BAPATLA ENGINEERING COLLEGE :: BAPATLA
(AUTONOMOUS)

[]

BAPATNAJENGINEFRING[CONNEGE

A - T
Automata & Compiler Design (181T502)

Unit-1 Material

Department of Information Technology

BAPATLA ENGINEERING COLLEGE::BAPATLA

(AUTONOMOUS)
Affiliated to Acharya Nagarjuna University
Bapatla-522102, Guntur (District), AP.

Automata & Compiler Design (181T502)

AUTOMATA & COMPILER DESIGN
1817502
B.Tech.,(Semester- V)

Lectures 1 | 3 Periods/Week , Tutorial: 1 Continuous Assessment | : 50
Final Exam | : | 3 Hours Final Exam Marks : 50

Course Objectives: The student will understand:

COB 1: The concepts of finite automata and regular languages and their properties.
COB 2: The concepts of Context free grammars and push down automata

COB 3: The phases of a compiler, lexical analysis and parsing techniques.

COB 4: Different intermediate code forms and code generation algorithm for target machine.

Course Outcomes: Upon successful completion of the course, the student will be able to:
CO 1: Design finite state machines for acceptance of strings and understand the concepts of regular
languages and their properties.
CO 2: Design context free grammars for formal languages and develop pushdown automata for accepting
strings
CO 3: Understand the phases of a compiler and construct lexical analysis, top-down and bottom-up
parsers
CO 4: Apply intermediate, code generation techniques and runtime allocation strategies.

UNIT -1
Finite Automata: Introduction to Automata, Deterministic finite automata (DFA), Problems on DFA,
Non deterministic finite automata (NFA), Equivalence of DFA and NFA, Finite Automata with €
transitions, Equivalence and minimization of automata.
Regular Expressions and Languages: Regular expressions, Algebraic laws of regular expressions,
Pumping lemma for regular languages, Applications of the pumping lemma, Closure Properties of
Regular Languages.

UNIT =11
Context Free Grammars: Context Free Grammars, Parse Trees, Constructing parse trees, derivations
and parse trees, ambiguous grammars.
Pushdown Automata: Definition of the Pushdown automata, the languages of PDA, Equivalences of
PDA’s and CFG’s.
Context free languages: Normal forms for context- Free grammars, the pumping lemma for context free

languages.

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

UNIT-I

Introduction to compiling: Compilers, The Phases of a compiler.
Lexical Analysis: The role of the lexical analyzer, input buffering, simplification of tokens, Recognition
of tokens, implementing transition diagrams, a language for specifying lexical analyzers.
Syntax analysis: Top down parsing - Recursive descent parsing, Predictive parsers. Bottom up parsing -
Shift Reduce parsing, LR Parsers — Construction of SLR, Canonical LR and LALR parsing techniques,
Parser generators — YACC Tool.

UNIT-IV

Intermediate code Generation: Intermediate languages, Declarations, Assignment statements, Boolean
expressions, back patching.

Runtime Environment: Source language issues, Storage organization, Storage-allocation strategies.
Code Generation- Issues in the design of code generator, the target machines, Basic blocks and flow

graphs, Next use information, a simple code generator.

TEXT BOOKS:

John E. Hopcroft et al., Introduction to Automata Theory, Languages and Computation, 3rd Ed., Pearson,
2007.

A.V. Aho et al., “Compilers: Priniciples, Techniques, Tools”, 2nd Edition, Pearson, 2006.

REFERENCES:

1.John E Hopcroft & Jeffery D Ullman, “Introduction to Automata Theory & Languages and
Computation”, Narosa Publishing House.

2. Alfred V.Aho, Jeffrey D. Ullman, “Principles of Compiler Design”, Narosa publishing.

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

UNIT-I

Finite Automata

Chomsky Hierarchy:

recursively enumerable
Type-0
.................. i, {ambmcm :

as®
.

£
"
-,
.
e,
.,
.
..
a,
.,

recursive

context-sensitive
Type-1 {am
b"’am ‘m>Q }

context-free
Type-2 {ampm.

{aba |

1
neb regular

gt Tvpe-3

More Complex

t More Powerful
Automata Less Restricted
(acceptors) ‘ Less Complex Grammars
‘ Less Powerful (generators)
More Restricted
Language Grammar Machine Example
Regular lan- Regular grammar Deterministic a
guage —Right-linear grammar or
—Left-linear grammar Nondeter-
ministic
finite-state
acceptor
Context-free Context-free grammar Nondeter- a'p’
language ministic
pushdown
automaton
Context-sensi- Context sensitive Linear- ab'c
tive language grammar bounded
automaton
Recwrsively Unrestricted grammar Turing Any
enumerable machine computable
language function

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

An automaton (Automata in plural) is an abstract self-propelled computing device which follows a
predetermined sequence of operations automatically.
An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State Machine
(FSM).
Formal definition of a Finite Automaton
An automaton can be represented by a 5-tuple (Q, %, 3, q0, F), where:
» Qs afinite set of states.
» X isa finite set of symbols, called the alphabet of the automaton.
> 9 is the transition function.
> (o is the initial state from where any input is processed (go € Q).
> Fisaset of final state/states of Q (F S Q).
Central Concepts of Automata Theory
Alphabet:
Definition: An alphabet is any finite set of symbols. It is denoted by)
Example: X = {a, b, ¢, d} is an alphabet set where ‘a’, ‘b’, “‘c’, and‘d’ are symbols.

Example: ' _ |
1. If pz is an alphabet containing all the 26 characters used in English language, then

y is finite and nonempty set, and T = {a,b,c,....,2}.
2. X ={0,1} isanalphabet.
3. Y = {1,2.3,.} is not an alphabet because it is infinite.
4. z ={} isnotanalphabet because it is empty.

