
BAPATLA ENGINEERING COLLEGE :: BAPATLA
(AUTONOMOUS)

Automata & Compiler Design (18IT502)
Unit-I Material

Department of Information Technology
BAPATLA ENGINEERING COLLEGE::BAPATLA

(AUTONOMOUS)
Affiliated to Acharya Nagarjuna University

Bapatla-522102, Guntur (District), AP.

Automata & Compiler Design (18IT502)

2
Department of Information Technology, BEC, Bapatla-522102. GP

AUTOMATA & COMPILER DESIGN
18IT502

B.Tech.,(Semester- V)

Lectures : 3 Periods/Week , Tutorial: 1 Continuous Assessment : 50
Final Exam : 3 Hours Final Exam Marks : 50

Course Objectives: The student will understand:

COB 1: The concepts of finite automata and regular languages and their properties.

COB 2: The concepts of Context free grammars and push down automata

COB 3: The phases of a compiler, lexical analysis and parsing techniques.

COB 4: Different intermediate code forms and code generation algorithm for target machine.

Course Outcomes: Upon successful completion of the course, the student will be able to:

CO 1: Design finite state machines for acceptance of strings and understand the concepts of regular

languages and their properties.

CO 2: Design context free grammars for formal languages and develop pushdown automata for accepting

strings

CO 3: Understand the phases of a compiler and construct lexical analysis, top-down and bottom-up

parsers

CO 4: Apply intermediate, code generation techniques and runtime allocation strategies.

UNIT - I

Finite Automata: Introduction to Automata, Deterministic finite automata (DFA), Problems on DFA,

Non deterministic finite automata (NFA), Equivalence of DFA and NFA, Finite Automata with €

transitions, Equivalence and minimization of automata.

Regular Expressions and Languages: Regular expressions, Algebraic laws of regular expressions,

Pumping lemma for regular languages, Applications of the pumping lemma, Closure Properties of

Regular Languages.

UNIT – II

Context Free Grammars: Context Free Grammars, Parse Trees, Constructing parse trees, derivations

and parse trees, ambiguous grammars.

Pushdown Automata: Definition of the Pushdown automata, the languages of PDA, Equivalences of

PDA’s and CFG’s.

Context free languages: Normal forms for context- Free grammars, the pumping lemma for context free

languages.

Automata & Compiler Design (18IT502)

3
Department of Information Technology, BEC, Bapatla-522102. GP

UNIT-III

Introduction to compiling: Compilers, The Phases of a compiler.

Lexical Analysis: The role of the lexical analyzer, input buffering, simplification of tokens, Recognition

of tokens, implementing transition diagrams, a language for specifying lexical analyzers.

Syntax analysis: Top down parsing - Recursive descent parsing, Predictive parsers. Bottom up parsing -

Shift Reduce parsing, LR Parsers – Construction of SLR, Canonical LR and LALR parsing techniques,

Parser generators – YACC Tool.

UNIT-IV

Intermediate code Generation: Intermediate languages, Declarations, Assignment statements, Boolean

expressions, back patching.

Runtime Environment: Source language issues, Storage organization, Storage-allocation strategies.

Code Generation- Issues in the design of code generator, the target machines, Basic blocks and flow

graphs, Next use information, a simple code generator.

TEXT BOOKS:

John E. Hopcroft et al., Introduction to Automata Theory, Languages and Computation, 3rd Ed., Pearson,

2007.

A.V. Aho et al., “Compilers: Priniciples, Techniques, Tools”, 2nd Edition, Pearson, 2006.

REFERENCES:

1.John E Hopcroft & Jeffery D Ullman, “Introduction to Automata Theory & Languages and

Computation”, Narosa Publishing House.

2. Alfred V.Aho, Jeffrey D. Ullman, “Principles of Compiler Design”, Narosa publishing.

Automata & Compiler Design (18IT502)

4
Department of Information Technology, BEC, Bapatla-522102. GP

UNIT-I

Finite Automata

Chomsky Hierarchy:

Automata & Compiler Design (18IT502)

5
Department of Information Technology, BEC, Bapatla-522102. GP

An automaton (Automata in plural) is an abstract self-propelled computing device which follows a

predetermined sequence of operations automatically.

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State Machine

(FSM).

Formal definition of a Finite Automaton

An automaton can be represented by a 5-tuple (Q, Σ, δ, q0, F), where:

 Q is a finite set of states.

 Σ is a finite set of symbols, called the alphabet of the automaton.

 δ is the transition function.

 q0 is the initial state from where any input is processed (q0 ∈ Q).

