MODULE 4 - RUN-TIME ENVIRONMENTS

SOURCE LANGUAGE ISSUES

Procedures:

A procedure definition 1s a declaration that associates an identifier with a statement. The

identifier 1s the procedure name, and the statement is the procedure body.

For example, the following is the definition of procedure named readarray :

procedure readarray,
var 1 : integer;
begin

fori:=1to9 do read(a[i])

end;

When a procedure name appears within an executable statement, the procedure is said to be
called at that point.

Activation trees:

An activation tree is used to depict the way control enters and leaves activations. In an
activation tree,

1. Each node represents an activation of a procedure.

2. The root represents the activation of the main program.

3. The node for a is the parent of the node for 5 if and only if control flows from activation a to
b.

4. The node for a is to the left of the node for 4 if and only if the lifetime of @ occurs before the
lifetime of b.

Control stack:

s A control stack 1s used to keep track of live procedure activations. The i1dea is to push the
node for an activation onto the control stack as the activation begins and to pop the node
when the activation ends.

e The contents of the control stack are related to paths to the root of the activation tree.
When node # 1s at the top of control stack, the stack contains the nodes along the path
from # to the root.

The Scope of a Declaration:
A declaration is a syntactic construct that associates information with a name.
Declarations may be explicit, such as:
var i : integer ;
or they may be implicit. Example, any variable name starting with I is assumed to denote an
integer.

The portion of the program to which a declaration applies is called the scape of that declaration.

Binding of names:
Even if each name 1s declared once in a program, the same name may denote different
data objects at run time. “Data object” corresponds to a storage location that holds values.

The term environment refers to a function that maps a name to a storage location.
The term stare refers to a function that maps a storage location to the value held there.

environment state

name storage value

When an environment associates storage location s with a name x, we say that x 1s bound
to s. This association is referred to as a binding of x.

STORAGE ORGANISATION

e The executing target program runs in its own logical address space in which each
program value has a location.

¢ The management and organization of this logical address space is shared between the
complier, operating system and target machine. The operating system maps the logical
address into physical addresses, which are usually spread throughout memory.

Typical subdivision of run-time memory:

Code

Static Data

Stack

!

free memory

T

Heap

Run-time storage comes in blocks, where a byte is the smallest unit of addressable
memory. Four bytes form a machine word. Multibyte objects are stored in consecutive
bytes and given the address of first byte.

The storage layout for data objects is strongly influenced by the addressing constraints of
the target machine.

A character array of length 10 needs only enough bytes to hold 10 characters, a compiler
may allocate 12 bytes to get alignment, leaving 2 bytes unused.

This unused space due to alignment considerations is referred to as padding.

The size of some program objects may be known at run time and may be placed in an
area called static.

The dynamic areas used to maximize the utilization of space at run time are stack and
heap.

Activation records:

Procedure calls and returns are usually managed by a run time stack called the control
stack.

Each live activation has an activation record on the control stack, with the root of the
activation tree at the bottom, the latter activation has its record at the top of the stack.

The contents of the activation record vary with the language being implemented. The
diagram below shows the contents of activation record.

— |
l_ Returned values J

] Controt link.

weed ACCESS [inks.

O

Saved machine states

I— Local data
BRI

Temporary values such as those arising from the evaluation of expressions.

Local data belonging to the procedure whose activation record this is.

A saved machine status, with information about the state of the machine just before the
call to procedures.

An access link may be needed to locate data needed by the called procedure but found
elsewhere.

A control link pointing to the activation record of the caller.

Space for the return value of the called functions, if any. Again, not all called procedures
return a value, and if one does, we may prefer to place that value in a register for
efficiency.

The actual parameters used by the calling procedure. These are not placed in activation
record but rather in registers, when possible, for greater efficiency.

STORAGE ALLOCATION STRATEGIES

The different storage allocation strategies are :

1. Static allocation — lays out storage for all data objects at compile time

2. Stack allocation — manages the run-time storage as a stack.

3. Heap allocation —allocates and deallocates storage as needed at run time from a data area
known as heap.

STATIC ALLOCATION

In static allocation, names are bound to storage as the program is compiled, so there is no
need for a run-time support package.

Since the bindings do not change at run-time, everytime a procedure is activated, its
names are bound to the same storage locations.

Therefore values of local names are refained across activations of a procedure. That is,
when control returns to a procedure the values of the locals are the same as they were
when control left the last time.

From the type of a name, the compiler decides the amount of storage for the name and
decides where the activation records go. At compile time, we can fill in the addresses at
which the target code can find the data it operates on.

STACK ALLOCATION OF SPACE

All compilers for languages that use procedures, functions or methods as units of user-
defined actions manage at least part of their run-time memory as a stack.

Each time a procedure is called , space for its local variables is pushed onto a stack, and
when the procedure terminates, that space 1s popped off the stack.

Calling sequences:

Procedures called are implemented in what is called as calling sequence, which consists

of code that allocates an activation record on the stack and enters information into its

fields.

A return sequence is similar to code to restore the state of machine so the calling

procedure can continue its execution after the call.

The code in calling sequence is often divided between the calling procedure (caller) and

the procedure it calls (calleg).

When designing calling sequences and the layout of activation records, the following

principles are helpful:

Values communicated between caller and callee are generally placed at the
beginning of the callee’s activation record, so they are as close as possible to the
caller’s activation record.

» Fixed length items are generally placed in the middle. Such items typically include
the control link, the access link, and the machine status fields.

» Items whose size may not be known early enough are placed at the end of the
activation record. The most common example is dynamically sized array, where the
value of one of the callee’s parameters determines the length of the array.

» We must locate the top-of-stack pointer judiciously. A common approach is to have

it point to the end of fixed-length fields in the activation record. Fixed-length data
can then be accessed by fixed offsets, known to the intermediate-code generator,
relative to the top-of-stack pointer.

Parameters and returned values
cz_aller_ S control link
activation links and saved status
record | oo <
% caller’s temporaries and local data
ibilit
R FeSPONSIBLIY ™ b rameters and returned values
callee’s
activation control link
record links and saved status
__________________________________ ., lop sp
callee’s _
resp 0nsil1ility temporaries and local data

Division of tasks between caller and callee
The calling sequence and its division between caller and callee are as follows.

» The caller evaluates the actual parameters.

» The caller stores a return address and the old value of 7op sp into the callee’s
activation record. The caller then increments the fop sp to the respective
positions.

» The callee saves the register values and other status information.

» The callee initializes its local data and begins execution.

A suitable, corresponding return sequence is:

» The callee places the return value next to the parameters.

» Using the information in the machine-status field, the callee restores 7op sp and
other registers, and then branches to the return address that the caller placed in
the status field.

» Although 7op sp has been decremented, the caller knows where the return value
is, relative to the current value of rop sp; the caller therefore may use that value.

Variable length data on stack:

¢ The run-time memory management system must deal frequently with the allocation of
space for objects, the sizes of which are not known at the compile time, but which are
local to a procedure and thus may be allocated on the stack.

e The reason to prefer placing objects on the stack is that we avoid the expense of garbage
collecting their space.

e The same scheme works for objects of any type if they are local to the procedure called
and have a size that depends on the parameters of the call.

{

activation 7]
record forp [ioTTmTemTTooTooTooes

pe)
<
=
=
<>
T
=
=
=
A

oD

o' Q,
= S 2
— o, 6 o
o - o=
= R =]
i A w
A

arrays of p

o e
= =
— -
Y] ®
< ~
) us)
A A

activation record for control link ylop sp
procedure q calledbyp [
arrays of q fop
_v '

Access to dynamically allocated arrays

* Procedure p has three local arrays, whose sizes cannot be determined at compile time.
The storage for these arrays is not part of the activation record for p.

e Access to the data is through two pointers, fop and fop-sp. Here the fop marks the actual
top of stack; it points the position at which the next activation record will begin.

e The second rop-sp is used to find local, fixed-length fields of the top activation record.

e The code to reposition /op and fop-sp can be generated at compile time, in terms of sizes
that will become known at run time.

HEAP ALLOCATION

Stack allocation strategy cannot be used if either of the following is possible :
1. The values of local names must be retained when an activation ends.

