Subtractor_3 Instance0 (D, B, X, Y, Z);

initial begin

 X = 0; Y = 0; Z = 0;

#1 X = 0; Y = 0; Z = 1;

#1 X = 0; Y = 1; Z = 0;

#1 X = 0; Y = 1; Z = 1;

#1 X = 1; Y = 0; Z = 0;

#1 X = 1; Y = 0; Z = 1;

#1 X = 1; Y = 1; Z = 0;

#1 X = 1; Y = 1; Z = 1;

end

initial begin

 $monitor ("%t, X = %d| Y = %d| Z = %d| B = %d| D = %d", $time, X, Y, Z, B

, D);

end

endmodule

Result:

Full Subtractor using Verilog is designed and simulated successfully

18ECL42 HDL Lab Dept. of ECE

47

6. Multipliers.

Aim:

To design multiplier using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

Let us consider two unsigned 2 bit binary numbers A and B to generalize the

multiplication process. The multiplicand A is equal to A1A0 and the multiplier

B is equal to B1B0. The figure below shows the multiplication process of two 2

bit binary numbers.

This process involves the multiplication of two digits and the addition of digits

with or without carry. After the multiplication of the each bit to the

multiplicand, partial products are generated, and then these products are

added to produce the total sum which represents the binary multiplication

value.The first partial product is obtained by the AND gate which is nothing

but a least significant bit of the multiplication result. Since the second partial

product is shifted to the left position, the first partial second term and second

partial product first term is added by half adder and produce the sum output

along with the carry out.This carry out is added at the next half adder as an

input as shown in figure. Likewise, it produces the multiplication result of two

binary numbers by using the simple circuit configuration. The multiplication of

the two 2 bit number results a 4-bit binary number.

https://www.electronicshub.org/wp-content/uploads/2015/06/2-bit-multiplication-new.jpg

18ECL42 HDL Lab Dept. of ECE

48

Source Code:

Design Block:

module multiplier(a,b,q);

output [3:0]q;

input [1:0]a;

input [1:0]b;

wire [3:0]temp;

wire [1:0]x;

assign temp[0]=a[0]&b[0];

assign temp[1]=a[1]&b[0];

assign temp[2]=a[0]&b[1];

assign temp[3]=a[1]&b[1];

assign q[0]=temp[0];

half n1(temp[1],temp[2],q[1],x[0]);

half n2(temp[3],x[0],q[2],x[1]);

assign q[3]=x[1];

endmodule

module half(a,b,s,c);

input a,b;

output s,c;

assign s=a+b;

assign c=a&b;

endmodule

Test Bench:

module mul_tb;

wire [3:0]q;

reg [1:0]a;

reg [1:0]b;

18ECL42 HDL Lab Dept. of ECE

49

multiplier h1(a,b,q);

initial

begin

a=3;b=3;

end

endmodule

Result:

Multiplier using Verilog is designed and is simulated successfully.

18ECL42 HDL Lab Dept. of ECE

50

7. Parity Generators.

Aim: To design a parity generator using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

It is combinational circuit that accepts an n-1 bit stream data and generates

the additional bit that is to be transmitted with the bit stream. This additional

or extra bit is termed as a parity bit.In even parity bit scheme, the parity bit is

‘0’ if there are even number of 1s in the data stream and the parity bit is ‘1’ if

there are odd number of 1s in the data stream.In odd parity bit scheme, the

parity bit is ‘1’ if there are even number of 1s in the data stream and the

parity bit is ‘0’ if there are odd number of 1s in the data stream. Let us

discuss both even and odd parity generators.

Even Parity Generator

A 3-bit message is to be transmitted with an even parity bit. Let the three

inputs A, B and C are applied to the circuits and output bit is the parity bit P.

The total number of 1s must be even, to generate the even parity bit P.The

figure below shows the truth table of even parity generator in which 1 is placed

as parity bit in order to make all 1s as even when the number of 1s in the truth

table is odd.

https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Generator-Truth-Table.jpg

18ECL42 HDL Lab Dept. of ECE

51

The K-map simplification for 3-bit message even parity generator is

From the above truth table, the simplified expression of the parity bit can be

written as

The above expression can be implemented by using two Ex-OR gates. The logic

diagram of even parity generator with two Ex – OR gates is shown below. The

three bit message along with the parity generated by this circuit which is

transmitted to the receiving end where parity checker circuit checks whether

any error is present or not.To generate the even parity bit for a 4-bit data, three

Ex-OR gates are required to add the 4-bits and their sum will be the parity bit.

https://www.electronicshub.org/wp-content/uploads/2015/07/even-parity-generator-exp.jpg

18ECL42 HDL Lab Dept. of ECE

52

Source Code:

Design Block:

module parity_generator(data_in , parity_out);

output parity_out ;

input [3:0]data_in ;

assign parity_out = (^ data_in);

endmodule

Test Bench:

module parity_tb();

reg [3:0]data_in;

wire parity_out;

parity_generator n1(data_in,parity_out);

initial

begin

data_in=0000;

#10 data_in=0001;

#10 data_in=1010;

#10 data_in=1011;

#10 data_in=0100;

#10 data_in=0101;

#10 data_in=1110;

#10 data_in=1111;

#10 data_in=1000;

#10 data_in=1001;

#10 data_in=0010;

#10 data_in=0011;

#10 data_in=1100;

#10 data_in=1101;

#10 data_in=0110;

#10 data_in=0111;

18ECL42 HDL Lab Dept. of ECE

53

end

endmodule

ODD Parity Generator:

Theory:

The 3-bit data is to be transmitted with an odd parity bit. The three inputs are

A, B and C and P is the output parity bit. The total number of bits must be odd

in order to generate the odd parity bit.In the given truth table below, 1 is

placed in the parity bit in order to make the total number of bits odd when the

total number of 1s in the truth table is even.