 F is a set of final state/states of Q (F ⊆ Q).

Central Concepts of Automata Theory
Alphabet:

 Definition: An alphabet is any finite set of symbols. It is denoted by ∑

Example: Σ = {a, b, c, d} is an alphabet set where ‘a’, ‘b’, ‘c’, and‘d’ are symbols.

String

Definition: A string is a finite sequence of symbols taken from Σ.

 Example: ‘cabcad’ is a valid string on the alphabet set Σ = {a, b, c, d}

Length of a String

Definition: It is the number of symbols present in a string. (Denoted by |S|).

 Examples

 If S=‘cabcad’, |S|= 6

 If |S|= 0, it is called an empty string (Denoted by λ or ε)

Automata & Compiler Design (18IT502)

6
Department of Information Technology, BEC, Bapatla-522102. GP

Kleene Closure / Star

Definition: The Kleene star, Σ*, is a unary operator on a set of symbols or strings, Σ, that gives the

infinite set of all possible strings of all possible lengths over Σ including €.

Representation: Σ* = Σ0 U Σ1 U Σ2 U……. where Σp is the set of all possible strings of length p.

 Example: If Σ = {a, b}, Σ*= {λ, a, b, aa, ab, ba, bb,………..}

Automata & Compiler Design (18IT502)

7
Department of Information Technology, BEC, Bapatla-522102. GP

Positive Closure / Plus

Definition: The set Σ+ is the infinite set of all possible strings of all possible lengths over Σ excluding €.

Representation: Σ+ = Σ1 U Σ2 U Σ3 U…….

 Σ+= Σ* − { € }

 Example: If Σ = { a, b } , Σ+ ={ a, b, aa, ab, ba, bb,………..}

Language

Definition: A language is a subset of Σ* for some alphabet Σ. It can be finite or infinite.

Example: If the language takes all possible strings of length 2 over Σ = {a, b}, then L = { ab, bb, ba, bb}

Automata & Compiler Design (18IT502)

8
Department of Information Technology, BEC, Bapatla-522102. GP

Deterministic Finite Automata (DFA)

Finite Automaton can be classified into two types:

 Deterministic Finite Automaton (DFA)

 Non-deterministic Finite Automaton (NDFA / NFA)

Deterministic Finite Automaton (DFA)

In DFA, for each input symbol, one can determine the state to which the machine will move. Hence, it is

called Deterministic Automaton. As it has a finite number of states, the machine is called Deterministic

Finite Machine or Deterministic Finite Automaton.

Formal Definition of a DFA:

A DFA can be represented by a 5-tuple (Q, Σ, δ, q0, F) where:

 Q is a finite set of states.

 Σ is a finite set of symbols called the alphabet.

 δ is the transition function where δ: Q × Σ → Q

 q0 is the initial state from where any input is processed (q0 ∈ Q).

 F is a set of final state/states of Q (F ⊆ Q).

Simpler Notations for DFA:

There are two preferred notations for describing automata:

1. A Transition Diagram – This is a graph

A DFA is represented by digraphs called state diagram.

 The vertices represent the states.

 The arcs labelled with an input alphabet show the transitions.

 The initial state is denoted by an arrow into the start state q0 , labelled start

 The final state is indicated by double circles.

2. A Transition Table – This is a tabular listing of the δ function.

A transition table is a conventional, tabular representation of a function like δ that takes two arguments

and returns a value.

 The rows of the table correspond to the states and the columns correspond to the input.

 The entry for the row corresponding to state q and column corresponding to input a is the state δ (q, a)

Automata & Compiler Design (18IT502)

9
Department of Information Technology, BEC, Bapatla-522102. GP

Example:

Extending the transition function to strings:

If δ is our transition function, then the extended transition function constructed from δ will be called δ1 or

We define δ1 by induction on the length of the input string, as follows

Automata & Compiler Design (18IT502)

10
Department of Information Technology, BEC, Bapatla-522102. GP

Problems on DFA:

1. Design a DFA to accept the language L = {w | w has both an even number of 0’s and an even

number of 1’s}

Sol:

The DFA for language L is

Where the transition function δ is described by the transition diagram

Automata & Compiler Design (18IT502)

11
Department of Information Technology, BEC, Bapatla-522102. GP

The string 110101 is accepted by the DFA.

