ot BAPATLA ENGINEERING COLLEGE :: BAPATLA

(Autonomous)
%‘:ﬁﬁ“/ Department of Electrical and Electronics Engineering
INSTITUTE VISION

e To build centers of excellence, impart high quality education and instill high standards of
ethics and professionalism through strategic efforts of our dedicated staff, which allows the
college to effectively adapt to the ever-changing aspects of education.

e Toempower the faculty and students with the knowledge, skills and innovative thinking to
facilitate discovery in numerous existing and yet to be discovered fields of engineering,

technology and interdisciplinary endeavors.

INSTITUTE MISSION

e Our Mission is to impart the quality education at par with global standards to the students

from all over India and in particular those from the local and rural areas.

e We continuously try to maintain high standards so as to make them technologically
competent and ethically strong individuals who shall be able to improve the quality of life

and economy of our country.

DEPARTMENT VISION

The Department of Electrical & Electronics Engineering will provide programs of the
highest quality to produce globally competent technocrats who can address challenges of
the millennium to achieve sustainable socio - economic development.

DEPARTMENT MISSION

M1: To provide quality teaching blended with practical skills.

M2: To prepare the students ethically strong and technologically competent in the field

of Electrical and Electronics Engineering.

M3: To motivate the faculty and students in the direction of research and focus to fulfill

social needs.

PROGRAM OUTCOMES

Program Outcomes Engineering Graduates will be able to
Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering
specialization to the solution of complex engineering
problems.
Identify, formulate, review research literature,
and analyze complex engineering problems
PO2 | Problem analysis reaching substantiated conclusions using first
principles of mathematics, natural sciences, and
engineering sciences.
Design solutions for complex engineering
problems and design system components or
Design/development of processes that meet the specified needs with
solutions appropriate consideration for the public health
and safety, and the cultural, societal, and
environmental considerations.
Use research-based knowledge and research
Conduct investigations of | methods including design of experiments, analysis
complex problems and interpretation of data, and synthesis of the
information to provide valid conclusions.
Create, select, and apply appropriate techniques,
resources, and modern engineering and IT tools
PO5 | Modern tool usage including prediction and modeling to complex
engineering activities with an understanding of the
limitations.
Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal
PO6 | The engineer and society |and cultural issues and the consequent
responsibilities relevant to the professional
engineering practice.
Understand the impact of the professional
Environment and eng!neering solutions in societal and
PO7 sustainability environmental contexts, and demonstrate the
knowledge of, and need for sustainable
development.

PO1 | Engineering knowledge

PO3

PO4

Program Outcomes

Engineering Graduates will be able to

PO8

Ethics

Apply ethical principles and commit to professional
ethics and responsibilities and norms of the
engineering practice

PO9

Individual and team work

Function effectively as an individual, and as a
member or leader in diverse teams, and in
multidisciplinary settings.

PO10

Communication

Communicate effectively on complex engineering
activities with the engineering community and with
society at large, such as, being able to comprehend
and write effective reports and design
documentation, make effective presentations, and
give and receive clear instructions.

PO11

Project management and
finance

Demonstrate knowledge and understanding of
the engineering and management principles and
apply these to one’s own work, as a member and
leader in a team, to manage projects and in
multidisciplinary environments.

PO12

Life-long learning

Recognize the need for, and have the preparation
and ability to engage in independent and life-long
learning in the broadest context of technological
change

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1 | The Electrical and Electronics Engineering graduates are capable of applying the knowledge
of mathematics and sciences in modern power industry.

PSO2 | Analyze and design efficient systems to generate, transmit, distribute and utilize electrical
energy to meet social needs using power electronic systems.

PSO3 | Electrical Engineers are capable to apply principles of management and economics for

providing better services to the society with the technical advancements in renewable and

sustainable energy integration

INTERNET OF THINGS LAB
3/4 EEE V semester Code: 20EEL501

LIST OF EXPERIMENTS:

Mandatory Experiments:

1.

5.
6.

a) Familiarization with Arduino/Raspberry Pi and perform necessary software installation.
b) Study the fundamental IOT Software & Components.

. a) Interface LED & Buzzer with Arduino and write a program to turn ON LED for 1 sec with a delay

of 2seec.

b) Interface LED & Buzzer with Raspberry Pi and write a program to turn ON LEDfor 1 sec with a
delay of 2seec.

. @) Implement two-way traffic control using Arduino.

b) Implement two-way traffic control using Raspberry Pi

. @) Interface DHT11 sensor with Arduino and write a program to print temperature and humidity

readings.
b) Interface PIR sensor with Arduino and write a program to turn ON LED at sensor detection.
Interface Stepper motor with Arduino and write a program to control stepper motor.

Interface OLED with Arduino and write a program to print temperature and humidity readings on it.

Application Oriented Experiments:

7.
8.

9.

10.
11.
12.
13.
14.
15.

Interface servo motor using with Raspberry Pi and write a program to control servo motor.

Write a program for weather monitoring station and handling temperature & humidity values on
cloud platform.

Design of digital dc voltmeter and ammeter using Arduino uno.

Design home automation using Raspberry pi.

Servo Motor control With Esp32.

Measurement of Power and Energy using Arduino.

Over/Under Voltage Protection of Home Appliances using Arduino uno & NODE MCU.

Design smart irrigation system and analyze data using cloud platform.

Detection of induction motor fault using 10T.

Note: Minimum 10 experiments should be conducted

Bapatla Engineering College: Bapatla
(AUTONOMOUS)
Department of Electrical & Electronics Engineering

1. a) Familiarization with Arduino/Raspberry Pi and perform necessary software installation.
b) Study the fundamental IOT Software & Components

EXPERIMENT NO-1 A

OBJECTIVE: Study the fundamental of 10T softwares and components.

RESOURCE REQUIRED: Proteus and Arduino IDE

THEORY: Internet of Things (IoT) is a network of physical objects or people called "things"
that are embedded with software, electronics, network, and sensors that allows these objects
to collect and exchange data.

The thing in ToT can also be a person with a diabetes monitor implant, an animal with
tracking devices, etc.