2. A called activation outlives the caller.

e Heap allocation parcels out pieces of contiguous storage, as needed for activation records
or other objects.

e Pieces may be deallocated in any order, so over the time the heap will consist of alternate
areas that are free and in use.

Position in the Activation records in the heap Remarks
activation tree

s > Retained activation
S 3 record for r

e The record for an activation of procedure r is retained when the activation ends.
e Therefore, the record for the new activation ¢(1 , 9) cannot follow that for s physically.

e [f the retained activation record for r 1s deallocated, there will be free space in the heap
between the activation records for s and q.

MODULE-4 INTERMEDIATE CODE GENERATION

INTRODUCTION

The front end translates a source program into an intermediate representation from which
the back end generates target code.

Benefits of using a machine-independent intermediate form are:

1. Retargeting is facilitated. That is, a compiler for a different machine can be created by
attaching a back end for the new machine to an existing front end.

2. A machine-independent code optimizer can be applied to the intermediate representation.

Position of intermediate code generator

parser static intermediate intermediate code
_’ » » » _»

checker code generator generator
code

INTERMEDIATE LANGUAGES
Three ways of intermediate representation:
e Syntax tree
e Postfix notation
e Three address code

The semantic rules for generating three-address code from common programming language
constructs are similar to those for constructing syntax trees or for generating postfix notation.

Graphical Representations:
Syntax tree:

A syntax tree depicts the natural hierarchical structure of a source program. A dag
(Directed Acyclic Graph) gives the same information but in a more compact way because
common subexpressions are identified. A syntax tree and dag for the assignment statement a : =
b *-c+Db * - care as follows:

SN 4
NN /

uminus b uminus b uminus

C C C

(a) Syntax tree (b) Dag

Postfix notation:

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of
the tree in which a node appears immediately after its children. The postfix notation for the
syntax tree given above is

ab cuminus * b c uminus * + assign
Syntax-directed definition:

Syntax trees for assignment statements are produced by the syntax-directed definition.
Non-terminal S generates an assignment statement. The two binary operators + and * are
examples of the full operator set in a typical language. Operator associativities and precedences
are the usual ones, even though they have not been put into the grammar. This definition
constructs the tree from the inputa:=b * - ¢ + b* - c.

PRODUCTION SEMANTIC RULE

S->id:=E S.nptr : = mknode(‘assign’,mkleaf(id, id.place), E.nptr)
E>E +E, E.nptr : = mknode(‘+’, E.nptr, E>.nptr)

E—2>E; *E, E.nptr : = mknode(“*’, E;.nptr, Ex.nptr)

E—->-E E.nptr : = mknode(“‘uminus’, E;.nptr)

E->(E)) E.nptr : = E|.nptr

E->id E.nptr : = mkleaf{(id, id.place)

Syntax-directed definition to produce syntax trees for assignment statements

The token id has an attribute place that points to the symbol-table entry for the identifier.
A symbol-table entry can be found from an attribute id.name, representing the lexeme associated
with that occurrence of id. If the lexical analyzer holds all lexemes in a single array of
characters, then attribute name might be the index of the first character of the lexeme.

Two representations of the syntax tree are as follows. In (a) each node is represented as a
record with a field for its operator and additional fields for pointers to its children. In (b), nodes
are allocated from an array of records and the index or position of the node serves as the pointer
to the node. All the nodes in the syntax tree can be visited by following pointers, starting from
the root at position 10.

Two representations of the syntax tree

assign ! ! 0 id ! b !
T T
v 1 id | |
id | a | |
| 2| uminus L1
Y I I
I I 3 * | 0 | 2
o |
4 id | b |
| |
y v | 5 i e
i | | i | |
: 6| uminus | 5 |
T I | |
id b id |, b " I 4 I 6
i |‘ 3 | |
uminusI | uminus | 8 + | 3 | 7
v v .
| | of id | a |
id | © id | C . .
10| assign : 9 : 8

(a) (b)
Three-Address Code:
Three-address code is a sequence of statements of the general form
X:=yopz

where X, y and z are names, constants, or compiler-generated temporaries; op stands for any
operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on boolean-
valued data. Thus a source language expression like x+ y*z might be translated into a sequence

tp =y *z
t22=X+t1

where t; and t; are compiler-generated temporary names.

Advantages of three-address code:

» The unraveling of complicated arithmetic expressions and of nested flow-of-control

statements makes three-address code desirable for target code generation and
optimization.

» The use of names for the intermediate values computed by a program allows three-
address code to be easily rearranged — unlike postfix notation.

Three-address code is a linearized representation of a syntax tree or a dag in which
explicit names correspond to the interior nodes of the graph. The syntax tree and dag are

represented by the three-address code sequences. Variable names can appear directly in three-
address statements.

Three-address code corresponding to the syntax tree and dag given above

t1:=-c¢ t1:=-c
th:= b *t th:=b*t
t3:= -c¢C ts : =1t + 1,
ty4:= b * t3 a.:=t;s
t5:= th + 14
a:= ts

(a) Code for the syntax tree (b) Code for the dag

The reason for the term “three-address code” is that each statement usually contains three
addresses, two for the operands and one for the result.

Types of Three-Address Statements:

The common three-address statements are:

1. Assignment statements of the form x : =y op z, where op is a binary arithmetic or logical
operation.

2. Assignment instructions of the form x : = op y, where op is a unary operation. Essential unary
operations include unary minus, logical negation, shift operators, and conversion operators
that, for example, convert a fixed-point number to a floating-point number.

3. Copy statements of the form x : =y where the value of y is assigned to x.

4. The unconditional jump goto L. The three-address statement with label L is the next to be
executed.

5. Conditional jumps such as if x relop y goto L. This instruction applies a relational operator (
<, =, >=, etc.) to x and y, and executes the statement with label L next if x stands in relation

relop to y. If not, the three-address statement following if x relop y goto L is executed next,
as in the usual sequence.

6. param x and call p, n for procedure calls and return y, where y representing a returned value
is optional. For example,
param x;
param X;

param X,
call p,n
generated as part of a call of the procedure p(x1, X2, ... ,Xn).

7. Indexed assignments of the form x : = y[i] and x[i] : =Y.

8. Address and pointer assignments of the form x : = &y, x : = *y, and *x : =y.
Syntax-Directed Translation into Three-Address Code:

When three-address code is generated, temporary names are made up for the interior
nodes of a syntax tree. For example, id : = E consists of code to evaluate E into some temporary
t, followed by the assignment id.place : = t.

Giveninputa:=b * -c+b * - c, the three-address code is as shown above. The
synthesized attribute S.code represents the three-address code for the assignment S.
The nonterminal £ has two attributes :
1. E.place, the name that will hold the value of £, and
2. E.code, the sequence of three-address statements evaluating E.

Syntax-directed definition to produce three-address code for assignments

PRODUCTION SEMANTIC RULES
S 2id:=E S.code : = E.code || gen(id.place ‘:=’ E.place)
E 2 E;+E, E.place := newtemp;

E.code := E.code || Excode || gen(E.place ‘:=’ E.place ‘+’ Ej.place)

E 2E; *E, E.place := newtemp;
E.code := E|.code || Excode || gen(E.place ‘:=’ E.place ‘*’ E,.place)

E 2-E; E.place := newtemp;
E.code := E.code || gen(E.place ‘:=’ ‘uminus’ E.place)

E 2 (E;) E.place : = E.place;
E.code : = E.code

E 2id E.place : =id.place;
E.code:="“"

Semantic rules generating code for a while statement

S.begin:
4_
E.code
if E.place = 0 goto S.after
S1.code
goto S.begin
S.after: <
PRODUCTION SEMANTIC RULES
S = while E do S; S.begin := newlabel;
S.after := newlabel;
S.code := gen(S.begin ‘:’) ||
E.code ||
gen (‘if’ E.place ‘=’ ‘0’ ‘goto’ S.after)||
S1.code ||
gen (‘goto’ S.begin) ||
gen (S.after ‘:°)
» The function newtemp returns a sequence of distinct names ty,tp,..... in response to

successive calls.

» Notation gen(x :="y 4+’ z) is used to represent three-address statement x =y + z.
Expressions appearing instead of variables like x, y and z are evaluated when passed to
gen, and quoted operators or operand, like ‘+’ are taken literally.