Case 1: If Final State is q0

 L={ w | w has both an even number of 0’s and an even number of 1’s }

Case 2: If Final State is q1

 L={ w | w has both an odd number of 0’s and an even number of 1’s }

Case 3: If Final state is q2

 L={ w | w has both an even number of 0’s and an odd number of 1’s }

Case 4: If Final state is q3

 L={ w | w has both an odd number of 0’s and an odd number of 1’s }

2. Give DFA’s accepting the following languages over the alphabet {0, 1}

 a) The set of all strings ending in 00

 b) The set of all strings with three consecutive 0’s (not necessarily at the end)

 c) The set of strings with 011 as a substring.

a) The Set of all strings ending 00

Possible strings: L={00, 000,100,0100,1000,1100,0000,100100…… }

Automata & Compiler Design (18IT502)

12
Department of Information Technology, BEC, Bapatla-522102. GP

DFA A= ({q0,q1,q2}, {0,1}, δ,q0,{q2})

δ Transition Function:

 0 1

q0 q1 q0

q1 q2 q0

*q2 q2 q0

b) The set of all strings with three consecutive 0’s. (Not necessarily at the end)

L= { 000,0001,00010,10001,00011,00010,000101,010001,0100010,0010001……..}

DFA A= ({q0,q1,q2,q3}, {0,1}, δ,q0,{q3})

δ Transition Function:

 0 1

q0 q1 q0

q1 q2 q0

q2 q3 q0

*q3 q3 q3

c) The set of strings with 011 as substring.

L= { 011,0011,1011,0110,01101,01110,10110,10111,…….}

DFA A= ({q0,q1,q2,q3}, {0,1}, δ,q0,{q3})

Automata & Compiler Design (18IT502)

13
Department of Information Technology, BEC, Bapatla-522102. GP

δ Transition Function:

 0 1

q0 q1 q0

q1 q1 q2

q2 q1 q3

*q3 q3 q3

3) The DFA accepting all strings with a substring 01.

L= { 01,101,001,011,010,0100,0110,0101,0111,1001,0001,……….}

DFA A= ({q0,q1,q2}, {0,1}, δ,q0,{q2})

δ Transition Function:

 0 1

q0 q1 q0

q1 q1 q2

*q2 q2 q2

4) Design a DFA which accepts the strings start with 1 and ends with 0

L= { 10,110,100,1000,1100,1010,1110,10000,11000,11100,11110,10110,……..}

DFA A= ({q0,q1,q2,q3}, {0,1}, δ,q0,{q2})

Automata & Compiler Design (18IT502)

14
Department of Information Technology, BEC, Bapatla-522102. GP

δ Transition Function:

 0 1

q0 q3 q1

q1 q2 q1

*q2 q2 q1

q3 (Dead

State)

q3 q3

5) The set of strings that either begin or end with 01

Begin with 0: L1={ 01w } 01 followed by any string which consists of 0’s and 1’s.

End with 0: L2= { w01 } Any string which consists of 0’s and 1’s followed by 01.

DFA A= ({q0,q1,q2,q3,q4,q5}, {0,1}, δ,q0,{q2,q5})

δ Transition Function:

 0 1

q0 q1 q3

q1 q4 q2

q2 q2 q2

q3 q4 q1

q4 q4 q5

*q5 q4 q3

Automata & Compiler Design (18IT502)

15
Department of Information Technology, BEC, Bapatla-522102. GP

6) Design a DFA which accepts the string starts with 01 and ends with 11.

L={011,0111,01011,01111,010011,011111,011011,010111,…….}

DFA A= ({q0,q1,q2,q3,q4,q5}, {0,1}, δ,q0,{q3})

δ Transition Function:

 0 1

q0 q1 q4

q1 q4 q2

q2 q5 q3

*q3 q5 q3

q4(Dead State) q4 q4

q5 q5 q2

7) The set of strings such that the number of 0’s is divisible by 5 and the number of 1’s is divisible

by 3.

i) The number of 0’s is divisible by 5

ii) The number of 1’s is divisible by 3.

Automata & Compiler Design (18IT502)

16
Department of Information Technology, BEC, Bapatla-522102. GP

8) Design a DFA which checks whether a given binary number is divisible by 3.

9) The set of all strings whose tenth symbol from the last end is a 1.

10) Design a DFA to accept string of a’s and b’s ending with ‘abb’ over ∑ = { a,b }

DFA to accept string of a’s and b’s not ending with ‘abb’ over ∑ = { a,b }

Automata & Compiler Design (18IT502)

17
Department of Information Technology, BEC, Bapatla-522102. GP

11) Give DFA’s accepting the set of all strings ending in 00

The set of all strings not ending in 00

Non Deterministic Finite Automata
A nondeterministic finite automaton NFA has the power to be in several states at once.

They are often more succinct and easier to design than DFA’s.