Components of 10T:

) Sensors/Devices: Sensors or devices are a key component that helps you to collect
live data from the surrounding environment. A device may have various types of
sensors which performs multiple tasks apart from sensing. Example, A mobile phone
is a device which has multiple sensors like GPS, camera but vour smartphone is not
able to sense these things.

2) Connectivity: All the collected data is sent to a cloud infrastructure. The sensors
should be connected to the cloud using various mediums of communications. These
communication mediums include mobile or satellite networks, Bluetooth, WI-FIL,

WAN, etc.

%)
~

Data Processing: Once that data is collected, and it gets to the cloud, the software
performs processing on the gathered data. This process can be just checking the
temperature, reading on devices like AC or heaters. However, it can sometimes also
be very complex like identifying objects, using computer vision on video.

4) User Interface: The information needs to be available to the end-user in some way
which can be achieved by triggering alarms on their phones or sending them
notification through email or text message. The user sometimes might need an
intertace which actively checks their IoT system. For example. the user has a camera
installed in his home. He wants to access video recording and all the feeds with the

help of a web server.

n
=

Depending on the lo'1 application and complexity of the system, the user may also be

able to perform an action which may create cascading effects.

6) For example. if a user detects any changes in the temperature of the refrigerator, with

the help of IoT technology the user should able to adjust the temperature with the help

of their mobile phone.

Application type

Description

Smart Thermostats

Helps you to save resource on heating bills by knowing your

usage patterns.

Connected Cars

[oT helps automobile companies handle billing. parking.

insurance, and other related stuff automatically

Activity Trackers

Helps you to capture heart rate pattern, calorie expenditure,

activity levels, and skin temperature on your wrist .

Smart Outlets

Remotely turn any device on or off. It also allows you to track a
device's energy level and get custom notifications directly into

vour smartphone,

Parking Sensors

0T technology helps users to identity the real-time availability of

parking spaces on their phone

Connect Health

The concept of a connected health care system facilitates real-time
health monitoring and patient care. It helps in improved medical

decision-making based on patient data.

Smart City

Smart city offers all types of use cases which include traffic

management to water distribution, waste management, etc .

Smart home

Smart home encapsulates the connectivity inside your homes . It
includes smoke detectors, home appliances. light bulbs, windows,

door locks, etc.

Smart supply chain

Helps you in real time tracking of goods while they are on the

road, or getting suppliers to exchange inventory information .

Mobile App

Sensors

How IoT Wor

— Internal working of the Internet of Things

Report States
internal states’/external status
et R

THINGS WITH
NETWORKED SENSORS

™ 5

Al Tost ——————— = Actin

DATA STORES

-
-
ANALYTIC ENGINES -
Feedback and = Iterate
Control = Modelsianalyses
Commands and requests :
-

Hurman/maciine
e]

Sarversiciond

o7 Componenits — Daic Processing

How does Internet of Thing (1o'1) Work?

The working of IoT is different for different loT echo system (architecture). However, the
key concept of there working are similar. The entire working process of [oT starts with the
device themselves, such as smartphones. digital watches, electronic appliances, which
securely communicate with the ToT platform. The platforms collect and analyze the data from
all multiple devices and platforms and transfer the most valuable data with applications to

devices.
Features of IOT

The most important features of loT on which it works are connectivity, analyzing,

integrating. active engagement, and many more. Some of them are listed below:

Connectivity: Connectivity refers to establish a proper connection between all the things of
[oT to IoT platform it may be server or cloud. After connecting the IoT devices. it needs a
high speed messaging between the devices and cloud to enable reliable, secure and bi-

directional communication.

Analyzing: After connecting all the relevant things. it comes to real-time analyzing the data
collected and use them to build effective business intelligence. If we have a good insight into

data gathered from all these things, then we call our system has a smart system.
Integrating: loT integrating the various models to improve the user experience as well.

Artificial Intelligence: ToT makes things smart and enhances life through the use of data. For
example, if we have a coffee machine whose beans have going to end. then the coffee

machine itself order the coffee beans of your choice from the retailer.

Sensing: The sensor devices used in [oT technologies detect and measure any change in the
environment and report on their status. ToT technology brings passive networks to active

networks. Without sensors. there could not hold an ettective or true IoT environment.

Active Engagement: JoT makes the connected technology. product, or services to active

engagement between each other.

Endpoint Management: It is important to be the endpoint management of all the IoT system
otherwise. it makes the complete failure of the system. For example, if a cotfee machine itself
order the coffee beans when it goes to end but what happens when it orders the beans from a
retailer and we are not present at home for a few days, it leads to the failure of the IoT

system. So. there must be a need for endpoint management.

ToT Protocols

1. Constrained Application Protocol (CoAP)

CoAP is an internet utility protocol for constrained gadgets. It is designed to enable simple,
constrained devices to join IoT through constrained networks having low bandwidth
availability. This protocol is primarily used for machine-to-machine (M2M) communication

and is particularly designed for IoT systems that are based on HTTP protocols.

CoAP Environment

A
-

REST-CoAP | CoAP Server —_—
Proxy 'fa

CoAP Communication -f—js GoAP Clie J

(REST Internet _EI'

ey e ‘;{ f
| 010, —
‘Vv‘\._/"'-*/u ‘ =

HTTP Communication =« s=:«jjs-
CoAP makes use of the UDP protocol for lightweight implementation. It also uses restful
architecture, which is just like the HTTP protocol. It makes use of dtls for the cozy switch of

statistics within the slipping layer.

Subscribe

Publish s
e 3
| - & :
: Publish : Topics SUbS&be pr—
= 1'— >4

Dy | S

Publishers Broker Subscribers

1 = e

2. Message Queue Telemetry Transport Protocol (MQTT)

MQTT (Message Queue Telemetry Transport) is a messaging protocol developed with the aid
of Andy Stanford-Clark of IBM and Arlen Nipper of Arcom in 1999 and is designed for

M2M communication. It*s normally used for faraway tracking in lToT. Its primary challenge is
to gather statistics from many gadgets and delivery of its mfrastructure. MQTT connects
gadgets and networks with packages and middleware. All the devices hook up with facts
concentrator servers like IBM*s new message sight appliance. MQTT protocols paintings on
top of TCP to offer easy and dependable streams of information.