String
Definition: A string is a finite sequence of symbols taken from X.
Example: ‘cabcad’ is a valid string on the alphabet set ¥ = {a, b, ¢, d}
Length of a String
Definition: It is the number of symbols present in a string. (Denoted by |S]).
Examples
If S=*cabcad’, |S|= 6
If |S|= 0, it is called an empty string (Denoted by X or g)

Concatenation of strings

If w, and w, are two strings then concatenation of w, with w, is a string and it is denoted by

w,w, . In other words, we can say that w, is followed by w, and | wyw,| = | w,| + | wy]|-

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Prefix of a string

A string obtained by removing zero or more trailing symbols is called prefix. For example, ifa
string w = abe ,then a,ab ,abe areprefixesof w.

Suffix of a string

A string obtained by removing zero or more leading symbols is called suffix. For example, ifa
string w = abe ,then ¢,be, abe are suffixes of w. -
A string « is a proper prefix or suffix of a string w ifandonlyif a = w .

Substrings of a string

‘A string obtained by removing a prefix and a suffix from string w is called substring of W, F(?r
example, ifastring w = abe »then p is asubstring of w. Every prefix and suffix of string w 1s
a substring of w , but not every substring of w is aprefix or suffix of w . Forevery string w, both
w and e are prefixes, suffixes, and substrings of w.

Substring of w =w —(one prefix)—(one suffix).

Kleene Closure / Star
Definition: The Kleene star, £*, is a unary operator on a set of symbols or strings, X, that gives the
infinite set of all possible strings of all possible lengths over X including €.
Representation: 2*=>0U X1 UX2 U....... where Zp is the set of all possible strings of length p.
Example: If X = {a, b}, £*= {A, a, b, aa, ab, ba, bb,........... }
L* = {Set of all words over X}
= {word of length zero, words of length one, words of length two, ...}

ey =r0uruu.,.
K=0

Example:

1. £ ={a,b} andalanguage 1 over ¥ .Then
I*=rurluru...
L=1{g
L' = {a,b},
I’ ={qa,ab,ba,bb} and soon.
So, L* = {e,a, b, aa,ab, ba,bb..}
2. § = {0}, then §* = {€,0,00,000 ,0000 ,00000 ...}

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Positive Closure / Plus

Definition: The set 2+ is the infinite set of all possible strings of all possible lengths over X excluding €.
Representation: X+=X1 UX2UX3 U

T+=X*—{€}
Example: If X = {a,b},X+={a,b, aa, ab, ba, bb,........... }

Example :
if £ = {0},then £+ = £{0,00,000 ,0000 ,00000 ,..}

Language
Definition: A language is a subset of £* for some alphabet . It can be finite or infinite.

Example: If the language takes all possible strings of length 2 over X = {a, b}, then L = { ab, bb, ba, bb}
1. L, ={01,0011.000111 } is a language over alphabet {0,1}
2. L, ={e,0,00,000 ,...} isalanguageover alphabet {0}

3. L, ={0"1"2" ;n 21} isalanguage.

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Deterministic Finite Automata (DFA)

Finite Automaton can be classified into two types:
> Deterministic Finite Automaton (DFA)
» Non-deterministic Finite Automaton (NDFA / NFA)
Deterministic Finite Automaton (DFA)
In DFA, for each input symbol, one can determine the state to which the machine will move. Hence, it is
called Deterministic Automaton. As it has a finite number of states, the machine is called Deterministic

Finite Machine or Deterministic Finite Automaton.
Formal Definition of a DFA:

A DFA can be represented by a 5-tuple (Q, %, 3, qo, F) where:
e Q isa finite set of states.
e X s afinite set of symbols called the alphabet.
e 0 is the transition function where 6: Q X £ — Q
e (o isthe initial state from where any input is processed (go € Q).
e Fisasetof final state/states of Q (F € Q).
Simpler Notations for DFA:
There are two preferred notations for describing automata:
1. A Transition Diagram — This is a graph
A DFA is represented by digraphs called state diagram.
e The vertices represent the states.
e The arcs labelled with an input alphabet show the transitions.
e The initial state is denoted by an arrow into the start state qo , labelled start

e The final state is indicated by double circles.

I 0

Star -
. {@—-.'r:#?,—m fij/ /J 0. 1

2. A Transition Table — This is a tabular listing of the ¢ function.
A transition table is a conventional, tabular representation of a function like d that takes two arguments
and returns a value.

e The rows of the table correspond to the states and the columns correspond to the input.

The entry for the row corresponding to state g and column corresponding to input a is the state o (q, a)

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Example:

|0 |1

L VI | IO S 1
* q1 | T
gz || G2 | T

Notations used for representing FA

We represent a FA by describing all the five - terms (Q, £, 8, q,, F). By using diagram to

represent FA make things much clearer and readable. We use following notations for representing
the FA:

1. Theinitial state is represented by a state within a circle and an arrow entering into circle as

shown below :
(Initial state g,)

2. Final state is represented by final state within double circles :
I (Final state ¢,)

3. Thehang stateis represented by the symbol '¢' within a circle as follows :

4. Other states are represented by the state name within a circle.
A directed edge with label shows the transition (or move). Suppose p is the present state
and ¢ is the next state on inpg'tj symbol 'a’, mf:not'nis is represented by
P = X g
6. A directed edge with more than one label shows the transitions (ormoves). Suppose p is the
present state and q is the next state on input - symbols 'a,’ or *a,’ or...or 'a,’ thenthisis

represented by @)83 il ,@

Extending the transition function to strings:

n

If § is our transition function, then the extended transition function constructed from & will be called &' or
3.
We define &* by induction on the length of the input string, as follows

BASIS: d(q.¢) = ¢. That is, if we are in state ¢ an}l read no inputs, then we
are still in state q.