An NFA is represented essentially like a DFA A = (Q, Σ, δ, q0, F)

Where

 Q is a finite set of states

 Σ is a finite set of input symbols

 q0 a member of Q, is the start state

 F is a subset of Q, is the set of final or accepting states

 δ, the transition function is a function that takes a state in Q and an input symbol in Σ as arguments

and returns a subset of Q. Notice that the only difference between an NFA and a DFA is in the

type of value that δ returns a set of states in the case of an NFA and a single state in the case of a

DFA.

Example: An NFA accepting all strings that end in 01.

Automata & Compiler Design (18IT502)

18
Department of Information Technology, BEC, Bapatla-522102. GP

The states an NFA is in during the processing of input sequence 00101

The NFA can be specified formally as A=({q0,q1,q2},{0,1}, δ,q0,{q2})

Where the transition function is δ given by the transition table

NFA

A summary of the steps is

Examples:

1. Design an NFA that accepts all binary strings end with 101.

Automata & Compiler Design (18IT502)

19
Department of Information Technology, BEC, Bapatla-522102. GP

2. Design an NFA that accepts any binary string that contains 00 or 11 as a substring.

Equivalence of Deterministic and Nondeterministic Finite Automata
 Example 1: Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic

Finite Automata (DFA).

Solution:

Transition table for the given Non-Deterministic Finite Automata (NFA) is

State /
Alphabet a b

→q0 q0 q0, q1

q1 – *q2

*q2 – –

Let QD
 be a new set of states of the Deterministic Finite Automata (DFA).

Let TD be a new transition table of the DFA.

Add transitions of start state q0 to the transition table TD.

State / Alphabet a b

→q0 {q0} {q0, q1}

Automata & Compiler Design (18IT502)

20
Department of Information Technology, BEC, Bapatla-522102. GP

New state present in state QD is {q0, q1}.

Add transitions for set of states {q0, q1} to the transition table TD.

 δD ({q0,q1}, a) = δN (q0,a) U δN (q1,a) = {q0} U Φ = {q0}

 δD ({q0,q1}, b) = δN (q0,b) U δN (q1,b) = {q0,q1} U {q2} = {q0,q1,q2}New State

New state present in state QD is {q0, q1, q2}.

Add transitions for set of states {q0, q1, q2} to the transition table TD.

 δD ({q0,q1,q2}, a) = δN (q0,a) U δN (q1,a) U δN (q2,a) = {q0} U Φ U Φ = {q0}

 δD ({q0,q1,q2}, b) = δN (q0,b) U δN (q1,b) U δN (q2,b) = {q0,q1} U {q2} U Φ = {q0,q1,q2}

Since no new states are left to be added in the transition table TD, so we stop.

States containing q2 as its component are treated as final states of the DFA.

Finally, Transition table for Deterministic Finite Automata (DFA) is-

State / Alphabet a b

→q0 q0 {q0, q1}

{q0, q1} q0 *{q0, q1, q2}

*{q0, q1, q2} q0 *{q0, q1, q2}

Now, Deterministic Finite Automata (DFA) may be drawn as-

Automata & Compiler Design (18IT502)

21
Department of Information Technology, BEC, Bapatla-522102. GP

2. Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite

Automata (DFA).

Solution:

Transition table for the given Non-Deterministic Finite Automata (NFA) is-

State / Alphabet 0 1

→q0 q0 q1, *q2

q1 q1, *q2 *q2

*q2 q0, q1 q1

Let QD
 be a new set of states of the Deterministic Finite Automata (DFA).

Let TD be a new transition table of the DFA.

Add transitions of start state q0 to the transition table TD.

State / Alphabet 0 1

→q0 q0 {q1, q2}

New state present in state QD is {q1, q2}.

Add transitions for set of states {q1, q2} to the transition table TD.

****Do the remaining steps like in the previous problem****

Since no new states are left to be added in the transition table TD, so we stop.

States containing q2 as its component are treated as final states of the DFA.

Automata & Compiler Design (18IT502)

22
Department of Information Technology, BEC, Bapatla-522102. GP

Finally, Transition table for Deterministic Finite Automata (DFA) is-

State / Alphabet 0 1

→q0 q0 *{q1, q2}

*{q1, q2} *{q0, q1, q2} *{q1, q2}

*{q0, q1, q2} *{q0, q1, q2} *{q1, q2}

Now, Deterministic Finite Automata (DFA) may be drawn as-

Automata & Compiler Design (18IT502)

23
Department of Information Technology, BEC, Bapatla-522102. GP

-

Finite Automata with €- transitions (or) €- NFA
We shall now introduce another extension of the finite automaton. The new “feature” is that we allow a

transition on €, the empty string.