These ToT protocols include 3 foremost additives: subscriber, publisher, and dealer. The
writer generates the information and transmits the facts to subscribers through the dealer. The
dealer guarantees safety by means of move-checking the authorization of publishers and
subscribers.

3. Advanced Message Queuing Protocol (AMQP)

This was evolved by John O*Hara at JP Morgan Chase in London. AMQP is a software layer
protocol for message-oriented middleware environment. It supports reliable verbal exchange
through message transport warranty primitives like at-most-once, at least once and exactly as
soon as shipping.
The AMQP — loT protocols consist of hard and fast components that route and save messages
within a broker carrier, with a set of policies for wiring the components together. The AMQP
protocol enables patron programs to talk to the dealer and engage with the AMQP model.
This version has the following three additives. which might link into processing chains in the
server to create the favored capabilities.
e Exchange: Receives messages from publisher primarily based programs and routes them
to _message queues”.
o Message Queue: Stores messages until they may thoroughly process via the eating client
software.

e Binding: States the connection between the message queue and the change.

AMQP BrOker Queues _\

o<+

-

O 44— Sybscriber

Ll == =

——

O++ Subscriber

=~

4. Data Distribution Service (DDS)

It enables a scalable, real-time, reliable, excessive-overall performance and interoperable
statistics change via the submit-subscribe technique. DDS makes use of multicasting to

convey high-quality QoS to applications.

DDS is deployed in platforms ranging from low-footprint devices to the cloud and supports
green bandwidth usage in addition to the agile orchestration of system additives.
The DDS — IoT protocols have fundamental layers: facts centric submit-subscribe (deps) and

statistics-local reconstruction layer (dlrl).

Decps plays the task of handing over the facts to subscribers, and the dirl layer presents an
interface to deps functionalities, permitting the sharing of distributed data amongst ToT

enabled objects.

DDS Domain . Receiver

Topic

DDS

T

a DataReader |
|

Building Blocks of loT Hardware

Data Data Communi-
“Thing” Acquisition Processing cations
Module Module Module
The asset you Acquire physical || The “computer”to |, Communicate
want to control or signal and convert process data, with 3 party
monitor to digital petform analytics, systems, either
store data locally, locally or in the
and other edge Cloud
computing

loT Hardware — Building Blocks

i. Thing

~Thingl in TOT is the asset that you want to control or monitor or measure, that is,observe closely.

In many IoT products, the -thing| gets fully incorporated into a smart device. For

example, think of products like a smart refrigerator or an automatic vehicle. These products
control and monitor themselves.
There are sometimes many other applications where the thing stands as an alone device, and a

separate product is connected to ensure it possesses smart capabilities.

ii. Data Acquisition Module

The data acquisition module focuses on acquiring physical signals from the thing which is
being observed or monitored and converting them into digital signals that can be manipulated
or interpreted by a computer.

This is the hardware component of an IOT system that contains all the sensors that help in
acquiring real-world signals such as temperature. pressure, density, motion, light, vibration,
etc. The type and number of sensors you need depend on your application.

This module also includes the necessary hardware to convert the incoming sensor signal into
digital information for the computer to use it. This includes conditioning of incoming signal,

removing noise, analog-to-digital conversion, interpretation, and scaling.

iii. Data Processing Module
The third building block ot the IoT device is the data processing module. This is the actual
—computerl and the main unit that processes the data performs operations such as local

analytics, stores data locally, and performs some other computing operations.

iv. Communication Module
The last building block of TOT hardware is the communications module. This is the part that
enables communications with your Cloud Platform, and with 3rd party systems either locally

or in the Cloud.

b. IoT Sensors

The most important IoT hardware might be its sensors. These devices consist of a variety of

modules such as energy modules, RF modules, power management modules, and sensing

modules.

Machine Vision / Optical
Ambient Light

(02
= Acceleration / Tilt

Position / Presence / Proximity

Motion / Velocity / Displacement

Yy s

Temperature

e)

Humidity / Moisture

Leaks / Levels

Force / Load / Torque g -
Strain / Pressure Chemical / Gas

¢. Wearable Electronic Devices

Wearable electronic devices are small devices that can be worn on the head. neck, arms.

torso. and feet.

Current smart wearable devices include —
e Head — Helmets, glasses,
e Neck — Jewelry, collars

e Arm — Wristwatches. wristbands. rings

e Torso — Clothing picces. backpacks

e Feet — Shoes. Socks

d. Basic Devices

The day to day devices that we use such as desktop. cellphones and tablets remain integral
parts of loT system.
e The desktop provides the user with a very high level ot control over the system and its
settings.
e The tablet acts as a remote and provides access to the key features of the system.
e Cellphone allows remote functionality and some essential settings modification

Other key connected devices include standard network devices like routers and switches.

lIoT Software

Embedded systems have less storage and processing power, their language needs are
different. The most commonly used operating systems for such embedded systems are Linux
or UNIX-like OSs like Ubuntu Core or Android.

loT software encompasses a wide range of software and programming languages from
general-purpose languages like C++ and Java to embedded-specific choices like Google s Go
language or Parasail.
Few loT Softwares are-

e (& C++: The C programming language has its roots in embedded systems—it even got

its start for programming telephone switches. It's pretty ubiquitous. that is, it can be used

almost everywhere and many programmers already know it. C++ is the object-oriented

version of C, which is a language popular tor both the Linux OS and Arduino embedded
IoT sottware systems. These languages were basically written for the hardware systems
which makes them so easy to use.
e Java: While C and C++ are hardware specitic, the code in JAVA is more portable. It is
more like a write once and read anywhere language, where you install libraries. invests
time in writing codes once and you are good to go.
Python: There has been a recent surge in the number of python users and has now
become one of the -go-tol languages in Web development. Its use is slowly spreading to
the embedded control and loT world—specially the Raspberry Pi processor. Python is an
interpreted language, which is, easy toread, quick to learn and quick to write. Also, it's a
powerhouse tor serving data-heavy applications.
Unlike most of the languages mentioned so far, it was specifically designed for
embedded systems, it's small and compact and has less memory size.
Data Collection: It is used for data filtering, data security, sensing, and measurement.
The protocols aid in decision making by sensing form real-time objects. It can work both
ways by collecting data from devices or distributing data to devices. All the data
transmits to a central server.
Device Integration: This software ensures that devices bind and connect to networks
facilitating information sharing. A stable cooperation and communication ensure
between multiple devices.
Real-Time Analytics: In this, the input from users serves as potential data for carrying
out real-time analysis, making insights, suggesting recommendations to solve
organizations problems and improve its approach. This. as a result, allows automation
and increased productivity.
Application and Process Extension: These applications extend the reach of existing
systems and software to allow a wider. more effective system. They integrate predefined
devices for specific purposes such as allowing certain mobile devices or enginecering

instruments access. It supports improved productivity and more accurate data collection.