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

INDUCTION: Suppose o is a string of the form ra; that is, a is the last symbol
of w, and 2 is the string consisting of all but the last svmbol.” For example.
it = 1101 is broken into » = 110 and @ = 1. Then

r}-'l: i,) = rf'[rﬁl: i, . :I

Problems on DFA:

1. Design a DFA to accept the language L = {w | w has both an even number of 0’s and an even

number of 1’s}
Sol:

State gg is both the start state and the lone accepting state. It is the start
state, because before reading any inputs, the numbers of 's and 1's seen so
far are both zero, and zero is even. It is the only aceepting state, because it
describes exactly the condition for a sequence of ('s and 1's to be in language

L.

i | —
'x"ﬁ]»;'l'm_ : __1./5\»;,]/
T ' \x 0
{ 0 : llf |
_______ —_——r—-—fF == -
vt e)
o\ / | ‘$F /
A P 4
(Y 1 (a3
p— PN

The DFA for language L is
A= {r;'i]. 01 o iy } {['J. 1 }r} 0 {r;'i]})

Where the transition function & is described by the transition diagram

IENE

¥ o || 2| T
g1 || 93 | qo

(= 0 (3

ga || G | gz

1 checlk involves compting dgq. w) for cach prefix w o 101, starting
The checl 1 apiting & {egg. w) h prefix w of 110101, starting
at € and going in increasing size. The summary of this calculation is:

10

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

e Magn.e) = .

o qp.1) = 8{dga.e). 1) = dga. 1) = q4.

o Mago. 1) = d(d{qu.1). 1) = d{gi. 1) = go.

o Mo 110) = 3 dgo. 11, 0) = d{ga. 0) = go.

o 3(go. 1101) = 8(3(qe. 110). 1) = 6(q. 1) = qs.

o M. 11010) = a(d{qg. 1101),0) = dg3.0) = q4.

o g, 110101) = 8{{gn. L1010). 1) = d{q1. 1) = qa.

The string 110101 is accepted by the DFA.
Case 1: If Final State is q0
L={ w | w has both an even number of 0’s and an even number of 1’s }
Case 2: If Final State is q1
L={ w | w has both an odd number of 0’s and an even number of 1’s }
Case 3: If Final state is g2
L={ w | w has both an even number of 0’s and an odd number of 1’s }
Case 4: If Final state is q3
L={ w | w has both an odd number of 0’s and an odd number of 1’s }
2. Give DFA’s accepting the following languages over the alphabet {0, 1}
a) The set of all strings ending in 00
b) The set of all strings with three consecutive 0’s (not necessarily at the end)
c) The set of strings with 011 as a substring.
a) The Set of all strings ending 00
Possible strings: L={00, 000,100,0100,1000,1100,0000,100100...... }

11

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

DFA A= ({q0,q1,92}, {0,1}, 8,90,{q2})

o Transition Function:

0 1
->q0 gl [0
ql q2 q0
*02 92 q0

b) The set of all strings with three consecutive 0’s. (Not necessarily at the end)
L={000,0001,00010,10001,00011,00010,000101,010001,0100010,0010001........ }

DFA A= ({q0,q1,92,93}, {0,1}, 3,90,{q3})
o Transition Function:

0 1
->q0 gl q0
ql q2 q0
92 q3 q0
*03 q3 93
¢) The set of strings with 011 as substring.
L={011,0011,1011,0110,01101,01110,10110,10111,....... }

DFA A= ({q0,91,92,93}, {0,1}, 6,90,{q3})

12

Department of Information Technology, BEC, Bapatla-522102.

GP

Automata & Compiler Design (181T502)

o Transition Function:

0 1
->q0 gl [0
ql ql q2
q2 ql q3
*03 q3 g3

3) The DFA accepting all strings with a substring 01.
L={01,101,001,011,010,0100,0110,0101,0111,1001,0001,.......... }

DFA A=({q0,91,92}, {0,1}, 8,90,{q2})
o Transition Function:

0 1
->q0 gl [0
ql ql q2
*02 92 92

4) Design a DFA which accepts the strings start with 1 and ends with 0
L={10,110,100,1000,1100,1010,1110,10000,11000,11100,11110,10110,........

DFA A= ({q0,91,92,93}, {0,1}, 6,90,{q2})

13

Department of Information Technology, BEC, Bapatla-522102.

GP

Automata & Compiler Design (181T502)

o Transition Function:

0 1
->q0 g3 ql
gl g2 gl
*02 g2 gl
g3 (Dead | g3 g3
State)

5) The set of strings that either begin or end with 01

Begin with 0: L1={ 01w } - 01 followed by any string which consists of 0’s and 1’s.
End with 0: L2= { w01 } = Any string which consists of 0’s and 1’s followed by 01.

DFA A= ({q0,91,92,93,94,95}, {0,1}, 8,90,{q2,95})

o Transition Function:

0 1
->q0 ql g3
ql q4 q2
92 92 92
q3 q4 ql
q4 q4 a5
*g5 q4 q3

01

A
O,

14

Department of Information Technology, BEC, Bapatla-522102.

GP

Automata & Compiler Design (181T502)

6) Design a DFA which accepts the string starts with 01 and ends with 11.
L={011,0111,01011,01111,010011,011111,011011,010111,....... }

DFA A=({q0.91,92,93,.94,95}, {0,1}, 6,90,{q3})
o Transition Function:

0 1
-2>q0 ql q4
ql q4 q2
02 a5 93
*q3 a5 q3
g4(Dead State) | g4 q4
g5 a5 q2

7) The set of strings such that the number of 0’s is divisible by 5 and the number of 1’s is divisible
by 3.
i) The number of 0’s is divisible by 5

i) The number of 1’s is divisible by 3.

©

15

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

8) Design a DFA which checks whether a given binary number is divisible by 3.

16

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

11) Give DFA’s accepting the set of all strings ending in 00

The set of all strings not ending in 00

Non Deterministic Finite Automata

A nondeterministic finite automaton NFA has the power to be in several states at once.

They are often more succinct and easier to design than DFA’s.
An NFA is represented essentially like a DFA A= (Q, X, 3, qo, F)
Where

e Qs afinite set of states

e X isa finite set of input symbols

e (oamember of Q, is the start state

e Fisasubsetof Q, is the set of final or accepting states

e 9, the transition function is a function that takes a state in Q and an input symbol in X as arguments

and returns a subset of Q. Notice that the only difference between an NFA and a DFA is in the

type of value that 6 returns a set of states in the case of an NFA and a single state in the case of a

DFA.
Example: An NFA accepting all strings that end in 01.
0, 1
Start __!; N 1 SN

—) 0 —
(\" 'H? 1 i~
o) —&)

17

Department of Information Technology, BEC, Bapatla-522102.