An NFA is allowed to make a transition spontaneously, without receiving an input symbol.

We shall begin with an informal treatment of €-NFA’s, using transition diagrams with € allowed as a

label.

€-NFA that accepts decimal numbers consisting of

For instance, the NFA recognizing the keywords web and eBay can also be implemented with €-

transitions

Using €-transitions to help recognize keywords

Automata & Compiler Design (18IT502)

24
Department of Information Technology, BEC, Bapatla-522102. GP

The Formal Notation for an €-NFA

Formally, we represent an €-NFA A by A=(Q,∑,δ, q0, F) where all components have their same

interpretation as for an NFA, except that δ is now a function that takes as arguments:

 δ : Q X ∑ U { € } 2Q

Note: €, the symbol for the empty string, cannot be a member of the alphabet ∑, so no confusion results.

Epsilon-Closures
Epsilon (∈) – closure : Epsilon closure for a given state X is a set of states which can be reached from

the states X with only (null) or ε moves including the state X itself.

Example:

∈-closure(1) or ECLOSE(1) = { 1, 2, 3, 4, 6 } ∈-closure(2) or ECLOSE(2) = { 2, 3, 6 }

∈-closure(3) or ECLOSE(3) = { 3, 6 } ∈-closure(4) or ECLOSE(4) = { 4 }

∈-closure(5) or ECLOSE(5) = { 5, 7 } ∈-closure(6) or ECLOSE(6) = { 6 }

Automata & Compiler Design (18IT502)

25
Department of Information Technology, BEC, Bapatla-522102. GP

Conversion from €-NFA to DFA
Steps to Convert NFA with ε-move to DFA:

Step 1 : Take ∈ closure for the beginning state of NFA as beginning state of DFA.

Step 2 : Find the states that can be traversed from the present for each input symbol

(union of transition value and their closures for each states of NFA present in current state of DFA).

Step 3 : If any new state is found take it as current state and repeat step 2.

Step 4 : Do repeat Step 2 and Step 3 until no new state present in DFA transition table.

Step 5 : Mark the states of DFA which contains final state of NFA as final states of DFA.

Example:
Convert the following NFA with ε-move to a DFA

Step 1: Find ∈-closures

 ∈-closure (q) = { q, r, s }

 ∈-closure (r) = { r, s }

 ∈-closure (s) = { s }

Step 2: Find for all new states

Now, we will obtain transition for {q, r, s}

({q,r,s},a) = ∈-closure(δ({q,r,s},a))

 = ∈-closure(δ(q,a) U δ(r,a) U δ(s,a))
 = ∈-closure(q U Φ U Φ)

 = ∈-closure(q)

 = { q, r, s }
({q,r,s},b) = ∈-closure(δ({q,r,s},b))

 = ∈-closure(δ(q,b) U δ(r,b) U δ(s,b))

 = ∈-closure(Φ U r U Φ)

 = ∈-closure(r)

 = { r, s }

({q,r,s},c) = ∈-closure(δ({q,r,s},c))

 = ∈-closure(δ(q,c) U δ(r,c) U δ(s,c))

Automata & Compiler Design (18IT502)

26
Department of Information Technology, BEC, Bapatla-522102. GP

 = ∈-closure(Φ U Φ U s)

 = ∈-closure(s)

 = { s }

Now, we will obtain transition for { r, s}

({r,s},a) = ∈-closure(δ({r,s},a))

 = ∈-closure(δ(r,a) U δ(s,a))
 = ∈-closure(Φ U Φ)

 = ∈-closure(Φ)

 = Φ

({r,s},b) = ∈-closure(δ({r,s},b))

 = ∈-closure(δ(r,b) U δ(s,b))
 = ∈-closure(r U Φ)

 = ∈-closure(r)

 = { r, s }

({r,s},c) = ∈-closure(δ({r,s},c))

 = ∈-closure(δ(r,c) U δ(s,c))
 = ∈-closure(Φ U s)

 = ∈-closure(s)

 = { s }

Now, we will obtain transition for {s}

({s},a) = ∈-closure(δ(s,a))

 = ∈-closure(Φ)
 = Φ

({s},b) = ∈-closure(δ(s,b))

 = ∈-closure(Φ)
 = Φ

({s},c) = ∈-closure(δ(s,c))

 = ∈-closure(s)
 = { s }

Automata & Compiler Design (18IT502)

27
Department of Information Technology, BEC, Bapatla-522102. GP

Hence, the equivalent DFA is:

Automata & Compiler Design (18IT502)