The truth table of the odd parity generator can be simplified by using K-map as

https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Generator-Truth-Table.jpg

18ECL42 HDL Lab Dept. of ECE

54

The output parity bit expression for this generator circuit is obtained as

P = A ⊕ B Ex-NOR C

The above Boolean expression can be implemented by using one Ex-OR gate

and one Ex-NOR gate in order to design a 3-bit odd parity generator.The logic

circuit of this generator is shown in below figure , in which . two inputs are

applied at one Ex-OR gate, and this Ex-OR output and third input is applied to

the Ex-NOR gate , to produce the odd parity bit. It is also possible to design

this circuit by using two Ex-OR gates and one NOT gate.

Source Code:

Design Block:

module odd_parity(data_in , parity_out);

output parity_out ;

input [3:0]data_in ;

assign parity_out = ~(^ data_in);

endmodule

18ECL42 HDL Lab Dept. of ECE

55

Test Bench:

module odd_parity_tb();

reg [3:0]data_in;

wire parity_out;

odd_parity n1(data_in,parity_out);

initial

begin

data_in=0000;

#10 data_in=0001;

#10 data_in=1010;

#10 data_in=1011;

#10 data_in=0100;

#10 data_in=0101;

#10 data_in=1110;

#10 data_in=1111;

#10 data_in=1000;

#10 data_in=1001;

#10 data_in=0010;

#10 data_in=0011;

#10 data_in=1100;

#10 data_in=1101;

#10 data_in=0110;

#10 data_in=0111;

end

endmodule

Result: parity generator in Verilog is designed and simulated successfully.

18ECL42 HDL Lab Dept. of ECE

56

8. Design of ALU.

Aim: To design a Arithmetic Logic Unit using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

The Arithmetic Logic Unit (ALU) is a fundamental digital circuit in a computer’s

central processing unit (CPU) and is responsible for performing arithmetic and

logical operations on binary data. It is a crucial component that determines the

computing power of a processor.

Key Roles of the ALU:

1. Arithmetic Operations: Performs basic arithmetic like addition,

subtraction, multiplication, and division.

2. Logical Operations: Performs logical operations like AND, OR, XOR, and

NOT.

3. Shift Operations: Supports shift and rotate operations on binary data.

4. Comparison Operations: Compares numbers and generates flags (e.g.,

zero, carry, overflow, etc.) used in decision-making.

18ECL42 HDL Lab Dept. of ECE

57

Source Code:

Design Block:

module alu(

 input [7:0] A,B, // ALU 8-bit Inputs

 input [3:0] ALU_Sel,// ALU Selection

 output [7:0] ALU_Out, // ALU 8-bit Output

 output CarryOut // Carry Out Flag);

 reg [7:0] ALU_Result;

 wire [8:0] tmp;

 assign ALU_Out = ALU_Result; // ALU out

 assign tmp = {1'b0,A} + {1'b0,B};

 assign CarryOut = tmp[8]; // Carryout flag

 always @(*)

 begin

 case(ALU_Sel)

 4'b0000: // Addition

 ALU_Result = A + B ;

 4'b0001: // Subtraction

 ALU_Result = A - B ;

 4'b0010: // Multiplication

 ALU_Result = A * B;

 4'b0011: // Division

 ALU_Result = A/B;

 4'b0100: // Logical shift left

 ALU_Result = A<<1;

 4'b0101: // Logical shift right

 ALU_Result = A>>1;

 4'b0110: // Rotate left

 ALU_Result = {A[6:0],A[7]};

 4'b0111: // Rotate right

 ALU_Result = {A[0],A[7:1]};

18ECL42 HDL Lab Dept. of ECE

58

 4'b1000: // Logical and

 ALU_Result = A & B;

 4'b1001: // Logical or

 ALU_Result = A | B;

 4'b1010: // Logical xor

 ALU_Result = A ^ B;

 4'b1011: // Logical nor

 ALU_Result = ~(A | B);

 4'b1100: // Logical nand

 ALU_Result = ~(A & B);

 4'b1101: // Logical xnor

 ALU_Result = ~(A ^ B);

 4'b1110: // Greater comparison

 ALU_Result = (A>B)?8'd1:8'd0 ;

 4'b1111: // Equal comparison

 ALU_Result = (A==B)?8'd1:8'd0 ;

 default: ALU_Result = A + B ;

 endcase

 end

endmodule

Testbench:

module tb_alu;

//Inputs

 reg[7:0] A,B;

 reg[3:0] ALU_Sel;

//Outputs

 wire[7:0] ALU_Out;

 wire CarryOut;

 integer i;

18ECL42 HDL Lab Dept. of ECE

59

 alu test_unit(

 A,B, // ALU 8-bit Inputs

 ALU_Sel,// ALU Selection

 ALU_Out, // ALU 8-bit Output

 CarryOut // Carry Out Flag

);

 initial begin

 // hold reset state for 100 ns.

 A = 8'h0A;

 B = 4'h02;

 ALU_Sel = 4'h0;

 for (i=0;i<=15;i=i+1)

 begin

 ALU_Sel = ALU_Sel + 8'h01;

 #10;

 end;

 A = 8'hF6;

 B = 8'h0A;

 end

endmodule

Result:

Arithmetic Logic Unit in Verilog is designed and simulated successfully.