» Flow-of—control statements can be added to the language of assignments. The code for §
—> while E do S; is generated using new attributes S.begin and S.after to mark the first
statement in the code for £ and the statement following the code for S, respectively.

» The function newlabel returns a new label every time it is called.

» We assume that a non-zero expression represents true; that is when the value of E
becomes zero, control leaves the while statement.

Implementation of Three-Address Statements:

A three-address statement is an abstract form of intermediate code. In a compiler,
these statements can be implemented as records with fields for the operator and the operands.
Three such representations are:

» Quadruples
» Triples
» Indirect triples
Quadruples:
» A quadruple is a record structure with four fields, which are, op, argl, arg2 and result.

» The op field contains an internal code for the operator. The three-address statement x : =
y op z is represented by placing y in argl, z in arg2 and x in result.

» The contents of fields argl, arg2 and result are normally pointers to the symbol-table
entries for the names represented by these fields. If so, temporary names must be entered
into the symbol table as they are created.

Triples:

» To avoid entering temporary names into the symbol table, we might refer to a temporary
value by the position of the statement that computes it.

» If we do so, three-address statements can be represented by records with only three fields:
op, argl and arg?2.

» The fields argl and arg?2, for the arguments of op, are either pointers to the symbol table
or pointers into the triple structure (for temporary values).

» Since three fields are used, this intermediate code format is known as triples.

op argl | arg? | result op argl arg?2
(0) | uminus c t (0) | uminus c
| b | t | = b (0)
(2) | uminus c t3 (2) | uminus c
3) * b t3 ta 3| * b 2)
4 + th | ts @ | + (1) 3)
(5 = t3 a (5) | assign a 4)

(a) Quadruples (b) Triples

Quadruple and triple representation of three-address statements given above

A ternary operation like x[i] : = y requires two entries in the triple structure as shown as below
while x : = y[i] is naturally represented as two operations.

op argl | arg2 op argl arg?2
(0) [1= X i ©) | =[] y i
(1) assign 0) y (1) | assign X 0)

(@) x[i] : =y (b) x : = y[i]

Indirect Triples:

» Another implementation of three-address code is that of listing pointers to triples, rather
than listing the triples themselves. This implementation is called indirect triples.

» For example, let us use an array statement to list pointers to triples in the desired order.
Then the triples shown above might be represented as follows:

Statement op argl arg?
0) (14) (14) | uminus c
(1) (15) (15) * b (14)
(2) (16) (16) | uminus c
3) (17) (17) * b (16)
4) (18) (18) + (15) (17)
(%) (19) (19) | assign a (18)

Indirect triples representation of three-address statements
DECLARATIONS

As the sequence of declarations in a procedure or block is examined, we can lay out
storage for names local to the procedure. For each local name, we create a symbol-table entry
with information like the type and the relative address of the storage for the name. The relative
address consists of an offset from the base of the static data area or the field for local data in an
activation record.

Declarations in a Procedure:

The syntax of languages such as C, Pascal and Fortran, allows all the declarations in a
single procedure to be processed as a group. In this case, a global variable, say offset, can keep
track of the next available relative address.

In the translation scheme shown below:
» Nonterminal P generates a sequence of declarations of the form id : 7.

» Before the first declaration is considered, offset is set to 0. As each new name is seen ,
that name is entered in the symbol table with offset equal to the current value of offset,
and offset is incremented by the width of the data object denoted by that name.

» The procedure enter(name, type, offset) creates a symbol-table entry for name, gives its
type type and relative address offset in its data area.

» Attribute fype represents a type expression constructed from the basic types integer and
real by applying the type constructors pointer and array. If type expressions are
represented by graphs, then attribute zype might be a pointer to the node representing a
type expression.

» The width of an array is obtained by multiplying the width of each element by the
number of elements in the array. The width of each pointer is assumed to be 4.

Computing the types and relative addresses of declared names

P >D {offset: =0}

D>D;D

D2id:T { enter(id.name, T.type, offset);
offset : = offset + T.width }

T 2 integer { T.type : = integer;
T.width : =4}

T 2 real { T.type : = real;
T.width : =8}

T 2 array [num | of T, { T.type : = array(num.val, T .type);

T.width : = num.val X T.width }

T28T,; { T.type : = pointer (T .type);
T.width : =4}

Keeping Track of Scope Information:

When a nested procedure is seen, processing of declarations in the enclosing procedure is
temporarily suspended. This approach will be illustrated by adding semantic rules to the
following language:

P=>D
D=2D;D|id:T|procid,;D;S
One possible implementation of a symbol table is a linked list of entries for names.

A new symbol table is created when a procedure declaration D = proc id D;;S is seen,
and entries for the declarations in D are created in the new table. The new table points back to
the symbol table of the enclosing procedure; the name represented by id itself is local to the
enclosing procedure. The only change from the treatment of variable declarations is that the
procedure enter is told which symbol table to make an entry in.

For example, consider the symbol tables for procedures readarray, exchange, and
quicksort pointing back to that for the containing procedure sort, consisting of the entire
program. Since partition is declared within quicksort, its table points to that of quicksort.

Symbol tables for nested procedures

sort
nil header
a
X
readarray | T [to readarray
exchange — > to exchange
quicksort l
readarray exchange quicksort
header header header
i k
v
partition
7y l

partition

header

i

The semantic rules are defined in terms of the following operations:

1. mktable(previous) creates a new symbol table and returns a pointer to the new table. The
argument previous points to a previously created symbol table, presumably that for the
enclosing procedure.

2. enter(table, name, type, offset) creates a new entry for name name in the symbol table pointed
to by table. Again, enter places type fype and relative address offset in fields within the entry.

3. addwidth(table, width) records the cumulative width of all the entries in table in the header
associated with this symbol table.

4. enterproc(table, name, newtable) creates a new entry for procedure name in the symbol table
pointed to by table. The argument newtable points to the symbol table for this procedure
name.

Syntax directed translation scheme for nested procedures

P>MD { addwidth (top(thiptr) , top (offser));
pop (tblptr); pop (offset) }
M D¢ { t : = mktable (nil);
push (t,tblptr); push (0,0ffset) }
D 9 D 15 Dz
D procid; ND;; S {t:=top (tbilptr);
addwidth (t, top (offset));
pop (tblptr); pop (offset);
enterproc (top (tblptr), id.name, t) }
D2id:T { enter (top (tblptr), id.name, T.type, top (offset));
top (offset) := top (offset) + T.width }
N 2¢ { t := mktable (top (tblptr));

push (t, thiptr); push (0,0ffset) }

» The stack thlptr is used to contain pointers to the tables for sort, quicksort, and partition
when the declarations in partition are considered.

» The top element of stack offSet is the next available relative address for a local of the
current procedure.

> All semantic actions in the subtrees for B and C in
A = BC {actiony}

are done before action, at the end of the production occurs. Hence, the action associated
with the marker M is the first to be done.

The action for nonterminal M initializes stack tblptr with a symbol table for the
outermost scope, created by operation mktable(nil). The action also pushes relative
address 0 onto stack offset.

Similarly, the nonterminal N uses the operation mktable(top(tblptr)) to create a new
symbol table. The argument top(tblptr) gives the enclosing scope for the new table.

For each variable declaration id: T, an entry is created for id in the current symbol table.
The top of stack offset is incremented by T.width.

» When the action on the right side of D = proc id; ND;; S occurs, the width of all
declarations generated by D is on the top of stack offset; it is recorded using addwidth.
Stacks tbiptr and offset are then popped.

At this point, the name of the enclosed procedure is entered into the symbol table of its
enclosing procedure.

ASSIGNMENT STATEMENTS

Suppose that the context in which an assignment appears is given by the following grammar.

P->MD

M= ¢

D>D;D |id:T | procid;ND;S

N->¢

Nonterminal P becomes the new start symbol when these productions are added to those in the
translation scheme shown below.