28
Department of Information Technology, BEC, Bapatla-522102. GP

Equivalence and minimization of automata
DFA Minimization using Myhill-Nerode Theorem

Algorithm

Input − DFA

Output − Minimized DFA

Step 1 − Draw a table for all pairs of states (Qi, Qj) not necessarily connected directly [All are unmarked

initially]

Step 2 − Consider every state pair (Qi, Qj) in the DFA where Qi ∈ F and Qj ∉ F or vice versa and mark

them. [Here F is the set of final states]

Step 3 − Repeat this step until we cannot mark anymore states −

If there is an unmarked pair (Qi, Qj), mark it if the pair {δ (Qi, A), δ (Qi, A)} is marked for some input

alphabet.

Step 4 − Combine all the unmarked pair (Qi, Qj) and make them a single state in the reduced DFA.

Example: Construct the minimum-state equivalent DFA for the following

To find states that are equivalent, we make our best efforts to and pairs of states that are distinguishable.

The algorithm, which we refer to as the table-filling algorithm, is a recursive discovery of

distinguishable pairs in a DFA A =(Q,∑,δ,q0, F).

Let us execute the table-filling algorithm on the DFA, The final table is shown below where an x indicates

pairs of distinguishable states, and the blank squares indicate those pairs that have been found

equivalent.

For the basis, since C is the only accepting state, we put x in each pair that involves C.

Automata & Compiler Design (18IT502)

29
Department of Information Technology, BEC, Bapatla-522102. GP

Now, we know some distinguishable pairs, we can discover others.

Consider pair (A,B): δ(A,0) B Ꭓ δ(A,1) F Put X in (A,B)

 δ(B,0) G δ(B,1) C

Next Pair (A,D): δ(A,0) B Put X in (A,D) Pair

 δ(D,0) C

Next pair (A,E): δ(A,0) B Ꭓ δ(A,1) F Ꭓ

 δ(E,0) H δ(E,1) F

Next pair (A,F): δ(A,0) B

 δ(F,0) C Put X in (A,F) Pair

Next Pair (A,G): δ(A,0) B Ꭓ δ(A,1) F Ꭓ

 δ(G,0) G δ(G,1) E

Next Pair (AH): δ(A,0) B Ꭓ δ(A,1) F Put X in (A,H)

 δ(H,0) G δ(H,1) C

Continue like this for remaining pairs also....

i.e (B,D), (B,E), (B,F), (B,G), (B,H), (D,E), (D,F), (D,G), (D,H), (E,F), (E,G), (E,H), (F,G), (F,H), and

(G,H).

Observe the above table (A,E), (A,G), (B,H), (D,F), and (E,G) pairs are empty.

 consider pair (A,G) δ(A,0) B (B,G) distinguishable pair or filled with ‘X’,

 δ(G,0) G So, pair (A,G) also distinguishable pair.

Automata & Compiler Design (18IT502)

30
Department of Information Technology, BEC, Bapatla-522102. GP

consider pair (E,G) δ(E,0) H (H,G) distinguishable pair or filled with ‘X’,

 δ(G,0) G So, pair (E,G) also distinguishable pair.

Hence, (A,G), (B,H), and (D,F) are equivalent states.

So, Minimum State DFA is:

Automata & Compiler Design (18IT502)

31
Department of Information Technology, BEC, Bapatla-522102. GP

Exercise Problems:

Automata & Compiler Design (18IT502)

32
Department of Information Technology, BEC, Bapatla-522102. GP

Testing Equivalence of Regular Languages (or) DFA’s
The table filling algorithm gives us an easy way to test if two regular languages are the same.

Example 1:

Now, test if the start states of the two original DFA’s are equivalent.

 0 1

{A,C} {A,D} {B,E}

{A,D} {A,D} {B,E}

{B,E} {A,C} {B,E}

Observe the pairs; both states are final states or non final states.

Hence, the given two DFA’s are equivalent.

Example: Test whether the given two DFA’s are equivalent or not

Automata & Compiler Design (18IT502)

33
Department of Information Technology, BEC, Bapatla-522102. GP

Regular Expressions and Languages
An algebraic description: the regular expression.

We shall find that regular expressions can define exactly the same languages that the various forms of

automata describe the regular languages.

The Operators of Regular Expressions
Regular expressions denote languages.

For a simple example the regular expression 01*+10* denotes the language consisting of all strings that

are either a single 0 followed by any number of 1’s or a single 1 followed by any number of 0’s.