Linux®, Acromis '@ aN>301D> > Erem
ce o 3
DV windows Embeddea (iteD security = W syennsrtas
— susI API
Windows 10 ” >
IoT Core (lntel) Security @
ayY winND RIVER oy — Allloyn
cateW iDP b4 95!:9 PULSAR LINUX >
- <O sson

sens® ___ARMmbed é‘g"@é L

RESULT AND CONCLUSION:

We have studied the fundamentals of IOT softwares and components. Internet of Things can
create information about the connected objects, analyze it, and make decisions. All ToT
applications are using sensors to detect and collect data that are used to give a proper decision

that maintains a high level of security of the installations.

EXPERIMENT NO.1 Z

OBJECTIVE: Familiarization with Arduino/Raspberry Pi and perform necessary software

installation

RESOURCE REQUIRED: Arduino IDE

THEORY: Arduino is a prototype plattorm (opcen-source) based on an casy-to-use hardwarc
and softwarc. Tt consists of a circuit board, which can be programed (referred to as a
microcontroller) and a ready-made software called Arduino IDE (Integrated Development
Environment), which 1s used to write and upload the computer code to the physical board.
Arduino provides a standard form tactor that breaks the functions of the microcontroller into
a more accessible package. Arduino 1s a prototype platform (open-source) based on an casy-
to-use hardware and software. It consists ot a circuit board. which can be programed (referred
to as a microcontroller) and ready-made software called Arduino IDE (Integrated
Development Environment), which is used to write and upload the computer code to the
physical board.

The key features are —

00 Arduino boards are able to read analog or digital input signals from different sensors and
turn it into an output such as activating a motor, turning LED on/oft. conngct to the ¢loud and
many other actions.

[0 You can conirol your board functions by sending a set of instructions to the
microcontroller on the board via Arduino IDE (referred to as uploading software).

[0 Unlike most previous programmabhle circuit boards, Arduino does not need an extra picce
of hardware (called a programmer) in order to load a new code on to the board. You can
simply use a USB cable,

00 Additionally, the Arduino IDE uses a simplified version of C++. making it casier to lecarn
to program.

O Finally, Arduino provides a standard form factor that breaks the functions of the micro-

controller into a more accessible package.

=

Download the Arduino Software (IDE)
O Get the latest version from the arduino.cc web site. You ¢an choose between the Installer
(.exe) and the Zip packages. We suggest you usc the first one that installs directly everything
you need to use the Arduino Software (IDE). including the drivers, With the Zip package vou
need to install the drivers manually. The Zip file is also usctul it you want to create a portable
installation.
[0 When the download finishes, proceed with the installation and please allow the driver

installation process when you get a warning from the operating system.

4

Check the components you want to install and uncheck the components
2.2 vou don't want to install. Click Mext to continue.

Select components to install: [&] install Arduine software
Install USB driver
Create Start Menu shortcut

[7] Create Desktop shorteut
Associate .no files

Space required: 392.7MB

Cancel | =t

Choose the components to install

€2 Arduino Setup: Installation Folder = X

= Setup will install Arduino in the following folder. To install in 2 different
o folder, dick Browse and select another folder. Click Install to start the
instaliation.

|

Space required: 392, 7MB

Space available: 24.6GB

Cancel | rMolsoft Install System v2.46] Install I

Choose the installation directory (we suggest to keep the default one)

Arduino Setup: Installing

. Extract: c++.exe
oo}
]

The process will extract and install all the required files to execute properly the Arduino
Software (IDE)

O Proceed with board specific instructions

[0 When the Arduino Software (IDE) is properly installed you can go back to the Different
Arduino Boards:

1. Arduino Uno: This is the latest revision of the basic Arduino USB board. It connects to the
computer with a standard USB cable and contains everything else you need to program and
use the board.

2. Arduino NG; REV-C Revision C of the Arduino NG does not have a built-in LED on pin
13 - instead you'll see two small unused solder pads near the labels "GND" and "13".

3. Arduino Bluetooth: The Arduino BT is a microcontroller board originally was based on the
A'Tmegal 68, but now is supplied with the 328, and the Bluegiga WT11 bluetooth module. It
supports wircless serial communication over bluetooth.

4. Arduino Mega: The original Arduino Mega has an ATmegal280 and an FTDI USB-to
serial chip.

S. Arduino NANO: The Arduino Nano 3.0 has an ATmega328 and a two-layer PCB. The
power LED moved to the top of the board.

Advantages of using Arduino:

It offers some advantage for teachers. students, and interested amateurs over other systems:

e Inexpensive - Arduino boards are relatively inexpensive compared to other

microcontroller plattorms. The least expensive version ot the Arduino module can be
assembled by hand. and even the pre-assembled Arduino modules cost less than $50

e Cross-platform - The Arduino Software (IDE) runs on Windows, Macintosh OSX,
and Linux operating systems. Most microcontroller systems are limited to Windows.

e Simple, clear programming environment - The Arduino Sottware (IDE) is easy-to-use
for beginners, yet flexible enough for advanced users to take advantage of as well. For
teachers, it's conveniently based on the Processing programming environment, so
students learning to program in that environment will be familiar with how the
Arduino IDE works.

e Open source and extensible software - The Arduino software is published as open
source tools, available for extension by experienced programmers. The language can
be expanded through C++ libraries, and people wanting to understand the technical
details can make the leap from Arduino to the AVR C programming language on
which it's based. Similarly, you can add AVR-C code directly into your Arduino
programs if you want to.

e Open source and extensible hardware - The plans of the Arduino boards are published
under a Creative Commons license, so experienced circuit designers can make their
own version of the module, extending it and improving it. Even relatively
inexperienced users can build the breadboard version of the module in order to

understand how it works and save money.