Translation scheme to produce three-address code for assignments

S—>id:=E { p : = lookup (id.name);

if p #nil then

emit(p : =" E.place)

else error }
E->E| +E; { E.place : = newtemp;

emit(E.place ‘: =" E;.place + “ Es.place) }
E-2>E *E; { E.place : = newtemp;

emit(E.place : =" E;.place * * “ Ea.place) }
E—->-E; { E.place : = newtemp;

emit (E.place ‘: => ‘uminus’ E;.place) }
E- (E)) { E.place : = E.place }

E - id { p : = lookup (id.name);

if p # nil then
E.place : =p
else error }

Reusing Temporary Names

>

The temporaries used to hold intermediate values in expression calculations tend to
clutter up the symbol table, and space has to be allocated to hold their values.

Temporaries can be reused by changing newtemp. The code generated by the rules for E
- E; + E; has the general form:

evaluate E| into t;
evaluate E, into t,
t:= tl + t2

The lifetimes of these temporaries are nested like matching pairs of balanced parentheses.

Keep a count ¢, initialized to zero. Whenever a temporary name is used as an operand,
decrement ¢ by 1. Whenever a new temporary name is generated, use $c¢ and increase ¢
by 1.

For example, consider the assignmentx :=a*b+c*d—-e*f

Three-address code with stack temporaries

Statement value of ¢

0
$0:=a*b 1
$1:=c*d 2
$0 :=$0 + $1 1
$l:=e*f 2
$0 :=$0 - $1 1
x =$%0 0

Addressing Array Elements:

Elements of an array can be accessed quickly if the elements are stored in a block of

consecutive locations. If the width of each array element is w, then the ith element of array A

begins in location

base+(i—Ilow)x w

where /low is the lower bound on the subscript and base is the relative address of the storage
allocated for the array. That is, base is the relative address of A/low].

The expression can be partially evaluated at compile time if it is rewritten as
ixw+ (base—low x w)

The subexpression ¢ = base — low x w can be evaluated when the declaration of the array is seen.
We assume that c is saved in the symbol table entry for A , so the relative address of A[i] is
obtained by simply adding i x w to c.

Address calculation of multi-dimensional arrays:
A two-dimensional array is stored in of the two forms :
» Row-major (row-by-row)

» Column-major (column-by-column)

Layouts for a 2 x 3 array

T Al1,1] A[11] N
firgt column
first row A[1,2] Al21] ¥
A[1,3] A[1,2]
A[2,1] A[2,2] second column
second row A[2,2] A[1,3]
hird column
L A[2,3] A[23] t
(a) ROW-MAJOR (b) COLUMN-MAJOR

In the case of row-major form, the relative address of A[11, 12] can be calculated by the formula
base + ((i; — lowy) x n; + i, —lowy) x w

where, low; and low, are the lower bounds on the values of i; and i; and n, is the number of
values that i, can take. That is, if high; is the upper bound on the value of i,, then n, = high, —
low; + 1.

Assuming that i; and i, are the only values that are known at compile time, we can rewrite the
above expression as

((i;xny)+i)xw+t (base— ((low;xn,) +low;)xw)
Generalized formula:
The expression generalizes to the following expression for the relative address of A[i}, i, ...,ik]

((...((imx+iy)n3+iz)...)ne+ix)xw+base—((...((lowmny + lowy)ns+ lows) . . .)
ny + lowy) x w

for all j, n; = high;— low; + 1

The Translation Scheme for Addressing Array Elements :
Semantic actions will be added to the grammar :

() S 2 L:=E
2) E 2 E+E

3) E 2 (E)
4 E>L

(5) L > Elist]
6 L >id

(7) Elist 2 Elist, E
(8) Elist > id[E

We generate a normal assignment if L is a simple name, and an indexed assignment into the
location denoted by L otherwise :

(1) S2L:=E { if L.offset = null then / * L is a simple id */
emit (L.place ‘: =’ E.place) ;
else
emit (L.place ‘[L.offset *]’ ‘: =’ E.place) }
2) E2E; +E; { E.place : = newtemp;

emit (E.place *: =" E.place ‘ +’ Ejplace) }
(3) E2(E;) { E.place : = E;.place }

When an array reference L is reduced to £ , we want the r-value of L. Therefore we use indexing
to obtain the contents of the location L.place [L.offset] :

4) E-2L {if L.offset = null then /* L is a simple id*/
E.place : = L.place
else begin
E.place : = newtemp;

emit (E.place ‘: =’ L.place ‘[L.offset ‘]")
end }
(5) L 2 Elist] { L.place : = newtemp;

L.offset : = newtemp;
emit (L.place ‘: =’ c¢(Elist.array));
emit (L.offset “: =’ Elist.place “*’ width (Elist.array)) }

(6) L =2id { L.place := id.place;
L.offset := null }

(7) Elist 2 Elist; , E { t .= newtemp;
m : = Elist;.ndim + 1;
emit (t - =" Elist;.place ‘*’ limit (Elist;.array,m));
emit (t - ="t ‘+’ E.place);
Elist.array : = Elist;.array;

Elistplace : = t;
Elist.ndim : =m }

(8) Elist 2id [E { Elist.array : = id.place;

Elist.place : = E.place;
Elist.ndim : =1}

Type conversion within Assignments :

Consider the grammar for assignment statements as above, but suppose there are two
types — real and integer , with integers converted to reals when necessary. We have another
attribute E.fype, whose value is either real or integer. The semantic rule for E.fype associated
with the production £E 2 E + Eis :

E2>E+E { E.type : =
if E;.type = integer and
E>.type = integer then integer
else real }

The entire semantic rule for E 2 E + E and most of the other productions must be
modified to generate, when necessary, three-address statements of the form x : = inttoreal y,
whose effect is to convert integer y to a real of equal value, called x.

Semantic action for E 2 E; + E;

E.place := newtemp;
if E;.type = integer and E,.type = integer then begin
emit(E.place ‘: =’ E.place ‘int+’ Es.place);
E.type : = integer
end
else if E,.type = real and E,.type = real then begin
emit(E.place ‘: =’ E;.place ‘real +’ E,.place);
E.type : = real
end
else if £;.1ype = integer and E>.type = real then begin
u. = newtemp;

emit(u ‘: = ‘inttoreal’ E;.place);
emit(E.place ‘: =" u ‘ real +’ E,.place);
E.type : = real

end
else if £;.1ype = real and E,.type =integer then begin
u. = newtemp;

emit(u ‘- = ‘inttoreal’ E».place);
emit(E.place ‘: =’ E1.place ‘real +’ u);
E.type : = real

end

else

E.type : = type_error;

For example, for the input x : =y +1*]
assuming x and y have type real, and i and j have type integer, the output would look like

t; ;=1 int*]
t; : = inttoreal t;
ty : =yreal+t;
X =1t
BOOLEAN EXPRESSIONS

Boolean expressions have two primary purposes. They are used to compute logical
values, but more often they are used as conditional expressions in statements that alter the flow
of control, such as if-then-else, or while-do statements.

Boolean expressions are composed of the boolean operators (and, or, and not) applied
to elements that are boolean variables or relational expressions. Relational expressions are of the
form E; relop E>, where E;| and E, are arithmetic expressions.

Here we consider boolean expressions generated by the following grammar :
E2>EorE|Eand E|notE |(E)|idrelop id | true | false

Methods of Translating Boolean Expressions:

There are two principal methods of representing the value of a boolean expression. They are :

» To encode true and false numerically and to evaluate a boolean expression analogously
to an arithmetic expression. Often, 1 is used to denote true and 0 to denote false.

» To implement boolean expressions by flow of control, that is, representing the value of a
boolean expression by a position reached in a program. This method is particularly
convenient in implementing the boolean expressions in flow-of-control statements, such
as the if-then and while-do statements.

Numerical Representation

Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from
left to right, in a manner similar to arithmetic expressions.