18ECL42 HDL Lab Dept. of ECE

60

9. Latches.

Aim: To design a Latches using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

Latches are basic memory devices used in digital electronics to

store a single bit of information. They are fundamental building

blocks in sequential logic circuits and serve as the basis for flip-

flops, which are used in memory and storage devices. Latches are

level-sensitive devices, meaning their output can change when the

input changes as long as a control signal (like an enable signal) is

active.

1. SR Latch (Set-Reset Latch)

The SR latch is one of the simplest types of latches, consisting of

two cross-coupled NOR gates or NAND gates. It has two inputs:

 S (Set): Used to set the latch output to 1.

 R (Reset): Used to reset the latch output to 0.

Truth Table for SR Latch (NOR-based)

S (Set) R (Reset) Q (Output) Description

0 0 Q (Previous) No change (holds state)

0 1 0 Reset state (Q = 0)

1 0 1 Set state (Q = 1)

1 1 Undefined Invalid condition

Characteristics:

 When both S and R are 0, the latch holds its previous state.

18ECL42 HDL Lab Dept. of ECE

61

 The condition S = 1 and R = 1 is considered undefined or

invalid because it causes a race condition.

2. D Latch (Data or Delay Latch)

The D latch, also known as the Data or Delay latch, is a

modification of the SR latch that removes the invalid condition by

using a single data input (D). It also has an enable input (EN) that

controls when the data can be latched.

Working Principle

 D (Data Input): The value at this input determines the output

state when the latch is enabled.

 EN (Enable Input): When EN is high, the latch is transparent,

meaning the output follows the input D. When EN is low, the

latch holds its previous state.

Truth Table for D Latch

D (Data) EN (Enable) Q (Output) Description

0 0 Q (Previous) Hold previous state

1 0 Q (Previous) Hold previous state

0 1 0 Reset state (Q = 0)

1 1 1 Set state (Q = 1)

Characteristics:

 When EN = 1, the output directly follows the input D.

 When EN = 0, the output Q remains unchanged, making it a

memory state.

3. JK Latch

The JK latch is an extension of the SR latch that eliminates the

problem of the undefined state. It has two inputs, J and K, along

18ECL42 HDL Lab Dept. of ECE

62

with an enable signal (EN). The JK latch can toggle its state based

on the input conditions.

Truth Table for JK Latch

J K EN Q (Output) Description

0 0 1 Q (Previous) No change (holds state)

0 1 1 0 Reset state (Q = 0)

1 0 1 1 Set state (Q = 1)

1 1 1 Toggle Q Toggle state (invert Q)

Characteristics:

 When J = K = 1, the output toggles its state on each enable

pulse.

 When EN = 0, the output remains in its previous state

regardless of the inputs.

Source Code:

SR Latch

Source Code:

Design Block:

module sr_latch (

 input S, // Set input

 input R, // Reset input

 output Q, // Output

 output Qn // Complement of Q

);

 nor (Q, R, Qn); // NOR gate to generate Q

 nor (Qn, S, Q); // NOR gate to generate Q'

18ECL42 HDL Lab Dept. of ECE

63

endmodule

Testbench:

module tb_sr_latch;

 reg S, R; // Inputs to the SR latch

 wire Q, Qn; // Outputs from the SR latch

 // Instantiate the SR latch module

 sr_latch uut (

 .S(S),

 .R(R),

 .Q(Q),

 .Qn(Qn)

);

 initial begin

 $display("S R | Q Qn");

 S = 0; R = 0; #10; // Hold state

 S = 1; R = 0; #10; // Set state

 S = 0; R = 1; #10; // Reset state

 S = 1; R = 1; #10; // Invalid state

 $stop;

 end

endmodule

D Latch

Design Block:

module d_latch (

 input D, // Data input

18ECL42 HDL Lab Dept. of ECE

64

 input EN, // Enable signal

 output Q, // Output

 output Qn // Complement of Q

);

 wire S, R; // Internal signals for SR latch conversion

 assign S = D & EN; // Set condition when D is 1 and EN is active

 assign R = ~D & EN; // Reset condition when D is 0 and EN is active

 sr_latch sr_inst (// Instantiating SR latch using the Set and Reset logic

 .S(S),

 .R(R),

 .Q(Q),

 .Qn(Qn)

);

endmodule

Testbench:

module tb_d_latch;

 reg D, EN; // Inputs to the D latch

 wire Q, Qn; // Outputs from the D latch

 // Instantiate the D latch module

 d_latch uut (

 .D(D),

 .EN(EN),

 .Q(Q),

 .Qn(Qn)

18ECL42 HDL Lab Dept. of ECE

65

);

 initial begin

 $display("D EN | Q Qn");

 D = 0; EN = 0; #10; // Hold state

 D = 0; EN = 1; #10; // Reset state

 D = 1; EN = 1; #10; // Set state

 D = 1; EN = 0; #10; // Hold state

 $stop;

 end

endmodule

JK Latch

Design Block:

module jk_latch (

 input J, // J input

 input K, // K input

 input EN, // Enable signal

 output reg Q // Output

);

 always @ (J or K or EN) begin

 if (EN) begin

 case ({J, K})

 2'b00: Q = Q; // No change

 2'b01: Q = 0; // Reset

 2'b10: Q = 1; // Set

18ECL42 HDL Lab Dept. of ECE

66

 2'b11: Q = ~Q; // Toggle

 endcase

 end

 end

endmodule

Testbench:

module tb_jk_latch;

 reg J, K, EN; // Inputs to the JK latch
 wire Q; // Output from the JK latch

 // Instantiate the JK latch module

 jk_latch uut (
 .J(J),

 .K(K),
 .EN(EN),

 .Q(Q)
);

 initial begin
 $display("J K EN | Q");

 J = 0; K = 0; EN = 1; #10; // Hold state
 J = 0; K = 1; EN = 1; #10; // Reset state

 J = 1; K = 0; EN = 1; #10; // Set state
 J = 1; K = 1; EN = 1; #10; // Toggle state

 EN = 0; #10; // Hold state
 $stop;

 end

endmodule

Result:

Latches in Verilog is designed and simulated successfully.