RESULT AND CONCLUSION:

In this experiment, we have discussed about the Arduino fundamentals and its necessary
software installation. Thus, Arduino simplifies the process of working with microcontrollers,
Arduino is an open source micro-controller which can be used as a development board for
hundreds and thousands of project. we can program the Arduino board with the help of

Arduino IDE and the programming is based on C/C++.

2. a) To interface LED & Buzzer with Arduino and write a program to turn ON LED for 1 sec
after every 2 seconds.

b) To interface LED & Buzzer with Raspberrypi and write a program to turn ON LED for
1 sec after every 2 seconds.

Experiment No - 2 (A)

AIM : To Interface LED with Arduino and write a programto turn ON LED for 1 Sec after

every 2 seconds.

RESOURCE REQUIRED: Arduino IDE Software, Arduino Uno, LED, Buzzer, Bread
board.

CIRCUIT DIAGRAM:

PROCEDURE :
1. Make the connection as per the circuit diagram.

2. Open the Arduino IDE in computer and write the program.
3. Compile the program for any errors and upload it to the Arduino.
4. Observe the LED ON time delay of 1 second and OFF time delay of 2 seconds.

const int led=13;

const int buzzer=12;

void setup()

{

pinMode(led, OUTPUT);
pinMode(buzzer, OUTPUT);

¥

void loop()

{

digitalWrite(led,HIGH);
digitalWrite(buzzer,HIGH);
delay (1000);
digitalWrite(led,LOW);
digitalWrite(buzzer,LOW);
delay (1000);

ky

RESULT:

Experiment No- 2 (B)

AIM : To interface LED & Buzzer with RaspberryPi and write a program to turn ON

LED for 1 sec after every 2 seconds.

Resource Required: Raspberrypi , LED, ,bread board, Monitor

Circuit diagram:

CODE:
Using BCM PINS

from gpiozero import Buzzer
from gpiozero import LED
from time import sleep
buzzer=Buzzer(23)
led=LED(24)
while True:

buzzer.on()

led.on()

sleep(0.5)

buzzer.off()

led.off()

sleep(0.5)

Using Board PINS

from gpiozero import Buzzer
import RPi.GPIO as GP10
import time
GPI10.setmode(GPI0.BOARD)
GPIO.setup(16, GP10.0UT)
GPIO.setup(18, GPI0.0OUT)

while True:
GPIO.output(16, True)
GPIO.output(18, True)
time.sleep(0.5)
GPIO.output(16, False)
GPIO.output(18, False)
time.sleep(0.5)

CIRCUIT DIAGRAM:

Procedure :

1.Make the connections as per the circuit diagram
2.0pen python & type the program.
3.Run the program & verify the output.

RESULT:

3. a) Implement two-way traffic control using Arduino.

AIM: To implement two-way traffic control using Arduino Uno

Components Required: Arduino Uno, LED’S,Bread board, Jumper Wires

Circuit Diagram:

CODE:

int red1=1;

int yellow1=2;
int green1=3;
int red2=4;

int yellow2=5;
int green2=6;
void setup()

{

pinMode(red1,0UTPUT);
pinMode(yellowl,OUTPUT);
pinMode(green1,OUTPUT);
pinMode(red2,0UTPUT);
pinMode(yellow2,OUTPUT);
pinMode(green2,OUTPUT);

}
void loop()

{
digitalWrite(greenl,HIGH);
digitalWrite(red2,HIGH);
delay(10000);
digitalWrite(red1,LOW);
digitalWrite(yellow1,LOW);
digitalWrite(yellow2,LOW),
digitalWrite(green2,LOW);

digitalWrite(greenl,LOW);
digitalWrite(yellowl1,HIGH);
digitalWrite(yellow2,HIGH);
delay(5000);
digitalWrite(yellow1,LOW);
digitalWrite(yellow2,LOW);
digitalWrite(red1,LOW);
digitalWrite(red2,LOW);
digitalWrite(green2,LOW);

digitalWrite(red1,HIGH);

digitalWrite(green2,HIGH);
delay(10000);
digitalWrite(red1,LOW);
digitalWrite(green2,LOW);
digitalWrite(yellow1,LOW);
digitalWrite(greenl,LOW);
digitalWrite(red2,LOW);,
digitalWrite(yellow2,LOW);
}

Procedure:

1.Make the connections as per circuit diagram

2.0pen Arduino lde & type the program

3.Compile & upload the program in to Arduino Uno board.
4.Verify the output.

Result:

b) Implement two-way traffic control using Raspberry Pi

AIM: To implement two-way traffic control using Raspberry Pi

Components Required: Raspberry Pi, LED’S, Bread board, Jumper Wires

Circuit Diagram:

Raspberry Pi Board:

- N
‘..0
-9,

Q

Alternate
Function

CXEm®
CTEB®
GEFEg
[sp1omosiJepio 1019

[spio misofGrios Ja
[spio scux Japio 1123

Alternate

Function
[2]5v Pwr |
[a]5vPwr |

DEE
Galcpios Jseiocso
elerio s |sio csi |
28] Reserved |
Bofono |
Saleriois |
Bifoxo |
e]cpiote Jseicso |
Ss]GPio 20 _Jse1s mosi]
ofGpio 21 Jspis scik]

CODE:

GPIO.cleanup()

1 dimport RPi.GPIO as GPIO

2 from time import sleep

3

4 GPIO.setmode(GPIO.BCM)

5 GPIO.setwarnings(False)

6

7 » #1st Traffic System

8 GPIO.setup(2, GPIO.OUT) # output pin redl

9 GPIO.setup(3, GPIO.OUT) # output pin amber
10 GPIO.setup(4, GPIO.O0UT) # outputn green
11

1 #2nd Traffic Syste

1§ GPIO.setup(17, GPIO.OUT) # output pin re
14 GPIO.setup(27, GPIO.OUT) # output pir
15 GPIO.setup(22, GPIO.OUT) # output:

16

B try:

18 while True:

19 #Traffic Sequence
20 GPIO.output (4,1) # greenl on
21 GPIO.output (17,1) # red2 on
22 GPIO.output (2,0) # redl on
23 GPIO.output (22,0) # green2 on

| 24 sleep(10)

24 sleep(10)
25 GPIO.output (4,0) # greenl off
26 GPIO.output (17,0) # red2 off
27 GPIO.output (3,1) #amberl on
28 GPIO.output (27,1) #amber2 or
29 sleep(1)
30 GPIO.output (3,0) #amberl off
31 GPI0.output (27,0) #amber2 off
32 GPIO.output (2,1) #redl on
33 GPI0.output (22,1) #green2 ol
34 sleep(10)
35 GPIO.output (2,0) #redl on
36 GPIO.output (22,0) #green2 on
37 GPIO.output (3,1) #amberl on
38 GPIO0.output (27,1) #amber2 on
39 sleep(1l)
40 GPIO0.output (3,0) #amberl off
41 GPIO.output (27,0) #amber2 off
42
43 finally:

Procedure:

1.Make the connections as per circuit diagram.
2.0pen python & type the program.

3.Run the program & verify the output.

Result:

4. a) Interface DHT11 sensor with Arduino and write a program to print temperature and
humidity readings.

AIM: To Interface DHT11 sensor with Arduino and write a program to print temperature and
humidity readings

Components Required: Arduino Uno, DHT-11 Sensor , Bread board, Jumper Wires.

Circuit Diagram:

"
"aa SEsassssnsasc
E W

2
77 ddce

NINGYY

CODE:

#include <dht.h>
#define dht_apin AO
dht DHT;

void setup ()
{
Serial.begin(9600);
delay(500);
Serial.printin(DHT11 HUMIDITY & Temperature sensor\n\n');
delay(1000);

}
void loop()

{

DHT.read11(dht_apin);
Serial.print(“current Humidity=");
Serial.print(DHT.humidity);
Serial.print('%");
Serial.print(“temperature=");
Serial.print(DHT.temperature);
Serial.printIn('C’);
delay(5000);

}

Procedure:

1.Make the connections as per circuit diagram

2.Add DHT sensor libraries to Arduino Ide

3.0pen Arduino Ide & type the program

4.Compile the program & upload it to Arduino uno board.

5.Verify the output.

Result:

b) Interface PIR sensor with Arduino and write a program to turn ON LED at sensor
detection

AIM: To Interface PIR sensor with Arduino and write a program to turn ON LED at sensor

detection
Components Required: PIR Sensor,Arduion Uno ,Bread board, Jumper Wires

Circuit Diagram:

CODE:

/I Define PIR sensor pin
int pirSensor = 2; // You can connect the PIR sensor to digital pin 2 of Arduino

// Define LED pin
int ledPin = 13; // Built-in LED on most Arduino boards is connected to digital pin 13

void setup() {
/I Initialize the PIR sensor pin as an input
pinMode(pirSensor, INPUT);

/I Initialize the LED pin as an output
pinMode(ledPin, OUTPUT);

/I Serial communication for debugging
Serial.begin(9600);
¥

void loop() {
/I Read the PIR sensor value
int motionSensorValue = digitalRead(pirSensor);

/I Check if motion is detected

if (motionSensorValue == HIGH) {
/I Motion detected, turn on the LED
digitalWrite(ledPin, HIGH);
Serial.printin("Motion Detected!");
delay(1000); // Delay for 1 second to avoid rapid toggling of the LED

}else {
// No motion, turn off the LED
digitalWrite(ledPin, LOW);
Serial.printin("No Motion™);
delay(1000); // Delay for 1 second

k
k

Procedure:

1.Make the connections as per circuit diagram

2.Add PIR sensor libraries to Arduino Ide.

3.0pen Arduino Ide & type the program

4.Compile the program & upload it to Arduino Uno board.
5.Verify the output.

Result:

5. Interface Stepper motor with Arduino and write a program to control stepper motor

AIM: To Interface Stepper motor with Arduino and write a program to control stepper motor

Components Required: Arduino Uno, Stepper motor Bread board, Jumper Wires.

Circuit Diagram:

CODE:
[* Stepper Motor Control */

#include <Stepper.h>
const int stepsPerRevolution = 2000;
/I change this to fit the number of steps per revolution

/[for your motor

/I initialize the stepper library on pins 8 through 11.:
Stepper myStepper(stepsPerRevolution, 9, 10, 11, 12);

void setup() {
/I set the speed at 60 rpm:
myStepper.setSpeed(5);
/I initialize the serial port:

Serial.begin(9600);

void loop() {
/I step one revolution in one direction:
Serial.printin(“clockwise");
myStepper.step(stepsPerRevolution);
delay(500);
/I step one revolution in the other direction:
Serial.printIn("counterclockwise™);
myStepper.step(-stepsPerRevolution);
delay(500);

Procedure:

1.Make the connections as per circuit diagram

2.0pen Arduino lde & type the program

3.Compile the program & upload it to Arduino Uno board.
4.Verify the output.

Result:

6. Interface OLED with Arduino and write a program to print temperature and humidity
readings on it.

AIM: To Interface OLED & DHT-11 sensor with Arduino and write a program to print

temperature and humidity readings on it

Components Required: Arduino Uno, DHT-11 Sensor, OLED screen, Bread board, Jumper
Wires.