For example :

» The translation for
a or b and neot ¢
is the three-address sequence

t; :=notc
t, :=bandt;
t3:=aort,

» A relational expression such as a <b is equivalent to the conditional statement
ifa<bthenl else 0

which can be translated into the three-address code sequence (again, we arbitrarily start
statement numbers at 100) :

100: ifa<b goto 103

101: t:=0
102 : goto 104
103: t:=1
104 :

Translation scheme using a numerical representation for booleans

E 2E orkE, { E.place : = newtemp,

emit(E.place ‘: =’ E.place ‘or’ E,.place) }
E 2E;jand E, { E.place : = newtemp,

emit(E.place ‘: =’ E;.place ‘and’ E».place) }
E 2 notE; { E.place : = newtemp,

emit(E.place ‘: =’ ‘mot’ E;place) }
E2(E;) { E.place : = E.place }
E 2 id; relop id; { E.place : = newtemp,

emit(‘if” idy.place relop.op idy.place ‘goto’ nextstat + 3);

emit(E.place : =" ‘0’);

emit(‘goto’ nextstat +2);

emit(E.place : =" ‘1) }
E 2 true { E.place : = newtemp,

emit(E.place : =" ‘1) }
E Sfalse { E.place : = newtemp,

emit(E.place : = 0’) }

Short-Circuit Code:

We can also translate a boolean expression into three-address code without generating
code for any of the boolean operators and without having the code necessarily evaluate the entire
expression. This style of evaluation is sometimes called “short-circuit” or “jumping” code. It is
possible to evaluate boolean expressions without generating code for the boolean operators and,
or, and not if we represent the value of an expression by a position in the code sequence.

Translation of a<borc<dande<f

100: if a < b goto 103 107 : ta:=1

101: t;:=0 108: if e< f goto 111
102 : goto 104 109: t3:=0

103: t;:=1 110: goto 112

104 : if ¢< d goto 107 11: t3:=1

105: t,:=0 112: t4: =ty and t3

106 : goto 108 113: ts:=tyor t4

Flow-of-Control Statements

We now consider the translation of boolean expressions into three-address code in the
context of if-then, if-then-else, and while-do statements such as those generated by the following
grammar:

S =2 if E then S
| if E then S; else S,
| while E do S,

In each of these productions, E is the Boolean expression to be translated. In the translation, we
assume that a three-address statement can be symbolically labeled, and that the function
newlabel returns a new symbolic label each time it is called.

» E.true is the label to which control flows if E is true, and E.false is the label to which
control flows if E is false.

» The semantic rules for translating a flow-of-control statement S allow control to flow

from the translation S.code to the three-address instruction immediately following
S.code.

> S.next is a label that is attached to the first three-address instruction to be executed after
the code for S.

Code for if-then , if-then-else, and while-do statements

to E.true
E.code ’
_|_toE false
—+—»
E.code to E.true E.true: S;.code
——>
E.true : to E.fal.
rue S;.code o Efalse goto S.next
E false: S,.code
E false :
S.next: «
(a) if-then (b) if-then-else
) +—>
S.begin: E.code to E.true
>
to E.false
E.true: S1.code
goto S.begin
E.false:

(c) while-do

Syntax-directed definition for flow-of-control statements

PRODUCTION SEMANTIC RULES

S - if E then S E.true : = newlabel;

E.false : = S.next;

Si.next : = S.next;

S.code : = E.code || gen(E.true *:°) || S;.code

S - if E then S else S, E.true : = newlabel;

E.false : = newlabel;

Si.next : = S.next;

So.next : = S.next;

S.code : = E.code || gen(E.true ‘:’) || S;.code ||
gen(‘goto’ S.next) ||
gen(E.false ‘:’) || Ss.code

S = while E do S, S.begin : = newlabel;

E.true : = newlabel;

E.false : = S.next;

Sp.next : = S.begin;

S.code : = gen(S.begin ‘:’)|| E.code ||
gen(E.true *:’) || S;.code ||
gen(‘goto’ S.begin)

Control-Flow Translation of Boolean Expressions:

Syntax-directed definition to produce three-address code for booleans

PRODUCTION SEMANTIC RULES

E>E ork, E.true : = E.true;

E).false : = newlabel;

Estrue : = E.true;

Es false : = E false;

E.code : = Ej.code || gen(E.false ‘) || Ez.code

E—>E;and E, E.true : = newlabel;

Efalse : = E false;

Es>true : = E.true;

E>false : = E false;

E.code : = Ej.code || gen(E|.true ‘) || E>.code

E > not E; Ej.true : = E.false;
Efalse : = E.true;
E.code : = Ej.code

E-> (EIl) Ej.true : = E.true;

Efalse : = E false;
E.code : = E;.code

E = id; relop id, E.code : = gen(‘if’ idy.place relop.op id,.place
‘goto’ E.true) || gen(‘goto’ E.false)

E = true E.code : = gen(‘goto’ E.true)

E - false E.code : = gen(‘goto’ E false)

CASE STATEMENTS

The “switch” or “case” statement is available in a variety of languages. The switch-statement
syntax is as shown below :
Switch-statement syntax

switch expression
begin
case value : statement
case value : statement

case value : statement
default : statement
end

There is a selector expression, which is to be evaluated, followed by » constant values
that the expression might take, including a default “value” which always matches the expression
if no other value does. The intended translation of a switch is code to:

1. Evaluate the expression.
2. Find which value in the list of cases is the same as the value of the expression.
3. Execute the statement associated with the value found.

Step (2) can be implemented in one of several ways :

» By a sequence of conditional goto statements, if the number of cases is small.

» By creating a table of pairs, with each pair consisting of a value and a label for the code
of the corresponding statement. Compiler generates a loop to compare the value of the
expression with each value in the table. If no match is found, the default (last) entry is
sure to match.

» If the number of cases s large, it is efficient to construct a hash table.

» There is a common special case in which an efficient implementation of the n-way branch
exists. If the values all lie in some small range, say imin tO imax, and the number of
different values is a reasonable fraction of imax - imin, then we can construct an array of
labels, with the label of the statement for value j in the entry of the table with offset j -
imin and the label for the default in entries not filled otherwise. To perform switch,

evaluate the expression to obtain the value of j , check the value is within range and
transfer to the table entry at offset j-imin -

Syntax-Directed Translation of Case Statements:

Consider the following switch statement:

switch £
begin
case V;: S
case V. S,
case V,.;: S,..;
default: S,
end

This case statement is translated into intermediate code that has the following form :
Translation of a case statement

code to evaluate £ into t

goto test
L;: code for S,
goto next
L,: code for S,
goto next
| code for S,,.;
goto next
Ln: code for S,
goto next
test : if t=1V, goto L;

if t=7V,goto L,

if t="V,; goto Ly
goto L,
next :

To translate into above form :

» When keyword switch is seen, two new labels test and next, and a new temporary t are
generated.

» As expression E is parsed, the code to evaluate E into t is generated. After processing £ ,
the jump goto test is generated.

» As each case keyword occurs, a new label L; is created and entered into the symbol table.
A pointer to this symbol-table entry and the value V; of case constant are placed on a
stack (used only to store cases).

» Each statement case V; - S; is processed by emitting the newly created label L;, followed

by the code for S;, followed by the jump goto next.

» Then when the keyword end terminating the body of the switch is found, the code can be

generated for the n-way branch. Reading the pointer-value pairs on the case stack from
the bottom to the top, we can generate a sequence of three-address statements of the form

case V; L,
case V, L,

case Vp1 Lo
case t L,
label next

where t is the name holding the value of the selector expression £, and L, is the label for
the default statement.

BACKPATCHING

The easiest way to implement the syntax-directed definitions for boolean expressions is

to use two passes. First, construct a syntax tree for the input, and then walk the tree in depth-first
order, computing the translations. The main problem with generating code for boolean

expressions and flow-of-control statements in a single pass is that during one single pass we may
not know the labels that control must go to at the time the jump statements are generated. Hence,
a series of branching statements with the targets of the jumps left unspecified is generated. Each
statement will be put on a list of goto statements whose labels will be filled in when the proper
label can be determined. We call this subsequent filling in of labels backpatching.

To manipulate lists of labels, we use three functions :

1.

makelist(i) creates a new list containing only i, an index into the array of quadruples;
makelist returns a pointer to the list it has made.

merge(p;,p2) concatenates the lists pointed to by p; and p», and returns a pointer to the
concatenated list.

backpatch(p,i) inserts i as the target label for each of the statements on the list pointed to

by p.

Boolean Expressions:

We now construct a translation scheme suitable for producing quadruples for boolean

expressions during bottom-up parsing. The grammar we use is the following:

(1) E%E} OI'MEZ

)
3)
4)
)
(6)
(7
(®)

| E] and ME2
| not E;
| (E))
| id; relop id;
| true
| false

M- e

Synthesized attributes truelist and falselist of nonterminal £ are used to generate jumping code
for boolean expressions. Incomplete jumps with unfilled labels are placed on lists pointed to by
E.truelist and E.falselist.