18ECL42 HDL Lab Dept. of ECE

67

10. Flip-Flops.

Aim: To design a SR, D, JK,T flipflops using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

SR FLIPFLOP:

The SET-RESET flip flop is designed with the help of two NOR gates and also

two NAND gates. These flip flops are also called S-R Latch.It is also called a

Gated S-R flip flop.

The problems with S-R flip flops using NOR and NAND gate is the invalid

state. This problem can be overcome by using a bistable SR flip-flop that can

change outputs when certain invalid states are met, regardless of the condition

of either the Set or the Reset inputs. For this, a clocked S-R flip flop is designed

by adding two AND gates to a basic NOR Gate flip flop. The circuit diagram and

truth table is shown below.

A clock pulse [CP] is given to the inputs of the AND Gate. When the value of the

clock pulse is ‘0’, the outputs of both the AND Gates remain ‘0’. As soon as a

pulse is given the value of CP turns ‘1’. This makes the values at S and R to

pass through the NOR Gate flip flop. But when the values of both S and R

values turn ‘1’, the HIGH value of CP causes both of them to turn to ‘0’ for a

short moment. As soon as the pulse is removed, the flip flop state becomes

intermediate. Thus either of the two states may be caused, and it depends on

whether the set or reset input of the flip-flop remains a ‘1’ longer than the

transition to ‘0’ at the end of the pulse. Thus the invalid states can be

eliminated.

18ECL42 HDL Lab Dept. of ECE

68

Source Code:

Design Block:

module sr_ff(s,r,clk,rst, q,qb);

input s,r,clk,rst;

output q,qb;

wire s,r,clk,rst,qb;

 reg q;

 always@(posedge clk)

 begin

 if(rst)

 q<=1'b0;

18ECL42 HDL Lab Dept. of ECE

69

 else if(s==1'b0&&r==1'b0) q<=q;

 else if(s==1'b0&&r==1'b1) q<=1'b0;

 else if(s==1'b1&&r==1'b0) q<=1'b1;

 else if(s==1'b1&&r==1'b1) q<=1'bx;

 end

 assign qb=~q;

 endmodule

Test Bench:

module srff_tb();

reg s,r,clk,rst;

wire q,qb;

sr_ff p(s,r,clk,rst,q,qb);

initial

begin

clk=0;

s=0; r=0;

#5 rst=1;

#30 rst=0;

$monitor($time,"clk=%b,rst=%b,s=%b,r=%b,q=%b,qb=%b",clk,rst,s,r,q,qb);

#100 $finish;

end

always #5 clk=~clk;

always #30 s=~s;

always #40 r=~r;

endmodule

18ECL42 HDL Lab Dept. of ECE

70

D FLIPFLOP:

The circuit diagram and truth table is given below.

D flip flop is actually a slight modification of the above explained clocked SR

flip-flop. From the figure you can see that the D input is connected to the S

input and the complement of the D input is connected to the R input. The D

input is passed on to the flip flop when the value of CP is ‘1’. When CP is HIGH,

18ECL42 HDL Lab Dept. of ECE

71

the flip flop moves to the SET state. If it is ‘0’, the flip flop switches to the

CLEAR state.

Source Code:

Design Block:

module dff(D,clk,reset,Q);

input D,clk,reset;

output Q;

reg Q;

always @(posedge clk)

begin

 Q <= D;

end

endmodule

Test Bench:

module dff_tb();

reg D;

reg clk;

reg reset;

wire Q;

dff d1(D,clk,reset,Q);

initial begin

 clk=0;

 forever #10 clk = ~clk;

end

initial begin

 reset=1;

 D <= 0;

 #100;

18ECL42 HDL Lab Dept. of ECE

72

 reset=0;

 D <= 1;

 #100;

 D <= 0;

 #100;

 D <= 1;

end

endmodule

JK FLIPFLOP:

Flip-flops are fundamental building blocks of sequential circuits. A flip flop can

store one bit of data. Hence, it is known as a memory cell. Since they work on

the application of a clock signal, they come under the category of synchronous

circuits.The J-K flip-flop is the most versatile of the basic flip flops. The JK flip

flop is a gated SR flip-flop with the addition of a clock input circuitry that

prevents the illegal or invalid output condition that can occur when both

inputs S and R are equal to logic 1. Due to this additional clocked input, a JK

flip-flop has four possible input combinations, “logic 1”, “logic 0”, “no change”

and “toggle”.

18ECL42 HDL Lab Dept. of ECE

73

Truth table:

Source Code:

Design Block:

module JK_flipflop (

 input clk, rst_n,

 input j,k,

 output reg q,

 output q_bar

);

 // always@(posedge clk or negedge rst_n) // for asynchronous reset

 always@(posedge clk) begin // for synchronous reset

 if(!rst_n) q <= 0;

 else begin

 case({j,k})

 2'b00: q <= q; // No change

 2'b01: q <= 1'b0; // reset

 2'b10: q <= 1'b1; // set

 2'b11: q <= ~q; // Toggle

 endcase

 end

 end

 assign q_bar = ~q;

endmodule

18ECL42 HDL Lab Dept. of ECE

74

Testbench:

module tb;

 reg clk, rst_n;

 reg j, k;

 wire q, q_bar;

 JK_flipflop dff(clk, rst_n, j, k, q, q_bar);

 always #2 clk = ~clk;

 initial begin

 clk = 0; rst_n = 0;