GP

Automata & Compiler Design (181T502)

The states an NFA is in during the processing of input sequence 00101

Gy ——» Gy —— Gy ——== Gy —— Gy ——» G

S, s N

4, 1 1

(stuck) \ \

) Gy
{stuck)

0 0 1 0 1
The NFA can be specified formally as A=({g0,91,92},{0,1}, 6,q0,{q2})

Where the transition function is & given by the transition table

| 0 | 1
—qo || {g0.q1} | {90}
i I.r'l} {filf }
F(fa I;'I} I;'I}

Let us use & to describe the processing of input 00101 by the ngpa

A summary of the steps is

1. ri'['q“. €)= {q}-

2. ri'['qu. 0} = d(qo,0) = {go.q1 }.

3. ri'[fﬁ.. 00) = d{qgo, 0} U d(qy.0) = {qo.q1} U W= {qo,q }
1. ri'[q“. 001) = digo, 1)U d{q1.1) ={qo} U {gp} = {q0.q2}

ri'[q“. 0010} = d(gp. 0) U d(g2.0) = {qo.q1 } U D = {q0.q1 }-

iy |

6. ri'(fju.l'}l'lll'llj =0(go, 1) Udlq,1) ={go} U{g} ={qw.q:}.

Examples:
1. Design an NFA that accepts all binary strings end with 101.
0,1

N\ 1 SN 0 /N 1 7
OO0

18

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

2. Design an NFA that accepts any binary string that contains 00 or 11 as a substring.

—

(B |
/._ N0
0 “‘\H\
— . -
~ 4\/ Mo 0.1
(— P o
0,1~) /f”

— 1
'Ik ¢ j

Equivalence of Deterministic and Nondeterministic Finite Automata
Example 1: Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic
Finite Automata (DFA).

Solution:
Transition table for the given Non-Deterministic Finite Automata (NFA) is

State / a b
Alphabet
—q0 qo qo, g1
gql - *q2
*q2 - —

Let Qp be a new set of states of the Deterministic Finite Automata (DFA).
Let Tp be a new transition table of the DFA.
Add transitions of start state g0 to the transition table Tp.

State / Alphabet a b

19

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

New state present in state Qp is {0, q1}.
Add transitions for set of states {0, q1} to the transition table Tp.
6o ({q0,q1},a)=0n(q0,a) Udn(ql.,a)={q0} U D ={q0}
6p ({q0,q1},b)=23n(q0.b) Udn(qlb)={q0,q1} U{g2} = {q0,q1,g2}->New State
New state present in state Qp is {0, q1, g2}.
Add transitions for set of states {0, q1, g2} to the transition table Tp.
6p ({q0,q1,92},2)=3n(q0,a) Udn(ql,a) Udn(q2,a) = {q0} U® U D ={q0}
6o ({90,91,92},b)=0n(q0,b) Udn(qlb) Udn(q2,b) = {q0,q1} U {q2} U P ={q0,q1,02}
Since no new states are left to be added in the transition table Tp, So we stop.
States containing g2 as its component are treated as final states of the DFA.

Finally, Transition table for Deterministic Finite Automata (DFA) is-

State / Alphabet a b
—q0 q0 {q0, g1}
{90, q1} q0 *{q0, a1, 42}
{00, a1, g2} q0 *{q0, a1, 42}

Now, Deterministic Finite Automata (DFA) may be drawn as-

Deterministic Finite Automata (DFA)

20

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

2. Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite
Automata (DFA).

Solution:
Transition table for the given Non-Deterministic Finite Automata (NFA) is-

State / Alphabet 0 1
—q0 qo gl, *q2
ql ql, *q2 %2
*q2 qo, q1 ql

Let Qp be a new set of states of the Deterministic Finite Automata (DFA).
Let Tp be a new transition table of the DFA.
Add transitions of start state g0 to the transition table Tp.

State / Alphabet 0 1

—q0 q0 {a1, g2}

New state present in state Qp is {q1, q2}.
Add transitions for set of states {g1, g2} to the transition table Tp.

****Do the remaining steps like in the previous problem****
Since no new states are left to be added in the transition table Tp, So we stop.

States containing g2 as its component are treated as final states of the DFA.

21

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Finally, Transition table for Deterministic Finite Automata (DFA) is-

State / Alphabet 0
—q0 qo
a1, g2} *{q0, q1, 92}
{00, a1, g2} *{q0, q1, 92}

Now, Deterministic Finite Automata (DFA) may be drawn as-

Deterministic Finite Automata (DFA)

* Exercise 2.3.1: Convert to a DFA the following NFA:

0 1
—=p || {pat | {0}
q|[{rt | {r}

ol s} ()
«s || {s} | {s}

Exercise 2.3.2: Convert to a DFA the [ollowing NFA:

() 1
= p | {a.s} | {q}
wl o | {ar)
e dst | Apd
w5 || 0 {p}

“{al, g2}

“{al, g2}

“{al, g2}

22

Department of Information Technology, BEC, Bapatla-522102.

GP

Automata & Compiler Design (181T502)

! Exercise 2.3.3: Convert the following NFA 1o a DFA and informally describe
the language it accepts.

| 0 | 1
= p || {p.q} | {p}
g || {r.s} | {t}
e (mr) | 40
| W ()

Finite Automata with €- transitions (or) €- NFA

We shall now introduce another extension of the finite automaton. The new “feature” is that we allow a
transition on €, the empty string.

An NFA is allowed to make a transition spontaneously, without receiving an input symbol.

We shall begin with an informal treatment of €-NFA’s, using transition diagrams with € allowed as a
label.

€-NFA that accepts decimal numbers consisting of
1. An optional 4+ or — sign,
2. A string of digits,
3. A decimal point, and

L. Another string of digits. Either this string of digits, or the string {2} can
be empty, but at least one of the two strings of digits must be nonempty.