Circuit Diagram:

CODE:

#include <Wire.h>

#include <Adafruit_ GFX.h>
#include <Adafruit_SH1106.h>
#include <Adafruit_Sensor.h>

#include "DHT.h"

#define SCREEN_WIDTH 128 // OLED display width, in pixels
#define SCREEN_HEIGHT 64 // OLED display height, in pixels

#define OLED _RESET 1
Adafruit_ SH1106 display(OLED_RESET);

#define DHTPIN 2 // Digital pin connected to the DHT sensor

/' Uncomment the type of sensor in use:

#define DHTTYPE DHT11 //DHT 11

/[#define DHTTYPE DHT22 // DHT 22 (AM2302)
[[#define DHTTYPE DHT21 //DHT 21 (AM2301)

DHT dht(DHTPIN, DHTTYPE);

void setup() {
Serial.begin(9600);
dht.begin();
display.begin(SH1106_SWITCHCAPVCC, 0x3C);

delay(2000);

display.clearDisplay();

display.setTextColor(WHITE);
¥

void loop() {
delay(5000);

/lread temperature and humidity
float t = dht.readTemperature();
float h = dht.readHumidity();
if (isnan(h) || isnan(t)) {
Serial.printIn("Failed to read from DHT sensor!");

}

/[clear display
display.clearDisplay();

/I display temperature
display.setTextSize(1);
display.setCursor(0,0);
display.print(*Temperature: ");
display.setTextSize(2);
display.setCursor(0,10);
display.print(t);

display.print(* *);
display.setTextSize(1);
display.cp437(true);

display.write(167);
display.setTextSize(2);
display.print("C");

/I display humidity
display.setTextSize(1);
display.setCursor(0, 35);
display.print("Humidity: ");
display.setTextSize(2);
display.setCursor(0, 45);
display.print(h);
display.print(" %");

display.display();
}

Procedure:

1.Make the connections as per the circuit diagram
2.0pen Arduino IDE software & type the program.
3.Add required libraries to Arduino Ide

4. Compile & upload the program to Arduino Uno
5.Verify the output.

Result:

EXP .NO. 7. To interface Servo motor with Raspberry Pi and write a program to run
motor 180° in 10 steps and turning back to 90° for 2 seconds and Turning

back to 0 degrees.

AIM : To understand the Raspberry Pi , Servo Motor Interface and how to control a simple

Servo Motor using Raspberry Pi.

Components Required: Servo Motor ,Raspberry pi ,Jumper wires

Circuit:

Raspberry Pi Servo Motor Control

%ﬂ v

2022/4/30 15:24

CODE:

Import libraries

import RPi.GPIO as GP1O

import time

Set GPIO numbering mode
GPI10O.setmode(GPIO.BOARD)

Set pin 11 as an output, and set servol as pin 11 as PWM
GPIO.setup(11,GPI0.0OUT)

servol = GP10.PWM(11,50) # Note 11 is pin, 50 = 50Hz pulse
#start PWM running, but with value of 0 (pulse off)
servol.start(0)

print ("Waiting for 2 seconds")

time.sleep(2)

#Let's move the servo!

print ("Rotating 180 degrees in 10 steps™)

Define variable duty

duty =2
Loop for duty values from 2 to 12 (0 to 180 degrees)
while duty <= 12:
servol.ChangeDutyCycle(duty)
time.sleep(1)
duty =duty + 1
Wait a couple of seconds
time.sleep(2)
Turn back to 90 degrees
print ("Turning back to 90 degrees for 2 seconds™)
servol.ChangeDutyCycle(7)
time.sleep(2)
#turn back to O degrees
print ("Turning back to 0 degrees")
servol.ChangeDutyCycle(2)
time.sleep(0.5)
servol.ChangeDutyCycle(0)
#Clean things up at the end
servol.stop()
GPIO.cleanup()

Procedure :

1. Make the connections as per the circuit diagram

2. Connect Raspberry pi board to computer monitor & switch on supply.

3. After giving supply, Raspbian OS home screen will open on monitor.

4. Click on Raspberry icon select programming option & click on python Ide.

5. New window will open, type program & click on save & Run the program.

6. If there are no errors program will execute directly otherwise errors will display on

the screen.

7. Observe the output .

RESULT :

EXP .NO. 8. Write a program for weather monitoring station and handling
temperature & humidity values on cloud platform

AIM : To Write a program for weather monitoring station and handling temperature &
humidity values on cloud platform

Resources Required: Proteus software, Computer

Circuit diagram:

— | ™
===z : ®;:
- S == - = -8
I [I
~| zszzzzss RE[f 2 @
1-- nI-I‘-I-JEjﬂ_' . g
= "g
=%
| BEEREEED Te
R i
22332828 EEEIEE = B
L P 3 >
|essazazee &2 11, E | &
TR Al =S|
i g a4 =
2
S
Lo]
=
oo
5

CODE:

Modules

from goto import *

import time

import var

import pio

import resource

import spidev

import RPi.GPIO as GPIO
import urllib.request
import requests

import smbus

from ctypes import ¢_short

Peripheral Configuration Code (do not edit)
#---CONFIG_BEGIN---

import cpu

import FileStore

import VFP

import Ports

def peripheral_setup () :

Peripheral Constructors
pio.cpu=cpu.CPU ()
pio.storage=FileStore.FileStore ()
pio.server=VFP.VfpServer ()
pio.uart=Ports.UART ()
pio.storage.begin ()
pio.server.begin (0)

Install interrupt handlers

def peripheral _loop () :
pass

#---CONFIG_END---

Open SPI bus
spi = spidev.SpiDev()
spi.open(0,0)

Define GPIO to LCD mapping
LCD RS=4

LCD E =17

LCD _D4=18

LCD_D5 =27

LCD_D6 =22
LCD_D7=23
Relay_pin=24
Rain_sensor = 25

Define sensor channels
temp_channel =0
Moisture_channel =1

define pin for lcd

Timing constants
E_PULSE = 0.0005
E_DELAY =0.0005
delay =1

GPIO.setup(LCD_E, GPIO.OUT) #E
GPIO.setup(LCD_RS, GPIO.OUT) # RS
GPI0.setup(LCD_D4, GP10.0UT) # DB4
GPI10.setup(LCD_D5, GP10.OUT) # DB5
GPI10.setup(LCD_D6, GP10.0OUT) # DB6
GPIO.setup(LCD_D7, GPIO.OUT) # DB7
GPIO.setup(Relay_pin, GPIO.OUT) # Motor_1
GPIO.setup(Rain_sensor, GPIO.IN)

Define some device constants

LCD_WIDTH =16 # Maximum characters per line
LCD_CHR = True

LCD_CMD = False

LCD_LINE_1=0x80# LCD RAM address for the 1st line
LCD_LINE_2 =0xCO0 # LCD RAM address for the 2nd line