 $display("Reset=%b --> q=%b, q_bar=%b", rst_n, q, q_bar);

 #3 rst_n = 1;

 $display("Reset=%b --> q=%b, q_bar=%b", rst_n, q, q_bar);

 drive(2'b00);

 drive(2'b01);

 drive(2'b10);

 drive(2'b11); // Toggles previous output

 drive(2'b11); // Toggles previous output

 #5;

 $finish;

 end

 task drive(bit [1:0] ip);

 @(posedge clk);

 {j,k} = ip;

 #1 $display("j=%b, k=%b --> q=%b, q_bar=%b",j, k, q, q_bar);

 endtask

endmodule

18ECL42 HDL Lab Dept. of ECE

75

T FLIPFLOP:

T stands for ("toggle") flip-flop to avoid an intermediate state in SR flip-flop. We

should provide only one input to the flip-flop called Trigger input Toggle input

to avoid an intermediate state occurrence. Then the flip - flop acts as a Toggle

switch. The next output state is changed with the complement of the present

state output. This process is known as Toggling. We can construct the T flip-

flop by making changes in the JK flip-flop. The T flip-flop has only one input,

which is constructed by connecting the input of JK flip-flop. This single input

is called T.

Source Code:

Design Block:

module tff (input clk, input rstn, input t, output reg q);

 always @ (posedge clk) begin

18ECL42 HDL Lab Dept. of ECE

76

 if (!rstn)

 q <= 0;

 else

 if (t)

 q <= ~q;

 else

 q <= q;

 end

endmodule

Testbench:

module tb;

 reg clk;

 reg rstn;

 reg t;

 tff u0 (.clk(clk),

 .rstn(rstn),

 .t(t),

 .q(q));

 always #5 clk = ~clk;

 initial begin

 {rstn, clk, t} <= 0;

 $monitor ("T=%0t rstn=%0b t=%0d q=%0d", $time, rstn, t, q);

 repeat(2) @(posedge clk);

 rstn <= 1;

 for (integer i = 0; i < 20; i = i+1) begin

 reg [4:0] dly = $random;

 #(dly) t <= $random;

 end

 #20 $finish;

18ECL42 HDL Lab Dept. of ECE

77

 end

endmodule

Result: Flipflops in Verilog are designed and simulated successfully.

18ECL42 HDL Lab Dept. of ECE

78

11. Synchronous Counters.

Aim: To design a Synchronous Counters using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

Synchronous counters are digital circuits in which all the flip-flops are clocked

simultaneously by a common clock signal. Unlike asynchronous (ripple)

counters, where the clock signal is applied to only the first flip-flop,

synchronous counters ensure that all flip-flops are triggered at the same time,

eliminating propagation delay issues.

Key Concepts of Synchronous Counters

1. Clock Signal: In a synchronous counter, the clock input is connected to

all the flip-flops simultaneously. This ensures that all flip-flops are

updated at the same time, leading to faster and more predictable

operations.

2. Flip-Flops: Synchronous counters use flip-flops (usually JK or D-type) as

their basic storage elements. The state of these flip-flops changes based

on the input conditions.

3. Enable Logic: The output of each flip-flop in a synchronous counter

depends not just on the current state but also on some combination of

previous states. Enable logic is used to determine when each flip-flop

should toggle.

4. Count Sequence: Synchronous counters can be designed to count in a

specific sequence, such as binary, Gray code, or other custom

18ECL42 HDL Lab Dept. of ECE

79

sequences. The count sequence determines how the states of the flip-

flops change in response to the clock pulses.

5. Modulus of the Counter: The modulus (or mod) of a counter is the

number of unique states it cycles through before returning to its starting

state. For example, a mod-4 counter cycles through four states (0 to 3).

Applications of Synchronous Counters

 Digital Clocks: Used to keep track of time in a digital format.

 Frequency Dividers: Employed in circuits where a lower frequency clock

signal is needed.

 Counters in Digital Systems: Used in various digital applications like

measuring time intervals, event counting, and data synchronization.

Source Code:

Design Block:

module synchronous_counter #(parameter SIZE=4)(

 input clk, rst_n,

 input up,

 output reg [3:0] cnt);

 always@(posedge clk) begin

 if(!rst_n) begin

 cnt <= 4'h0;

 end

 else begin

 if(up) cnt <= cnt + 1'b1;

 else cnt <= cnt - 1'b1;

18ECL42 HDL Lab Dept. of ECE

80

 end

 end

endmodule

Testbench:

module tb;

 reg clk, rst_n;

 reg up;

 wire [3:0] cnt;

 synchronous_counter(clk, rst_n, up, cnt);

 initial begin

 clk = 0; rst_n = 0;

 up = 1;

 #4; rst_n = 1;

 #80;

 rst_n = 0;

 #4; rst_n = 1; up = 0;

 #50;

 $finish;

 end

 always #2 clk = ~clk;

 initial begin

 $dumpfile("dump.vcd"); $dumpvars;

 end

endmodule

Result:

Synchronous Counters in Verilog is designed and simulated successfully

18ECL42 HDL Lab Dept. of ECE

81

12. Asynchronous Counters.

Aim: To design a Asynchronous Counters using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

Asynchronous counters, also known as ripple counters, are digital circuits

where flip-flops are connected in such a way that the output of one flip-flop

acts as the clock input for the next flip-flop. In these counters, the flip-flops do

not change states simultaneously, leading to a ripple effect through the circuit

as each flip-flop toggles.

Key Concepts of Asynchronous Counters

1. Clock Signal: In an asynchronous counter, only the first flip-flop is

directly connected to the clock signal. Subsequent flip-flops receive their

clock signals from the output of the preceding flip-flop.