Consider production £ 2 E;and M E,. If E; is false, then E is also false, so the statements on
E.falselist become part of E.falselist. If E; is true, then we must next test £, so the target for the
statements E.fruelist must be the beginning of the code generated for £». This target is obtained
using marker nonterminal M.

Attribute M.quad records the number of the first statement of E,.code. With the production M =
€ we associate the semantic action

{ M.quad : = nextquad }

The variable nextquad holds the index of the next quadruple to follow. This value will be
backpatched onto the E;.truelist when we have seen the remainder of the production £ - E; and
M E,. The translation scheme is as follows:

(1) E>Ejor ME, { backpatch (E|.falselist, M.quad);
E.truelist : = merge(E|.truelist, Ej.truelist);
E falselist : = E,.falselist }

2) E>Ejand ME; { backpatch (E.truelist, M.quad),
E.truelist : = E.truelist;
E.falselist : = merge(E.falselist, E,.falselist) }

(3) E-> notkE; { E.truelist : = E|.falselist,
E falselist : = E.truelist; }

4 E->(E)) { E.truelist : = E|.truelist;
E falselist : = E).falselist; }

(5) E - id; relop id; { E.truelist : = makelist (nextquad);
E falselist : = makelist(nextquad + 1);
emit(‘if’ idy.place relop.op id,.place ‘goto)
emit(‘goto) }

(6) E - true { E.truelist : = makelist(nextquad);
emit(‘goto_’) }

(7) E - false { E.falselist : = makelist(nextquad);
emit(‘goto_) }

8) M->e¢ { M.quad : = nextquad }

Flow-of-Control Statements:
A translation scheme is developed for statements generated by the following grammar :

(1) S ifEthensS

2) | if £ then S else S
3) | while £do S

“) | begin L end

(5) | 4

(6) L>L;S

(7) | S

Here S denotes a statement, L a statement list, 4 an assignment statement, and E a boolean
expression. We make the tacit assumption that the code that follows a given statement in
execution also follows it physically in the quadruple array. Else, an explicit jump must be
provided.

Scheme to implement the Translation:

The nonterminal E has two attributes E.fruelist and E.falselist. L and S also need a list of
unfilled quadruples that must eventually be completed by backpatching. These lists are pointed
to by the attributes L..nextlist and S.nextlist. S.nextlist is a pointer to a list of all conditional and
unconditional jumps to the quadruple following the statement S in execution order, and L.nextlist
is defined similarly.

The semantic rules for the revised grammar are as follows:

(1) S - if E then M;S; N else M S>
{ backpatch (E.truelist, M;.quad);
backpatch (E.falselist, M>.quad);
S.nextlist : = merge (S;.nextlist, merge (N.nextlist, S,.nextlist)) }

We backpatch the jumps when E is true to the quadruple M;.quad, which is the beginning of the
code for S;. Similarly, we backpatch jumps when E is false to go to the beginning of the code for
S,. The list S.nextlist includes all jumps out of S; and S,, as well as the jump generated by N.

2) N=>c¢ { N.nextlist : = makelist(nextquad);
emit(‘goto) }

3) M=>¢ { M.quad : = nextquad }

(4) S->ifEthen MS, { backpatch(E.truelist, M.quad);

S.nextlist : = merge(E.falselist, S;.nextlist) }

(5) S>> while M; Edo M, S; { backpatch(S;.nextlist, M;.quad);
backpatch(E.truelist, M>.quad);
S.nextlist : = E.falselist
emit(‘goto’ M;.quad) }

(6) S begin L end { S.nextlist : = L.nextlist }

(7 S§—=>4 { S.nextlist : = nil }
The assignment S.nextlist : = nil initializes S.nextlist to an empty list.

® L->LI;MS { backpatch(Lj.nextlist, M.quad);
L.nextlist : = S.nextlist }

The statement following L; in order of execution is the beginning of S. Thus the L/.nextlist list is
backpatched to the beginning of the code for S, which is given by M.quad.

9 L->S { L.nextlist : = S.nextlist }

PROCEDURE CALLS

The procedure is such an important and frequently used programming construct that it is
imperative for a compiler to generate good code for procedure calls and returns. The run-time
routines that handle procedure argument passing, calls and returns are part of the run-time
support package.

Let us consider a grammar for a simple procedure call statement

(1) S 2callid (Elist)
(2) Elist P Elist, E
(3) Elist ?E

Calling Sequences:

The translation for a call includes a calling sequence, a sequence of actions taken on entry
to and exit from each procedure. The falling are the actions that take place in a calling sequence :

» When a procedure call occurs, space must be allocated for the activation record of the
called procedure.

» The arguments of the called procedure must be evaluated and made available to the called
procedure in a known place.

» Environment pointers must be established to enable the called procedure to access data in
enclosing blocks.

» The state of the calling procedure must be saved so it can resume execution after the call.

» Also saved in a known place is the return address, the location to which the called
routine must transfer after it is finished.

» Finally a jump to the beginning of the code for the called procedure must be generated.
For example, consider the following syntax-directed translation

(1) S 2callid (Elist)
{ for each item p on queue do
emit (‘ param’p);

emit (‘call’ id.place) }
(2) Elist 2 Elist, E

{ append E.place to the end of queue }

(3) Elist > E
{ initialize queue to contain only E.place }

» Here, the code for S is the code for Elist, which evaluates the arguments, followed by a
param p statement for each argument, followed by a call statement.

» queue is emptied and then gets a single pointer to the symbol table location for the name
that denotes the value of E.

MODULE-4 CODE GENERATION

The final phase in compiler model is the code generator. It takes as input an intermediate

representation of the source program and produces as output an equivalent target program. The
code generation techniques presented below can be used whether or not an optimizing phase
occurs before code generation.

Position of code generator

. . | oo, .
source front end mtermedlateJ code | intermediate code target
program’ code | optimizer code generator Program
| q——————
|
|
|
symbol
table

ISSUES IN THE DESIGN OF A CODE GENERATOR

The following issues arise during the code generation phase :

A

Input to code generator
Target program
Memory management
Instruction selection
Register allocation
Evaluation order

1. Input to code generator:

The input to the code generation consists of the intermediate representation of the source
program produced by front end , together with information in the symbol table to
determine run-time addresses of the data objects denoted by the names in the
intermediate representation.

Intermediate representation can be :

Linear representation such as postfix notation

Three address representation such as quadruples

Virtual machine representation such as stack machine code
Graphical representations such as syntax trees and dags.

po o

Prior to code generation, the front end must be scanned, parsed and translated into
intermediate representation along with necessary type checking. Therefore, input to code
generation is assumed to be error-free.

2. Target program:

The output of the code generator is the target program. The output may be :
a. Absolute machine language
- It can be placed in a fixed memory location and can be executed immediately.

b. Relocatable machine language
- It allows subprograms to be compiled separately.

c. Assembly language
- Code generation is made easier.

3. Memory management:

e Names in the source program are mapped to addresses of data objects in run-time
memory by the front end and code generator.

e It makes use of symbol table, that is, a name in a three-address statement refers to a
symbol-table entry for the name.

e Labels in three-address statements have to be converted to addresses of instructions.
For example,

J : goto i generates jump instruction as follows :

» if i <j,a backward jump instruction with target address equal to location of
code for quadruple i is generated.

» if i >, the jump is forward. We must store on a list for quadruple i the
location of the first machine instruction generated for quadruple j. When i is

processed, the machine locations for all instructions that forward jumps to i
are filled.

4. Instruction selection:
e The instructions of target machine should be complete and uniform.

¢ Instruction speeds and machine idioms are important factors when efficiency of target
program is considered.

e The quality of the generated code is determined by its speed and size.

e The former statement can be translated into the latter statement as shown below:

a=h+c _
d=ate can be translated mto

ROW b Ey
alD Ry
MOV Eqa
MOV a Fg 4+— This can be elrumated
A0 e Ry,
MOY BEyd

5. Register allocation

¢ Instructions involving register operands are shorter and faster than those involving
operands in memory.

e The use of registers is subdivided into two subproblems :

» Register allocation — the set of variables that will reside in registers at a point in
the program is selected.