Before describing the regular expression notation, we need to learn the three operations on languages that

the operators of regular expressions represent. These operations are:

1. The union of two languages L and M, denoted LUM, is the set of strings that are in either L or M, or

both. For example, if L = {001, 10,111} and M= {€, 001} then LUM = {€, 10,001,111}.

2. The concatenation of languages L and M is the set of strings that can be formed by taking any string in

L and concatenating it with any string in M. The concatenation of a pair of strings one string is followed

by the other to form the result of the concatenation. We denote concatenation of languages either with a

dot or with no operator at all, ,although the concatenation operator is frequently called “dot”.

For example, if L = {001, 10,111} and M= {€, 001} then L.M or just LM= {001, 10, 111, 001001, 10001,

111001}.2

3. The closure (or Star or Kleene closure) of a language L is denoted L* and represents the set of those

strings that can be formed by taking any number of strings from L, possibly with repetitions (i.e the same

string may be selected more than once) and concatenating all of them.

 L*= L0 U L1 U L2 U L3 U L4 U L5......

If L= {0, 1} then L*= {€, 0, 1, 00, 01, 10, 11, 000, 001, 100, 010, 110, 011, 111,........}

Precedence of Regular Expression Operators

For regular expressions, the following is the order of precedence for the operators:

1. The star operator is of highest precedence. That is, it applies only to the smallest sequence of symbols

to its left that is a well formed regular expression.

2. Next in precedence comes the concatenation or “dot” operator. After grouping all stars to their operands,

we group concatenation operators to their operands. That is, all expressions that are juxtaposed are

grouped together.

3. Finally, all unions (+ operators) are grouped with their operands. Since union is also associative, it again

matters little in which order consecutive unions are grouped, but we shall assume grouping from the left.

Automata & Compiler Design (18IT502)

34
Department of Information Technology, BEC, Bapatla-522102. GP

Ans a) (a+b+c)* a (a+b+c)* b (a+b+c)*

Ans b) (0+1)* 1 (0+1)+ (0+1)+ (0+1)+ (0+1)+ (0+1)+ (0+1)+ (0+1)+ (0+1)+ (0+1)+

Ans c) (0+1)* 11 (0+1)*

Algebraic Laws for Regular Expressions
1. Associativity and Commutativity

Commutativity is the property of an operator that says we can switch the order of its operands and get the

same result.

Associativity is the property of an operator that allows us to regroup the operands when the operator is

applied twice.

Here are three laws of these types that hold for regular expressions:

 L +M =M +L This law, the commutative law for union, says that we may take the union of two

languages in either order.

 (L + M) + N = L + (M + N) This law, the associative law for union, says that we may take the

union of three languages either by taking the union of the first two initially or taking the union of

the last two initially.

 (LM)N = L(MN) This law, the associative law for concatenation, says that we can concatenate

three languages by concatenating either the first two or the last two initially.

2. Identities and Annihilators

An identity for an operator is a value such that when the operator is applied to the identity and some other

value, the result is the other value.

An annihilator for an operator is a value such that when the operator is applied to the annihilator and some

other value, the result is the annihilator.

There are three laws for regular expressions involving these concepts we list them below.

 Φ +L = L + Φ = L, This law asserts that Φ is the identity for union.

 €L = L€ = L, This law asserts that € is the identity for concatenation.

Automata & Compiler Design (18IT502)

35
Department of Information Technology, BEC, Bapatla-522102. GP

 Φ L = L Φ = Φ. This law asserts that Φ is the annihilator for concatenation.

These laws are powerful tools in simplifications.

3. Distributive Laws
A distributive law involves two operators, and asserts that one operator can be pushed down to be applied

to each argument of the other operator individually.

These laws are:

4. The Idempotent Law
An operator is said to be idempotent if the result of applying it to two of the same values as arguments is

that value.

5. Laws Involving Closures
There are a number of laws involving the closure operators

Let r, r1, r2, and r3 be any regular expressions

Automata & Compiler Design (18IT502)

36
Department of Information Technology, BEC, Bapatla-522102. GP

The Pumping Lemma for Regular Languages

Automata & Compiler Design (18IT502)

37
Department of Information Technology, BEC, Bapatla-522102. GP

Applications of the Pumping Lemma
 We shall propose a language and use the pumping lemma to prove that the language is not regular.

 The Pumping Lemma as an Adversarial Game

Example Problems:

1. Prove that the L= { 0i 1i / i>=1 } is not regular.

Solution:

The given language generates L= { 01, 0011, 000111, 00001111, 0000011111, 000000111111,.........}

 Let w= 0n 1n such that |w| = 2n.

 By pumping lemma we can write w=xyz such that |xy| <=n and |y| != 0

Now if xyiz € L then the language L is said to be regular.