2. Ripple Effect: The term "ripple" refers to the way the signal propagates

through the flip-flops. When the first flip-flop toggles, it triggers the next

flip-flop in sequence, and so on, resulting in a small delay as the change

moves through the flip-flops.

3. Propagation Delay: The sequential triggering of flip-flops causes a delay,

known as propagation delay, which can affect the timing and accuracy of

the counter. The delay accumulates with each additional flip-flop.

4. Modulus of the Counter: The modulus (or mod) of a counter is the

number of unique states it cycles through before repeating. For example,

a mod-8 counter counts from 0 to 7.

18ECL42 HDL Lab Dept. of ECE

82

Applications of Asynchronous Counters

 Simple Counting Tasks: Suitable for low-speed applications like event

counting, frequency division, and basic timing circuits.

 Digital Clocks: Used in situations where the propagation delay does not

significantly affect the performance.

 Frequency Division: Used to generate lower frequency signals from a

high-frequency clock.

Source Code:

Design Block:

module ripplecounter(clk,rst,q);

 input clk,rst;

 output [3:0]q;

 // initiate 4 T-FF to update the count

 tff tf1(q[0],clk,rst);

 tff tf2(q[1],q[0],rst);

 tff tf3(q[2],q[1],rst);

 tff tf4(q[3],q[2],rst);

18ECL42 HDL Lab Dept. of ECE

83

endmodule

module tff(q,clk,rst);

 // tff takes clk and reset as input

 // q is output

 input clk,rst;

 output q;

 wire d;

 // by referring the diagram of tff,

 // instantiate d flip flop and not gate

 dff df1(q,d,clk,rst);

 not n1(d,q);

endmodule

module dff(q,d,clk,rst);

 input d,clk,rst;

 output q;

 reg q; // store the output value

 always @(posedge clk or posedge rst)

 begin

 // refer the truth table to provide

 // values to q based on reset.

 if(rst) q=1'b0;

 else q=d;

 endripplecounter

endmodule

Testbench:

module tb;

 // input to be stored in reg and output as net(wire)

 reg clk;

18ECL42 HDL Lab Dept. of ECE

84

 reg rst;

 wire [3:0]q;

 // instantiate the ripplecounter design block

 ripplecounter dut(clk,rst,q);

 // generate clock pulse

 // initially provide 0

 // then inside always block toggle

 // clock every 5 time units

 initial

 clk = 0;

 always

 #5 clk = ~clk;

 // provide reset values as the input

 initial

 begin

 rst = 1;

 #15 rst = 0;

 #180 rst = 1;

 #10 rst = 1;

 #20 $finish;

 end

 initial

 $monitor("time=%g,rst=%b,clk=%b,q=%d",$time,rst,clk,q);

endmodule

Result:

Asynchronous Counters in Verilog is designed and simulated successfully

18ECL42 HDL Lab Dept. of ECE

85

13. Shift Registers.

Aim: To design a Shift Registers using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A shift register is a type of digital circuit that can store and shift data in a

sequential manner. It is a cascade of flip-flops, where the output of one flip-flop

is connected to the input of the next flip-flop. The data is shifted from one flip-

flop to the next on every clock cycle, allowing the circuit to delay or store the

data. Please find below the Verilog code of a shift register:

Shift registers can be used in a variety of applications, such as:

1. Serial-to-parallel conversion: Shift registers can be used to convert a

serial data stream into a parallel data stream. By loading the serial data

into the shift register and shifting it out in parallel, the data can be

processed more quickly and efficiently.

2. Data storage: Shift registers can be used to store data in a sequential

manner. By loading the data into the shift register and clocking it

through, the data can be retained for a period of time before it is shifted

out.

3. Arithmetic operations: Shift registers can be used in arithmetic

operations, such as multiplication and division. By shifting the data

through the circuit and performing logical operations on the bits, the

arithmetic operations can be performed in a more efficient manner.

18ECL42 HDL Lab Dept. of ECE

86

4. Frequency division: Shift registers can be used to divide the frequency

of a clock signal. By tapping into different points in the shift register,

multiple clock signals can be generated with different frequencies.

Source Code:

Design Block:

module ShiftRegister4Bit (

 input wire clk, // Clock signal

 input wire reset, // Asynchronous reset signal

 input wire shift_in, // Serial input

 output reg [3:0] q // 4-bit parallel output

);

// Shift register operation

always @(posedge clk or posedge reset) begin

 if (reset) begin

 q <= 4'b0000; // Reset the register to 0

 end else begin

 q <= {q[2:0], shift_in}; // Shift right and insert shift_in

 end

end

endmodule

Testbench:

module tb_ShiftRegister4Bit();

 reg clk; // Test clock signal

18ECL42 HDL Lab Dept. of ECE

87

 reg reset; // Test reset signal

 reg shift_in; // Test serial input

 wire [3:0] q; // Test output

 // Instantiate the ShiftRegister4Bit module

 ShiftRegister4Bit uut (

 .clk(clk),

 .reset(reset),

 .shift_in(shift_in),

 .q(q)

);

 // Clock generation: 10 ns period

 initial begin

 clk = 0;

 forever #5 clk = ~clk;

 end

 // Test stimulus

 initial begin

 // Initialize inputs

 reset = 1; // Activate reset

 shift_in = 0; // Initial serial input value

 #10 reset = 0; // Deactivate reset

 // Apply test pattern

 #10 shift_in = 1;

 #10 shift_in = 0;

 #10 shift_in = 1;

 #10 shift_in = 1;

 #10 shift_in = 0;

 // Wait and then apply reset

18ECL42 HDL Lab Dept. of ECE

88

 #20 reset = 1;

 #10 reset = 0;

 // End of test

 #30 $stop;

 end

 // Monitor outputs

 initial begin

 $monitor("Time=%0d | reset=%b | shift_in=%b | q=%b", $time, reset,

shift_in, q);

 end

endmodule

Result: Shift Registers in Verilog is designed and simulated successfully.