For instance, the NFA recognizing the keywords web and eBay can also be implemented with €-
transitions

Using €-transitions to help recognize keywords

23

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

The Formal Notation for an €-NFA

Formally, we represent an €-NFA A by A=(Q.,>.,5, Qo, F) where all components have their same

interpretation as for an NFA, except that 6 is now a function that takes as arguments:
3:QXYU{€}>2°

Note: €, the symbol for the empty string, cannot be a member of the alphabet 3", so no confusion results.

Epsilon-Closures

Epsilon (€) — closure : Epsilon closure for a given state X is a set of states which can be reached from

the states X with only (null) or € moves including the state X itself.
BASIS: State ¢ is in ECLOSE(q).

INDUCTION: If state p is in ECLOSE(g), and there is a transition [rom state p
to state r labeled e, then v is in ECLOSE(yg). More precisely, il o is the transition
function of the e-NFA involved, and p is in ECLOSE(g), then ECLOSE(g) also
contains all the states in o(p, €).

Example:
/A“‘ —()———=0)
D)

€-closure(1) orECLOSE(1)={1,2,3,4,6} €-closure(2) or ECLOSE(2)={ 2,3,6}
€-closure(3) or ECLOSE(3)={ 3,6} €-closure(4) orECLOSE(4)={ 4}
€-closure(5) or ECLOSE(5)={ 5,7} €-closure(6) or ECLOSE(6)={ 6}

24

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Conversion from €-NFA to DFA

Steps to Convert NFA with e-move to DFA:

Step 1 : Take € closure for the beginning state of NFA as beginning state of DFA.

Step 2 : Find the states that can be traversed from the present for each input symbol

(union of transition value and their closures for each states of NFA present in current state of DFA).
Step 3 : If any new state is found take it as current state and repeat step 2.

Step 4 : Do repeat Step 2 and Step 3 until no new state present in DFA transition table.

Step 5 : Mark the states of DFA which contains final state of NFA as final states of DFA.
Example:

Convert the following NFA with e-move to a DFA

Start

Step 1: Find e-closures
e-closure (q)=9{q,r,s}
e-closure (r)= {r,s}
e-closure (s)={s}
Step 2: Find &' for all new states
Now, we will obtain &' transition for {q, r, s}
&' ({q.,r,s},a) = e-closure(8({q,r,s},2))
= e-closure(8(q,a) U d&(r,a) U 8(s,a))
= e-closure(qUO U @)
= e-closure(q)
={a.rs}
&' ({q,r,s},b) = e-closure(8({q,r,s},b))
= e-closure(8(q,b) U d(r,b) U 3(s,b))
= e-closure(®@UrU @)
= e-closure(r)
={rs}
&' ({q,r,s}.c) = e-closure(8({q,r,s},c))
= e-closure(8(q,c) U &(r,c) U 8(s,c))

25

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

= e-closure(@UDdUs)
= e-closure(s)
={s}
Now, we will obtain & transition for { r, s}
&' ({rs}a) =e-closure(§({r,s},a))
= e-closure(8(r,a) U 8(s,a))
= e-closure(U D)
= e-closure(@)
=0
&' ({r,s},b) = e-closure(8({r,s},b))
= e-closure(8(r,b) U 3(s,b))
= e-closure(rU @)
= e-closure(r)
={rs}
&' ({r,;s},c) = €e-closure(8({r,;s},c))
= e-closure(d(r,c) U 8(s,c))
= e-closure(®Us)
= e-closure(s)
={s}
Now, we will obtain & transition for {s}
&' ({s},a) = e-closure(5(s,a))
= e-closure(®)
=0
&' ({s},b) = e-closure(§(s,b))
= e-closure(@)
=0
&' ({s}c) =e-closure(d(s,c))
= e-closure(s)

={s}

26

Department of Information Technology, BEC, Bapatla-522102.

GP

Automata & Compiler Design (181T502)

Hence, the equivalent DFA is:

* Exercise 2.5.1: Consider the following e-NFA.
|| ¢ ‘ a ‘ b ‘ &

=p |0 [Apt | g} | {7}
g || {p} [{a} | {r} |0
wr || gl | {rb | 0 | {p}

a) Compute the e-closure of each state.
b} Give all the strings of length three or less accepted by the automaton.
¢} Convert the automaton to a DEFA.

Exercise 2.5.2: Repeat Exercise 2.5.1 for the following - NFA:

|| € | i ‘ b ‘ &
=p | dert |0 | {g} | {r}

g || 9 {pt [Ar} | {psa}
ar || 0 TN

27

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Equivalence and minimization of automata

DFA Minimization using Myhill-Nerode Theorem

Algorithm

Input — DFA

Output — Minimized DFA

Step 1 — Draw a table for all pairs of states (Q;, Q;) not necessarily connected directly [All are unmarked
initially]

Step 2 — Consider every state pair (Qi, Q;) in the DFA where Q; € F and Q; € F or vice versa and mark
them. [Here F is the set of final states]

Step 3 — Repeat this step until we cannot mark anymore states —

If there is an unmarked pair (Qi, Qj), mark it if the pair {5 (Qi, A), d (Qi, A)} is marked for some input
alphabet.

Step 4 — Combine all the unmarked pair (Qi, Q;) and make them a single state in the reduced DFA.

Example: Construct the minimum-state equivalent DFA for the following

To find states that are equivalent, we make our best efforts to and pairs of states that are distinguishable.
The algorithm, which we refer to as the table-filling algorithm, is a recursive discovery of
distinguishable pairs in a DFA A =(Q,Y.,8,q0, F).
BASIS: If p is an accepting state and ¢ is nonaccepting, then the pair {p.q} is
distinguishable.
Let us execute the table-filling algorithm on the DFA, The final table is shown below where an x indicates
pairs of distinguishable states, and the blank squares indicate those pairs that have been found
equivalent.

For the basis, since C is the only accepting state, we put X in each pair that involves C.

28

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

B

C |x |x

D X
E x
F x
G x
H x

A B C D E F G

Now, we know some distinguishable pairs, we can discover others.