There are many cases:

i) Y has only 0’s

ii) Y has only 1’s

Automata & Compiler Design (18IT502)

38
Department of Information Technology, BEC, Bapatla-522102. GP

CASE i : If Y has only 0’s then the string

Consider the string w= 0011

x=0 , y=0 and z=11

then xyiz = 0 0i 11

If i=2 then 00011 not belongs to L

CASE i i : If Y has only 1’s then the string

Consider the string w= 0011

x=00 , y=1 and z=1

then xyiz = 0 0 1i 1

If i=2 then 00111 not belongs to L

Hence, form all these 2 cases it is clear that language L is not regular.

2. Prove that Language L = { 0n10n n>=1} is not regular.

The given language generates L={010,00100,0001000,000010000,.........}

 By pumping lemma we can write w=xyz such that |xy| <=n and |y| != 0

 Now if xyiz € L then the language L is said to be regular.

Consider the string from L

w= 0001000= xyz

x=0; y=01; z=000

w= xyiz= 00 (01)i 000

If i= 2 then 000101000 not belongs to L

Hence, the given language is not regular.

3. Prove that Language L = { 0n12n n>=1} is not regular.

The language L={ 011,001111,000111111,000011111111,........}

 By pumping lemma we can write w=xyz such that |xy| <=n and |y| != 0

 Now if xyiz € L then the language L is said to be regular.

Consider the string from L

w=001111=xyz

x=00 y=11 z=11

xyiz= 00 (11)i 11

If i=2 then 00111111 not belongs to L

Hence ,the given language is not regular.

Automata & Compiler Design (18IT502)

39
Department of Information Technology, BEC, Bapatla-522102. GP

Closure Properties of Regular Languages
We shall prove several theorems of the form “if certain languages are regular, and a language L is formed

from them by certain operations (e.g. L is the union of two regular languages), then L is also regular”

These theorems are often called closure properties of the regular languages.

Here is a summary of the principal closure properties for regular languages:

 The union of two regular languages is regular

 The intersection of two regular languages is regular

 The complement of a regular language is regular

 The difference of two regular languages is regular

 The reversal of a regular language is regular

Automata & Compiler Design (18IT502)

40
Department of Information Technology, BEC, Bapatla-522102. GP

 The closure (star) of a regular language is regular

 The concatenation of regular languages is regular

 A homomorphism (substitution of strings for symbols) of a regular language is regular

 The inverse homomorphism of a regular language is regular

1. Closure under union

If L and M are regular languages, then so is LUM

Proof: Since L and M are regular, they have regular expressions say L= L(R) and M= L(S) Then LUM

=L(R+ S) by the definition of the + operator for regular expressions.

2. Closure under Intersection

Let L and M be the languages of regular expressions R and S, respectively then it a regular expression

whose language is L∩M.

proof: Let A and B be DFA’s whose languages are L and M, respectively. Construct C, the product

automaton of A and B make the final states of C are the pairs consisting of final states of both A and B.

Automata & Compiler Design (18IT502)

41
Department of Information Technology, BEC, Bapatla-522102. GP

3. Closure under Complementation

The complement of a language L (with respect to an alphabet E such that E* contains L) is E* –L. Since

E* is surely regular, the complement of a regular language is always regular.

DFA:

Its Complementation:

4. Closure under Difference

If L and M are regular languages, then so is L – M = strings in L but not M.

Proof: Let A and B be DFA’s whose languages are L and M, respectively. Construct C, the product

automaton of A and B make the final states of C be the pairs, where A-state is final but B-state is not.

5. Closure under reversal

Given language L, LR is the set of strings whose reversal is in L

Example: L = {0, 01, 100};

 LR ={0, 10, 001}.

Proof: Let E be a regular expression for L. We show how to reverse E, to provide a regular

expression ER for LR.

6. Closure under Star (Closure)

Kleen Closure

RS is a regular expression whose language is L, M. R* is a regular expression whose language is L*.

Automata & Compiler Design (18IT502)

42
Department of Information Technology, BEC, Bapatla-522102. GP

Positive closure

RS is a regular expression whose language is L, M. R+ is a regular expression whose language is L+.

7. Closure under Concatenation

If and are regular expressions denoting and respectively, then is denoted by the regular

expression and hence itself regular.

8. Closure under Homomorphism

A string homomorphism is a function on strings that works by substituting a particular string for each

symbol.

9. Closure under Inverse Homomorphism

Let h be a homomorphism and L a language whose alphabet is the output language of h.

(L) = {w | h(w) is in L}.