18ECL42 HDL Lab Dept. of ECE

89

14. Memories.

Aim: To design a Memories using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

Memory is a fundamental component of digital systems used for data storage

and retrieval. In digital electronics, memory stores binary information (0s and

1s) and is classified into different types based on its functionality and

architecture. Understanding the types of memories and their operations is

crucial for designing digital systems, such as computers, microcontrollers, and

other embedded systems.

Types of Memories

The two primary types of memories in digital systems are Read-Only Memory

(ROM) and Random Access Memory (RAM). Each has its specific

characteristics and uses.

1. Read-Only Memory (ROM)

ROM is a type of non-volatile memory that stores data permanently. It retains

its data even when the power is turned off. The information stored in ROM is

written during manufacturing and cannot be easily altered or erased.

 Characteristics of ROM:

o Non-volatile: Retains data even without power.

o Pre-programmed: Data is usually programmed during the

manufacturing process.

18ECL42 HDL Lab Dept. of ECE

90

o Used for firmware: Commonly used to store firmware or software

that controls the hardware of a device.

Random Access Memory (RAM)

RAM is a type of volatile memory used to store data temporarily while a

computer or other digital device is powered on. RAM allows data to be read

from and written to any memory location in a random order, providing fast

data access.

 Characteristics of RAM:

o Volatile: Loses its data when the power is turned off.

o Read/Write memory: Allows both reading and writing of data.

o Fast access time: Provides quick access to data compared to other

storage types.

Source Code:

Design Block:

ROM (Read-Only Memory):

module SimpleROM (

 input wire [3:0] address, // 4-bit address input

 output reg [7:0] data // 8-bit data output

);

 // ROM memory definition (16 locations of 8 bits each)

 reg [7:0] memory [0:15];

 // Initialize ROM contents

 initial begin

 memory[0] = 8'b00000001;

 memory[1] = 8'b00000010;

 memory[2] = 8'b00000100;

 memory[3] = 8'b00001000;

18ECL42 HDL Lab Dept. of ECE

91

 memory[4] = 8'b00010000;

 memory[5] = 8'b00100000;

 memory[6] = 8'b01000000;

 memory[7] = 8'b10000000;

 memory[8] = 8'b11111111;

 memory[9] = 8'b11000011;

 memory[10] = 8'b10101010;

 memory[11] = 8'b10011001;

 memory[12] = 8'b01100110;

 memory[13] = 8'b01010101;

 memory[14] = 8'b00110011;

 memory[15] = 8'b00001111;

 end

 // Data output based on address input

 always @(*) begin

 data = memory[address];

 end

endmodule

Testbench:

module tb_SimpleROM();

 reg [3:0] address;

 wire [7:0] data;

 // Instantiate the SimpleROM module

 SimpleROM uut (

 .address(address),

 .data(data)

);

 initial begin

 $display("Time\t Address | Data");

 $display("-------------------------");

18ECL42 HDL Lab Dept. of ECE

92

 $monitor("%0d\t %b | %b", $time, address, data);

 // Apply test patterns

 address = 4'b0000; #10;

 address = 4'b0001; #10;

 address = 4'b0010; #10;

 address = 4'b0011; #10;

 address = 4'b0100; #10;

 address = 4'b0101; #10;

 address = 4'b0110; #10;

 address = 4'b0111; #10;

 address = 4'b1000; #10;

 address = 4'b1111; #10;

 $stop;

 end

endmodule

RAM (Random Access Memory):

Design Block:

module SimpleRAM (

 input wire clk, // Clock input

 input wire write_enable, // Write enable signal

 input wire [3:0] address, // 4-bit address input

 input wire [7:0] write_data, // 8-bit data input for writing

 output reg [7:0] read_data // 8-bit data output for reading

);

 // RAM memory definition (16 locations of 8 bits each)

 reg [7:0] memory [0:15];

 // Read and write operations

 always @(posedge clk) begin

 if (write_enable) begin

 memory[address] <= write_data; // Write data to memory

18ECL42 HDL Lab Dept. of ECE

93

 end

 read_data <= memory[address]; // Read data from memory

 end

endmodule

Testbench:

module tb_SimpleRAM();

 reg clk;

 reg write_enable;

 reg [3:0] address;

 reg [7:0] write_data;

 wire [7:0] read_data;

 // Instantiate the SimpleRAM module

 SimpleRAM uut (

 .clk(clk),

 .write_enable(write_enable),

 .address(address),

 .write_data(write_data),

 .read_data(read_data)

);

 // Clock generation

 initial begin

 clk = 0;

 forever #5 clk = ~clk; // Clock period of 10 time units

 end

 initial begin

 $display("Time\t WE Address | WriteData | ReadData");

 $display("---");

 $monitor("%0d\t %b %b | %b | %b", $time, write_enable, address,

write_data, read_data);

18ECL42 HDL Lab Dept. of ECE

94

 // Test write operation

 write_enable = 1;

 address = 4'b0000; write_data = 8'b10101010; #10;

 address = 4'b0001; write_data = 8'b01010101; #10;

 address = 4'b0010; write_data = 8'b11110000; #10;

 // Test read operation

 write_enable = 0;

 address = 4'b0000; #10;

 address = 4'b0001; #10;

 address = 4'b0010; #10;

 $stop;

 end

endmodule

Result: Memories in Verilog is designed and simulated successfully.