Consider pair (A,B): 3(A,0)02B | X 3(A,1) 2F /PutXin (A,B)
3(B,0) >G 3(B,1) =>C

Next Pair (A,D): 3(A,0) >B - Put X'in (A,D) Pair
3(D,0) >C

Next pair (AE): 3(A,002B | X (A1) 2F X
o(E,0) >H d(E,1) >F

Next pair (AF): 3(A,0) >B
d(F,0) >C | = Put Xin (AF) Pair

Next Pair (A,G): 3(A0)>B | X SADDF| X
3(G,0) >G 5(G,1) >E

Next Pair (AH): 3(A0)>B | X 8(A,1) >F | >Put Xin (AH)
5(H,0) G S(H,1) >C

Continue like this for remaining pairs also....
i.e (B,D), (B,E), (B,F), (B,G), (B,H), (D,E), (D,F), (D,G), (D,H), (E,F), (E,G), (E,H), (F,G), (F,H), and

(G,H).

Observe the above table (A,E), (A,G), (B,H), (D,F), and (E,G) pairs are empty.

consider pair (A,G) 3(A,0) 2B | ->(B,G) distinguishable pair or filled with “X’,
3(G,0) 2G So, pair (A,G) also distinguishable pair.

29

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

consider pair (E,G) 3(E,0) >H | —>(H,G) distinguishable pair or filled with “X’,
3(G,0) 96} So, pair (E,G) also distinguishable pair.
B |x
C |x |x
D |x [x [«
E ro|x o |x
F olx |x [x X
G o|x |x [x |x |x |x
H |x X |lx |x |x |x

A B C D E F G

Hence, (A,G), (B,H), and (D,F) are equivalent states.
So, Minimum State DFA is:

II." / \.ﬂ./ .
Start /-L\(0
L\ﬁf__ﬁ' 0
Y 1
., - /RN
\ ea——{¢)
N }\,_5_,_//
=
-~]
0

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Exercise Problems:

0 |1

— A B | A
B A|C

|| DB
+D || D] A
E|D|F
PG| E

G| F |G

H || G| D

Figure 4.14: A DFA to be minimized

4.4.5 Exercises for Section 4.4
* Exercise 4.4.1: In Fig. 4.14 is the transition table of a DFA.
a} Draw the table ol distinguishabilities for this automaton.

b} Construct the minimum-state equivalent DEFA .

Exercise 4.4.2: Repeat Exercise 4.4.1 lor the DFA of Fig 4.15.

() 1

— A B | E
B C|F
+(C || D | H
D\ E | H

E |l F |1
I || G| B
G| H | B
HI|I |C
|| A | E

Figure 4.15: Another DFA to minimize

31

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Testing Equivalence of Regular Languages (or) DFA’s

The table filling algorithm gives us an easy way to test if two regular languages are the same.

Example 1:

Now, test if the start states of the two original DFA’s are equivalent.

0 1
{AC} {AD} {B.E}
{AD} {AD} {B.E}
{B,E} {AC} {B.E}

Observe the pairs; both states are final states or non final states.
Hence, the given two DFA’s are equivalent.

Example: Test whether the given two DFA’s are equivalent or not

32

Department of Information Technology, BEC, Bapatla-522102.

GP

Automata & Compiler Design (181T502)

Regular Expressions and Languages

An algebraic description: the regular expression.
We shall find that regular expressions can define exactly the same languages that the various forms of
automata describe the regular languages.

The Operators of Regular Expressions

Regular expressions denote languages.

For a simple example the regular expression 01°+10" denotes the language consisting of all strings that

are either a single 0 followed by any number of 1’s or a single 1 followed by any number of 0’s.

Before describing the regular expression notation, we need to learn the three operations on languages that

the operators of regular expressions represent. These operations are:

1.The union of two languages L and M, denoted LUM, is the set of strings that are in either L or M, or

both. For example, if L = {001, 10,111} and M= {€, 001} then LUM = {€, 10,001,111}.

2.The concatenation of languages L and M is the set of strings that can be formed by taking any string in

L and concatenating it with any string in M. The concatenation of a pair of strings one string is followed

by the other to form the result of the concatenation.We denote concatenation of languages either with a

dot or with no operator at all, although the concatenation operator is frequently called “dot”.

For example, if L = {001, 10,111} and M= {€, 001} then L.M or just LM= {001, 10, 111, 001001, 10001,

111001}.

3. The closure (or Star or Kleene closure) of a language L is denoted L~ and represents the set of those

strings that can be formed by taking any number of strings from L, possibly with repetitions (i.e the same

string may be selected more than once) and concatenating all of them.
L=L°vltuLlul®uLuL...

If L= {0, 1} then L"= {€, 0, 1, 00, 01, 10, 11, 000, 001, 100, 010, 110, 011, 111,........}

Precedence of Regular Expression Operators

For regular expressions, the following is the order of precedence for the operators:

1. The star operator is of highest precedence. That is, it applies only to the smallest sequence of symbols

to its left that is a well formed regular expression.

2.Next in precedence comes the concatenation or “dot” operator. After grouping all stars to their operands,

we group concatenation operators to their operands.That is, all expressions that are juxtaposed are

grouped together.

3.Finally, all unions (+ operators) are grouped with their operands.Since union is also associative, it again

matters little in which order consecutive unions are grouped, but we shall assume grouping from the left.

33

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Exercise 3.1.1: Write regular expressions for the following languages:
* a) The set of strings over alphabet {a, b, ¢} containing at least one a and at
least one b.

b} The set of strings of 0's and 1's whose tenth symbol from the right end is

1.

¢) The set of strings of (s and 1's with at most one pair ol consecutive 1's.

Ans a) (a+b+c)"a (atb+c)* b (at+b+c)*

Ans b) (0+1) 1 (0+1)" (0+1)" (0+1)* (0+1)* (0+1)* (0+1)" (0+1)" (0+1)" (0+1)*

Ans c) (0+1) 11 (0+1)"

Algebraic Laws for Regular Expressions

1.Associativity and Commutativity

Commutativity is the property of an operator that says we can switch the order of its operands and get the
same result.