» Register assignment — the specific register that a variable will reside in is
picked.

e Certain machine requires even-odd register pairs for some operands and results.
For example , consider the division instruction of the form :
D x,y

where, x — dividend even register in even/odd register pair
y — divisor
even register holds the remainder
odd register holds the quotient

6. Evaluation order
e The order in which the computations are performed can affect the efficiency of the
target code. Some computation orders require fewer registers to hold intermediate
results than others.

TARGET MACHINE

e Familiarity with the target machine and its instruction set is a prerequisite for designing a
good code generator.
e The target computer is a byte-addressable machine with 4 bytes to a word.
e It has n general-purpose registers, Ro, Ry, ..., Ry.
e [t has two-address instructions of the form:
op source, destination
where, op is an op-code, and source and destination are data fields.

e It has the following op-codes :
MOV (move source to destination)
ADD (add source to destination)
SUB (subtract source from destination)

e The source and destination of an instruction are specified by combining registers and
memory locations with address modes.

Address modes with their assembly-language forms

MODE FORM ADDRESS ADDED COST
absolute M M 1
register R R 0
indexed c(R) c+contents(R) 1

indirect register *R contents (R) 0
indirect indexed *c(R) contents(c+ 1
contents(R))

literal #e c 1

e For example : MOV Ry, M stores contents of Register R into memory location M ;
MOV 4(Ry), M stores the value contents(4+contents(Ry)) into M.

Instruction costs :

e Instruction cost = 1+cost for source and destination address modes. This cost corresponds
to the length of the instruction.

e Address modes involving registers have cost zero.

e Address modes involving memory location or literal have cost one.

¢ Instruction length should be minimized if space is important. Doing so also minimizes the
time taken to fetch and perform the instruction.
For example : MOV RO, R1 copies the contents of register RO into R1. It has cost one,
since it occupies only one word of memory.

e The three-address statement a : =b + ¢ can be implemented by many different instruction
sequences :

1) MOV b, Ry
ADD c, Ry cost=6
MOV R(), a

i1) MOV b, a
ADDc, a cost=06

ii1) Assuming Ry, R; and R; contain the addresses of a, b, and c :
MOV *Rjy, *Ry
ADD *Rz, *Ro cost=2

e In order to generate good code for target machine, we must utilize its addressing
capabilities efficiently.

RUN-TIME STORAGE MANAGEMENT

e Information needed during an execution of a procedure is kept in a block of storage
called an activation record, which includes storage for names local to the procedure.
e The two standard storage allocation strategies are:
1. Static allocation
2. Stack allocation
e In static allocation, the position of an activation record in memory is fixed at compile
time.
¢ In stack allocation, a new activation record is pushed onto the stack for each execution of
a procedure. The record is popped when the activation ends.
e The following three-address statements are associated with the run-time allocation and
deallocation of activation records:

1. Call,
2. Return,
3. Halt, and

4. Action, a placeholder for other statements.
e We assume that the run-time memory is divided into areas for:
1. Code
2. Static data
3. Stack

Static allocation

Implementation of call statement:

The codes needed to implement static allocation are as follows:

MOV t#here + 20, callee.static_area /*It saves return address*/
GOTO callee.code _area /*It transfers control to the target code for the called procedure */
where,

callee.static_area — Address of the activation record
callee.code area — Address of the first instruction for called procedure
#here + 20 — Literal return address which is the address of the instruction following GOTO.

Implementation of return statement:

A return from procedure callee is implemented by :

GOTO *callee.static_area

This transfers control to the address saved at the beginning of the activation record.
Implementation of action statement:

The instruction ACTION is used to implement action statement.

Implementation of halt statement:

The statement HALT is the final instruction that returns control to the operating system.

Stack allocation

Static allocation can become stack allocation by using relative addresses for storage in
activation records. In stack allocation, the position of activation record is stored in register so
words in activation records can be accessed as offsets from the value in this register.

The codes needed to implement stack allocation are as follows:
Initialization of stack:

MOV f#stackstart , SP /* initializes stack */

Code for the first procedure

HALT /* terminate execution */
Implementation of Call statement:

ADD #caller.recordsize, SP /* increment stack pointer */
MOV #here + 16, *SP /*Save return address */

GOTO callee.code _area

where,
caller.recordsize — size of the activation record
#here + 16 — address of the instruction following the GOTO

Implementation of Return statement:
GOTO *0(SP) /*return to the caller */

SUB #caller.recordsize, SP /* decrement SP and restore to previous value */

BASIC BLOCKS AND FLOW GRAPHS
Basic Blocks

e A basic block is a sequence of consecutive statements in which flow of control enters at
the beginning and leaves at the end without any halt or possibility of branching except at

the end.
¢ The following sequence of three-address statements forms a basic block:

tj:=a*a

h:=a *b

t3:=2%1t

ty: =1t +13

ts:=b*Db

tg: =14 + 15

Basic Block Construction:

Algorithm: Partition into basic blocks

Input: A sequence of three-address statements

Output: A list of basic blocks with each three-address statement in exactly one block
Method:

1. We first determine the set of leaders, the first statements of basic blocks. The rules
we use are of the following:
a. The first statement is a leader.
b. Any statement that is the target of a conditional or unconditional goto is a
leader.
c. Any statement that immediately follows a goto or conditional goto statement
is a leader.
2. For each leader, its basic block consists of the leader and all statements up to but not
including the next leader or the end of the program.

e Consider the following source code for dot product of two vectors a and b of length 20

begin
prod :=0;
i:=1;
do begin
prod :=prod+ a[i] * b[i];
i:=i+1;
end
while i <= 20
end

e The three-address code for the above source program is given as :
(2) prod :=0

) =1

(3) ty:=4%i

(4) t, = afty] /*compute ali] */
(5) ty:=4*i

(6) ti:= blts] /*compute bli] */

(7) ts = ¥ty
(8) te := prod+ts
(9) prod :=tg
(10) ty:=i+l

(112) i=ty

(12) if i<=20 goto (3)

Basic block 1: Statement (1) to (2)

Basic block 2: Statement (3) to (12)

Transformations on Basic Blocks:

A number of transformations can be applied to a basic block without changing the set of
expressions computed by the block. Two important classes of transformation are :

e Structure-preserving transformations
e Algebraic transformations
1. Structure preserving transformations:

a) Common subexpression elimination:

a:=b+c a:=b+c
b:=a-d e b:=a-d
c:=b+c c:=b+c
d:=a-d d:=b

Since the second and fourth expressions compute the same expression, the basic block can be
transformed as above.

b) Dead-code elimination:

Suppose x is dead, that is, never subsequently used, at the point where the statement x : =
y + z appears in a basic block. Then this statement may be safely removed without changing
the value of the basic block.

¢) Renaming temporary variables:

A statement t : =b + ¢ (tis a temporary) can be changed to u : =b + ¢ (u is a new
temporary) and all uses of this instance of t can be changed to u without changing the value of

the basic block.
Such a block is called a normal-form block.

d) Interchange of statements:
Suppose a block has the following two adjacent statements:

tl:=b+c
t2:=x+y

We can interchange the two statements without affecting the value of the block if and
only if neither x nor y is t; and neither b nor ¢ is t;.

2. Algebraic transformations:

Algebraic transformations can be used to change the set of expressions computed by a basic

block into an algebraically equivalent set.

Examples:

)x:=x+0 or x:=x%*1 canbe eliminated from a basic block without changing the set of
expressions it computes.

i1) The exponential statement x : =y * * 2 can be replaced by x : =y * y.

Flow Graphs

e Flow graph is a directed graph containing the flow-of-control information for the set of
basic blocks making up a program.

e The nodes of the flow graph are basic blocks. It has a distinguished initial node.

e E.g.: Flow graph for the vector dot product is given as follows:

prod:=0 Bl
i:=1
—
tl:=4%*i
t2:=a[tl]
t3:=4%*i B2
t4:=b[t3]
t5:=t2*t4
t6 : = prod + t5
prod : =16
t7:=i+1
i:=t7
if i <=20 goto B2

e B is the initial node. B, immediately follows B, so there is an edge from B; to B,. The
target of jump from last statement of B is the first statement B, so there is an edge from
B, (last statement) to B, (first statement).

e B, is the predecessor of By, and By is a successor of Bj.