18ECL42 HDL Lab Dept. of ECE

95

15. CMOS Circuits
Aim: To design a CMOS Circuits using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

CMOS (Complementary Metal-Oxide-Semiconductor) technology is the most

widely used technology in the fabrication of integrated circuits (ICs), including

microprocessors, microcontrollers, memory chips, and other digital logic

circuits. It is known for its low power consumption, high noise immunity, and

scalability, making it suitable for a wide range of applications in modern

electronics.

Basics of CMOS Technology

CMOS circuits are built using two types of metal-oxide-semiconductor field-

effect transistors (MOSFETs):

1. PMOS (P-type MOSFET) Transistors: These conduct when the gate

voltage is low (0 or ground) and turn off when the gate voltage is high

(Vdd or positive voltage).

2. NMOS (N-type MOSFET) Transistors: These conduct when the gate

voltage is high (Vdd) and turn off when the gate voltage is low (0 or

ground).

In CMOS technology, these two transistors are arranged in a complementary

manner to create logic gates and digital circuits. This complementary setup is

what gives CMOS circuits their low power consumption and high switching

speed.

18ECL42 HDL Lab Dept. of ECE

96

The fundamental principle of CMOS technology is that there are always two

paths available for the current flow:

 When the circuit is in one logic state (e.g., logic '0'), one type of transistor

(PMOS or NMOS) is turned on while the other is off.

 When the circuit switches to the other logic state (e.g., logic '1'), the roles

of the transistors are reversed.

Source Code:

CIRCUIT DIAGRAM

A) CMOS INVERTER

Design Block:

module ine233(

 input x,

 output f);

 supply1 vdd;

 supply0 gnd;

 // NOT gate body

 pmos p1(f,vdd,x);

18ECL42 HDL Lab Dept. of ECE

97

 nmos n1(f,gnd,x);

endmodule

Testbench:

module tb_ine233;

 reg x; // Declare input as a register

 wire f; // Declare output as a wire

 // Instantiate the CMOS inverter module

 ine233 uut (

 .x(x),

 .f(f)

);

 initial begin

 // Display the header for the output table

 $display("Time\t x | f");

 $display("-------------");

 // Monitor the inputs and outputs

 $monitor("%0d\t %b | %b", $time, x, f);

 // Apply test patterns to the input

 x = 0; #10; // Set input to 0, wait for 10 time units

 x = 1; #10; // Set input to 1, wait for 10 time units

 $stop; // Stop the simulation

 end

endmodule

18ECL42 HDL Lab Dept. of ECE

98

B) CMOS WITH NAND

CIRCUIT DIAGRAM

Design Block:

module cmosnand2(

 input x,

 input y,

 output f

);

 supply1 vdd;

 supply0 gnd;

 wire a;

 // NAND gate body

 pmos p1 (f, vdd, x);

 pmos p2 (f, vdd, y);

 nmos n1 (f, a, x);

 nmos n2 (a, gnd, y);

 endmodule

18ECL42 HDL Lab Dept. of ECE

99

Testbench:

module tb_cmosnand2;

 reg x, y; // Declare inputs as registers

 wire f; // Declare output as a wire

 // Instantiate the CMOS NAND gate module

 cmosnand2 uut (

 .x(x),

 .y(y),

 .f(f)

);

 initial begin

 // Display the header for the output table

 $display("Time\t x y | f");

 $display("-----------------");

 // Monitor the inputs and outputs

 $monitor("%0d\t %b %b | %b", $time, x, y, f);

 // Apply test patterns to the inputs

 x = 0; y = 0; #10; // Inputs 00, wait for 10 time units

 x = 0; y = 1; #10; // Inputs 01, wait for 10 time units

 x = 1; y = 0; #10; // Inputs 10, wait for 10 time units

 x = 1; y = 1; #10; // Inputs 11, wait for 10 time units

18ECL42 HDL Lab Dept. of ECE

100

 $stop; // Stop the simulation

 end

endmodule

C) CMOS WITH NOR

CIRCUIT DIAGRAM

Design Block:

module cmosnor11(

 input x,

 input y,

 output f

);

 supply1 vdd;

 supply0 gnd;

 wire a;

 // NOR gate body

18ECL42 HDL Lab Dept. of ECE

101

 pmos p1 (a, vdd, y);

 pmos p2 (f, a, x);

 nmos n1 (f, gnd, x);

 nmos n2 (f, gnd, y);

endmodule

Testbench:

module tb_cmosnor11;

 reg x, y; // Declare inputs as registers

 wire f; // Declare output as a wire

 // Instantiate the CMOS NOR gate module

 cmosnor11 uut (

 .x(x),

 .y(y),

 .f(f)

);

 initial begin

 // Display the header for the output table

 $display("Time\t x y | f");

 $display("-----------------");

 // Monitor the inputs and outputs

 $monitor("%0d\t %b %b | %b", $time, x, y, f);

18ECL42 HDL Lab Dept. of ECE

102

 // Apply test patterns to the inputs

 x = 0; y = 0; #10; // Inputs 00, wait for 10 time units

 x = 0; y = 1; #10; // Inputs 01, wait for 10 time units

 x = 1; y = 0; #10; // Inputs 10, wait for 10 time units

 x = 1; y = 1; #10; // Inputs 11, wait for 10 time units

 $stop; // Stop the simulation

 end

endmodule

Result: CMOS Circuits in Verilog is designed and simulated successfully.

	3 Line to 8 Line Decoder
	Circuit Diagram:
	3 to 8 Line Decoder Truth Table
	Even Parity Generator