Associativity is the property of an operator that allows us to regroup the operands when the operator is
applied twice.

Here are three laws of these types that hold for regular expressions:

e L +M =M +L This law, the commutative law for union, says that we may take the union of two
languages in either order.

e (L+M)+N=L+(M+ N)This law, the associative law for union, says that we may take the
union of three languages either by taking the union of the first two initially or taking the union of
the last two initially.

e (LM)N = L(MN) This law, the associative law for concatenation, says that we can concatenate
three languages by concatenating either the first two or the last two initially.

2.1dentities and Annihilators
An identity for an operator is a value such that when the operator is applied to the identity and some other
value, the result is the other value.
An annihilator for an operator is a value such that when the operator is applied to the annihilator and some
other value, the result is the annihilator.
There are three laws for regular expressions involving these concepts we list them below.

o O+L =L+ ®=L,This law asserts that ® is the identity for union.

e €L =L€=L, This law asserts that € is the identity for concatenation.

34

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

e OL=L®=®. This law asserts that @ is the annihilator for concatenation.
These laws are powerful tools in simplifications.
3.Distributive Laws
A distributive law involves two operators, and asserts that one operator can be pushed down to be applied
to each argument of the other operator individually.
These laws are:

o L(M+4+ N})=LM+4 LN. This law, is the left distribulive law of concale-

nalion over wiion.

e (M 4+ N)L = ML+ NL. This law, is the right distributive law of con-
catenation over union.
4.The ldempotent Law

An operator is said to be idempotent if the result of applying it to two of the same values as arguments is

that value.

o [4+ L = L. This law, the idempotence law for union, states that il we
take the union of two identical expressions, we can replace them by one
copy ol the expression.

5. Laws Involving Closures

There are a number of laws involving the closure operators

e (L7} = L~.
o 17 = €.
® " = ¢,

o LT =LL"=L"L.

o " =L"+e.
e [V =¢+ L.

Letr, rl, r2, and r3 be any regular expressions

35

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

7. If e € L(r), then r* = r*
l. re=er=r. 8. rr* = r'rxr"
2. 1Ty 7 19T, In general. 9. (ry +1r9)r3 = ryry + rors.
3. ri(rors) = (riro)rs. 10. ri(re +r3) = rirg + rirs.
4. ro~ or~g. 11 ()" =",
b. @* =~ ¢ 12. (ryr9)*ry = ri(rgry)*.
6. e =~ ¢ 13. (ry +7ro)* = (rir3)*.

The Pumping Lemma for Regular Languages

Theorem 4.1: (The pumping lemma for reqular languages) Let L be a regular
language. Then there exists a constant n (which depends on L) such that for
every string w in L such that |w| = n, we can break w into three strings,

w = ryz. such that:

1. y £e.

- rey] < 0

I

3. For all & = 0, the string ry¥ 2 is also in L.

That is, we can always lind a nonempty string y not too lar from the beginning
olw that can be “pumped”; that is, repeating y any number of times, or deleting
it (the case k= 0), keeps the resulting string in the language L.

PROOF: Suppose L is regular. Then L = L(A) [or some DFA 4. Suppose A has

n states. Now, consider any string w ol length n or move, say w = ajas - -+ 4y,
where m = n and each a; 18 an input symbol. For ¢ = 0, 1,...,n deline state
pi to be d{go, aras -+~ a;), where 9 is the transition function ol A, and gq is the

start state of A. That is, p; is the state 4 is in alter reading the first ¢ symbols
ol w. Note that py = gy.

By the pigeonhole principle, it is not possible for the n + 1 different p;’s lor
= 0,1,....n to be distinct, since there are only n different states. Thus, we
can find two different integers ¢ and j, with 0 <4 < j < n, such that p; = p;.
Now, we can break w = ryz as follows:

36

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

1. vy =ayas - ay.

(R

Y= i g sy,
door =A@y Ay,

That is, »r takes us to p; once: y takes us from p; back to p; (since p; is also p;J,
and z is the balance of w. The relationships among the strings and states are
suggested by Fig. 4.1, Note that 2 may be empty, in the case that ¢ = 0. Also,
2 may be empty if j = n = m. However, y can not be empty, since ¢ is strictly
less than 7.

y=
ﬂr-_'_‘r R -HJI-
S X = =
tart i a . P . ’ aI. R p—
A i i 4 - T+ Mmoo e,
Y /P ey fo
Jo) =) Hx_‘_,j/'

Now, consider what happens if the automaton A receives the input xy" = for
any k = 0. Il & = 0, then the automaton goes [rom the start state gy (which is
also py) to p; on input . Since p; is also p;, it must be that A goes from p; to
the accepting state shown in Fig. 4.1 on inxlml z. Thus, 4 accepts rz.

I & > 0, then 4 goes [rom gy to p; on input @, circles from p; to p; & times
on input %, and then goes to the accepting state on input z. Thus, for any
k=0, ry"z is also accepted by A: that is, xy¥2 isin L. O

Applications of the Pumping Lemma

e We shall propose a language and use the pumping lemma to prove that the language is not regular.
e The Pumping Lemma as an Adversarial Game
Example Problems:
1. Prove that the L={ 0'1'/i>=1 } is not regular.
Solution:
The given language generates L={ 01, 0011, 000111, 00001111, 0000011111, 000000111111,......... }
Let w=0"1" such that jw| = 2n.
By pumping lemma we can write w=xyz such that [xy| <=n and |y| = 0
Now if xy'z € L then the language L is said to be regular.
There are many cases:
i) Y has only 0’s
i) Y has only 1’s

37

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

CASE i : If Y has only 0’s then the string

Consider the string w= 0011

x=0,y=0and z=11

then xy'z = 00'11

If i=2 then 00011 not belongs to L

CASE ii: IfY hasonly 1’s then the string

Consider the string w= 0011

x=00, y=1and z=1

thenxy'z = 001'1

If i=2 then 00111 not belongs to L

Hence, form all these 2 cases it is clear that language L is not regular.