Loops

e A loop is a collection of nodes in a flow graph such that
1. All nodes in the collection are strongly connected.
2. The collection of nodes has a unique entry.

¢ A loop that contains no other loops is called an inner loop.

NEXT-USE INFORMATION

e [f the name in a register is no longer needed, then we remove the name from the register
and the register can be used to store some other names.

Input: Basic block B of three-address statements

Output: At each statement i: x='y op z, we attach to i the liveliness and next-uses of x,
y and z.

Method: We start at the last statement of B and scan backwards.

1. Attach to statement i the information currently found in the symbol table
regarding the next-use and liveliness of x, y and z.

2. Inthe symbol table, set x to “not live” and “no next use”.

3. Inthe symbol table, set y and z to “live”, and next-uses of yand z to i.

Symbol Table:
Names Liveliness Next-use
X not live no next-use
y Live i
z Live 1

A SIMPLE CODE GENERATOR

e A code generator generates target code for a sequence of three- address statements and
effectively uses registers to store operands of the statements.

e For example: consider the three-address statement a := b+c
It can have the following sequence of codes:

ADD R;, R; Cost=1 //if R contains b and R; contains ¢
(or)
ADD c, R; Cost=2 //if ¢ is in a memory location
(or)
MOV ¢, R; Cost=3 // move ¢ from memory to Rj and add
ADD Rj, R;

Register and Address Descriptors:

e A register descriptor is used to keep track of what is currently in each registers. The
register descriptors show that initially all the registers are empty.

e An address descriptor stores the location where the current value of the name can be
found at run time.

A code-generation algorithm:

The algorithm takes as input a sequence of three-address statements constituting a basic block.
For each three-address statement of the form x : =y op z, perform the following actions:

1. Invoke a function getreg to determine the location L where the result of the computation y op
z should be stored.

2. Consult the address descriptor for y to determine y’, the current location of y. Prefer the
register for y’ if the value of y is currently both in memory and a register. If the value of y is
not already in L, generate the instruction MOV y’, L to place a copy of y in L.

3. Generate the instruction OP z’ , L. where z’ is a current location of z. Prefer a register to a
memory location if z is in both. Update the address descriptor of x to indicate that x is in
location L. If x is in L, update its descriptor and remove x from all other descriptors.

4. If the current values of y or z have no next uses, are not live on exit from the block, and are in
registers, alter the register descriptor to indicate that, after execution of x : =y op z , those
registers will no longer contain y or z.

Generating Code for Assignment Statements:

e The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-
address code sequence:

t:=a—b
u:=a-—c¢
v:=t+u
d:=v+u

with d live at the end.

Code sequence for the example is:

Statements Code Generated Register descriptor | Address descriptor
Register empty
t:=a-b MOV a, R Ry contains t tin Ry
SUB b, RO
u:=a-c MOV a, Rl Ry contains t tin Ry
SUBc,R1 R1 contains u uin R1
v:i=t+tu ADD Ry, Ry Ry contains v uin Ry
R, contains u vin Ry
d:=v+u ADD Ry, Ry Ry contains d din Ry
d in Rg and memory
MOV Ry, d

Generating Code for Indexed Assignments

The table shows the code sequences generated for the indexed assignment statements

a:=bli]Janda[i]:=b

Statements Code Generated Cost
a:= b[i] MOV b(R;), R 2
af[i]:=b MOV b, a(R;) 3

Generating Code for Pointer Assignments

The table shows the code sequences generated for the pointer assignments

a:=*pand*p:=a

Statements Code Generated Cost
a:=7%*p MOV *R,, a 2
*p:=a MOV a, *R,, 2
Generating Code for Conditional Statements
Statement Code
if x <y goto z CMP x,y
Cl z /* jump to z if condition code
is negative */
X:=y +z MOV vy, Ry
if x <0 goto z ADD z, Ry
MOV R(),X
Cl< z

THE DAG REPRESENTATION FOR BASIC BLOCKS

A DAG for a basic block is a directed acyclic graph with the following labels on nodes:
1. Leaves are labeled by unique identifiers, either variable names or constants.
2. Interior nodes are labeled by an operator symbol.
3. Nodes are also optionally given a sequence of identifiers for labels to store the

computed values.

e DAGs are useful data structures for implementing transformations on basic blocks.

e It gives a picture of how the value computed by a statement is used in subsequent
statements.

e [t provides a good way of determining common sub - expressions.

Algorithm for construction of DAG

Input: A basic block
Output: A DAG for the basic block containing the following information:

1. A label for each node. For leaves, the label is an identifier. For interior nodes, an
operator symbol.
2. For each node a list of attached identifiers to hold the computed values.
Case (i) x:=yOPz

Case (ii)x:=0Py
Case (iii)x: =y
Method:
Step 1: If y is undefined then create node(y).
If z is undefined, create node(z) for case(i).
Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is
node(z). (Checking for common sub expression). Let n be this node.

For case(ii), determine whether there is node(OP) with one child node(y). If not create such
a node.

For case(iii), node n will be node(y).
Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached

identifiers for the node n found in step 2 and set node(x) to n.

Example: Consider the block of three- address statements:

1. t;:=4%i

2. t:= a[t1]

3. t;:= 4% j

4. t;:= b[ts]

5. t5:=t,*t,

6. tg:=prod+ts
7. prod:=tg

8. t;:==i+l

9. i==ty

10. if i<=20 goto (1)

Stages in DAG Construction

(a) ‘
statement (1)
4 10
(b 2
Statemnent (2)
a
t1
4 10

node for 4*I0 exst
already, hence attach
identifier t2 to the exsting
node for Statement (3)

(c) t2

t1,t3

4 10

NOHOL
statement (4)
2 o t1,43
b

(&)
Statement (5

()

statement (6), attach
t5 identifier prod for

prodd statement (7

Statemment (8), attach
identifier 1 for

prod0 statement (%)

@ t1 3 £7.4

(h)
Final DAG

Application of DAGs:

1. We can automatically detect common sub expressions.
2. We can determine which identifiers have their values used in the block.
3. We can determine which statements compute values that could be used outside the block.

GENERATING CODE FROM DAGs

The advantage of generating code for a basic block from its dag representation is that,
from a dag we can easily see how to rearrange the order of the final computation sequence than
we can starting from a linear sequence of three-address statements or quadruples.

Rearranging the order
The order in which computations are done can affect the cost of resulting object code.

For example, consider the following basic block:

t1:=a+b
th:=c+d
t3:=e—1t
ty: =t —1t3

Generated code sequence for basic block:

MOV a , R()
ADD b, R

MOV ¢, R,
ADDd, R,

MOV Ry, t;
MOV e, Ry
SUBR;, Ry
MOV t;, Ry
SUB Ry, Ry
MOV R, , 4

Rearranged basic block:
Now t1 occurs immediately before t4.

t:=c+d
3:=e—1
tj:=a+b
ty:=t—1t3

Revised code sequence:

MOV ¢, Ry
ADDd, Ry
MOV a , R()
SUB Ry, Ry
MOV a , R()
ADD b, Ry
SUBR;, Ry
MOV Ry, t4

In this order, two instructions MOV Ry, t; and MOV t; , R; have been saved.

A Heuristic ordering for Dags

The heuristic ordering algorithm attempts to make the evaluation of a node immediately follow
the evaluation of its leftmost argument.

The algorithm shown below produces the ordering in reverse.

Algorithm:
1) while unlisted interior nodes remain do begin
2) select an unlisted node n, all of whose parents have been listed;
3) list n;
4) while the leftmost child m of n has no unlisted parents and is not a leaf do
begin
5) list m;
6) n:=m
end
end

Example: Consider the DAG shown below:

9 10

Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line (3).
Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6).

Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we
select a new n at line (2), and node 3 is the only candidate. We list 3 and proceed down its left
chain, listing 4, 5 and 6. This leaves only 8 among the interior nodes so we list that.

The resulting list is 1234568 and the order of evaluation is 8654321.

Code sequence:

tg:=d+e
t¢:=a+b
ts . =ts—C
ty: =15 *tg
t3:=t4—e
h:=t+ 14
t1:=t *t3

This will yield an optimal code for the DAG on machine whatever be the number of registers.