2. Prove that Language L = {0"10" n>=1} is not regular.

The given language generates L={010,00100,0001000,000010000,......... }
By pumping lemma we can write w=xyz such that [xy| <=n and |y| = 0
Now if xy'z € L then the language L is said to be regular.

Consider the string from L

w= 0001000= xyz

x=0; y=01; z=000

W= Xxy'z= 00 (01)' 000

If i=2then 000101000 not belongs to L

Hence, the given language is not regular.

3. Prove that Language L = {0"1*" n>=1} is not regular.

The language L={ 011,001111,000111111,000011111111,........ }
By pumping lemma we can write w=xyz such that [xy| <=n and |y| = 0
Now if xy'z € L then the language L is said to be regular.

Consider the string from L

w=001111=xyz

x=00 y=11 z=11

xy'z= 00 (11)' 11

If i=2 then 00111111 not belongs to L

Hence ,the given language is not regular.

38

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Exercise 4.1.1: Prove that the [ollowing are not regular languages.

a) {071 | n = 1}. This language, consisting of a string of (Vs followed by an
equal-length string of 1's, is the language Ly, we considered informally at
the beginning of the section. Here, you should apply the pumping lemma
in the prool.

b} The set of strings of balanced parentheses. These arve the strings of char-
acters “(" and “)" that can appear in a well-formed arithmetic expression.

1},

d) {07172 | n and m arve arbitrary integers }.

W

*o) {07107 | n =

e) {0"1™ | n < m}.

£) {07120 | n > 1},

! Exercise 4.1.2: Prove that the [ollowing are not regular languages.

*a) {0 | nis a perfect square}.

b} {0™ | nis a perfect cube}.
¢} {0™ | nis a power of 2}.
d} The set of strings of s and 1's whose length is a perfect square.

e} The set of strings of 0's and 1's that are ol the form ww, that is, some
string repeated.

Closure Properties of Regular Languages
We shall prove several theorems of the form “if certain languages are regular, and a language L is formed
from them by certain operations(e.g. L is the union of two regular languages), then L is also regular”
These theorems are often called closure properties of the regular languages.
Here is a summary of the principal closure properties for regular languages:

e The union of two regular languages is regular

e The intersection of two regular languages is regular

e The complement of a regular language is regular

e The difference of two regular languages is regular

e The reversal of a regular language is regular

39

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

e The closure (star) of a regular language is regular
e The concatenation of regular languages is regular
e A homomorphism (substitution of strings for symbols) of a regular language is regular
e The inverse homomorphism of a regular language is regular
1. Closure under union
If L and M are regular languages, then so is LUM
Proof: Since L and M are regular, they have regular expressions say L= L(R) and M= L(S) Then LUM
=L(R+ S) by the definition of the + operator for regular expressions.
2. Closure under Intersection
Let L and M be the languages of regular expressions R and S, respectively then it a regular expression
whose language is LNM.
proof: Let A and B be DFA’s whose languages are L and M, respectively. Construct C, the product

automaton of A and B make the final states of C are the pairs consisting of final states of both A and B.

N -
Stat 4~/ 0 - 0.1
P Q‘ig' B ,;J
(a)
0
—
Start ‘i-q\'] 0
i Y (Y ™
\f_.-—’ I"\\:}_..-’ I__, ,;'I
(b
N
Start I)
—pr———™=\ps)
0 0
R
{.’ i ¥ I| II
f\‘i’;} 1 Q‘é’f —
N
0
(C)

40

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

3. Closure under Complementation

The complement of a language L (with respect to an alphabet E such that E~ contains L) is E"-L. Since
E” is surely regular, the complement of a regular language is always regular.

DFA:

Its Complementation:

4. Closure under Difference

If L and M are regular languages, then so is L — M = strings in L but not M.

Proof: Let A and B be DFA’s whose languages are L and M, respectively. Construct C, the product
automaton of A and B make the final states of C be the pairs, where A-state is final but B-state is not.

5. Closure under reversal

Given language L, LR is the set of strings whose reversal is in L

Example: L = {0, 01, 100},

L* ={0, 10, 001}.
Proof: Let E be a regular expression for L. We show how to reverse E, to provide a regular
expression ER for LR,
6. Closure under Star (Closure)
Kleen Closure

RS is a regular expression whose language is L, M. R* is a regular expression whose language is L*.

41

Department of Information Technology, BEC, Bapatla-522102. GP

Automata & Compiler Design (181T502)

Positive closure
RS is a regular expression whose language is L, M. R" is a regular expression whose language is L".
7. Closure under Concatenation
If r.and = are regular expressions denoting Liand Lz respectively, then LiLais denoted by the regular
expression rim and hence itself regular.
8. Closure under Homomorphism
A string homomorphism is a function on strings that works by substituting a particular string for each
symbol.
Example 4.13: The [unction i delined by A(0} = ab and h{1) = ¢ is a homo-
morphism. Given any string of 0's and 1's, it replaces all 0's by the string ab
and replaces all 1's by the empty strinfy. For example, i applied to the string

0011 18 abab. O

Formally, if i is a homomorphism on alphabet ¥, and w = aja.---a,

s a string ol symbols in X, then hl{w) = hla}hias)---hla,). That is, we
apply h to each symbol of w and concatenate the results, in order. For in-

stance, i A is the homomorphism in Example 4.13, and w = 0011, then
hiw) = hiMh(OV(1YR(1) = (ab)lab)e)ie) = abab, as we claimed in that ex-
ample.

9. Closure under Inverse Homomorphism

Let h be a homomorphism and L a language whose alphabet is the output language of h.
(L) ={w|h(w)isinL}.

7N\ 7N

/ Y / i
i _—] \
| r'/ \ ‘ \I -7_\\ |
) ! == | | L) | I|
~] _"_&_/' /

\\-_ _/___." \.\\-_ -/__.f'

(a)

\ ':\ iy B RN g
\ 3 / \.\‘h- /

42

Department of Information Technology, BEC, Bapatla-522102. GP