Function Name :lcd_init()
Function Description : this function is used to initialized Icd by sending the different
commands
def lcd_init():
Initialise display
Icd_byte(0x33,LCD_CMD) # 110011 Initialise
Icd_byte(0x32,LCD_CMD) # 110010 Initialise
Icd_byte(0x06,LCD_CMD) # 000110 Cursor move direction
Icd_byte(0OxOC,LCD_CMD) # 001100 Display On,Cursor Off, Blink Off
Icd_byte(0x28,LCD_CMD) # 101000 Data length, number of lines, font size
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
time.sleep(E_DELAY)
Function Name :lcd_byte(bits ,mode)
Fuction Name :the main purpose of this function to convert the byte data into bit and send to
Icd port
def lcd_byte(bits, mode):
Send byte to data pins
bits = data
mode = True for character
False for command

GPIO.output(LCD_RS, mode) # RS

High bits

GPIO.output(LCD_D4, False)
GPIO.output(LCD_D5, False)
GPIO.output(LCD_D6, False)

GPIO.output(LCD_D7, False)
if bits&0x10==0x10:
GPIO.output(LCD_D4, True)
if bits&0x20==0x20:
GPIO.output(LCD_D5, True)
if bits&0x40==0x40:
GPIO.output(LCD_D6, True)
if bits&0x80==0x80:
GPIO.output(LCD_D7, True)

Toggle 'Enable’ pin
Icd_toggle_enable()

Low bits
GPIO.output(LCD_D4, False)
GPIO.output(LCD_D5, False)
GPIO.output(LCD_D6, False)
GPIO.output(LCD_D7, False)
if bits&0x01==0x01:
GPIO.output(LCD_D4, True)
if bits&0x02==0x02:
GPIO.output(LCD_D5, True)
if bits&0x04==0x04:
GPIO.output(LCD_D6, True)
if bits&0x08==0x08:
GPIO.output(LCD_D7, True)

Toggle 'Enable’ pin
Icd_toggle_enable()
Function Name : Icd_toggle_enable()
Function Description:basically this is used to toggle Enable pin
def Icd_toggle_enable():
Toggle enable
time.sleep(E_DELAY)
GPIO.output(LCD_E, True)
time.sleep(E_PULSE)
GPIO.output(LCD_E, False)
time.sleep(E_DELAY)
Function Name :lcd_string(message,line)
Function Description :print the data on lcd
def lcd_string(message, line):
Send string to display

message = message.ljust(LCD_WIDTH," ")
Icd_byte(line, LCD_CMD)

for i in range(LCD_WIDTH):
Icd_byte(ord(message[i]),LCD_CHR)

Function to read SPI data from MCP3008 chip
Channel must be an integer 0-7
def ReadChannel(channel):

adc = spi.xfer2([1,(8+channel)<<4,0])

data = ((adc[1]&3) << 8) + adc[2]

return data

Function to calculate temperature from
TMP36 data, rounded to specified

number of decimal places.

def ConvertTemp(data,places):

ADC Value

(approx) Temp Volts
0 -50 0.00

78 -25 0.25

155 0 0.50
#233 25 0.75

310 50 1.00

465 100 1.50

775 200 2.50
#1023 280 3.30

temp = ((data * 330)/float(1023))
temp = round(temp,places)
return temp

def thingspeak _post(temp,moisture_level,pressure,rain_data):
URI="https://api.thingspeak.com/update?api_key="'
#Enter Your Private Key here
KEY=TTVU38XV7HU2I6GR'

HEADER='&field1={}&field2={}&field3={}&field4={}".format(temp,moisture_level,pressu
re,rain_data)

NEW_URL=URI+KEY+HEADER

print(NEW_URL)

data=urllib.request.urlopen(NEW_URL)

print(data)

DEVICE = 0x77 # Default device 12C address

#bus = smbus.SMBus(0) # Rev 1 Pi uses 0
bus = smbus.SMBus(1) # Rev 2 Pi uses 1

def convertToString(data):
Simple function to convert binary data into
#astring
return str((data[1] + (256 * data[0])) / 1.2)

def getShort(data, index):
return two bytes from data as a signed 16-bit value
return c¢_short((data[index] << 8) + data[index + 1]).value

def getUshort(data, index):
return two bytes from data as an unsigned 16-bit value
return (data[index] << 8) + data[index + 1]

def readBmp180Id(addr=DEVICE):
Chip ID Register Address
REG_ID =0xDO
(chip_id, chip_version) = bus.read_i2c_block data(addr, REG_ID, 2)
return (chip_id, chip_version)

def readBmp180(addr=DEVICE):
Register Addresses
REG_CALIB =0xAA
REG_MEAS =0xF4
REG_MSB =0xF6
REG_LSB =0xF7
Control Register Address
CRV_TEMP =0x2E
CRV_PRES =0x34
Oversample setting
OVERSAMPLE=3 #0-3

Read calibration data
Read calibration data from EEPROM
cal = bus.read_i2c_block _data(addr, REG_CALIB, 22)

Convert byte data to word values
AC1 = getShort(cal, 0)
AC2 = getShort(cal, 2)
AC3 = getShort(cal, 4)
AC4 = getUshort(cal, 6)
AC5 = getUshort(cal, 8)
AC6 = getUshort(cal, 10)
B1 = getShort(cal, 12)
B2 = getShort(cal, 14)
MB = getShort(cal, 16)
MC = getShort(cal, 18)
MD = getShort(cal, 20)

Read temperature

bus.write_byte data(addr, REG_MEAS, CRV_TEMP)
time.sleep(0.005)

(msb, Isb) = bus.read_i2c_block_data(addr, REG_MSB, 2)
UT = (msb << 8) +Isb

Read pressure

bus.write_byte data(addr, REG_MEAS, CRV_PRES + (OVERSAMPLE << 6))
time.sleep(0.04)

(msb, Isb, xsb) = bus.read_i2c_block_data(addr, REG_MSB, 3)

UP = ((msb << 16) + (Isb << 8) + xsbh) >> (8 - OVERSAMPLE)

Refine temperature
X1=((UT-AC6) * AC5) >> 15
X2 =(MC << 11)/ (X1 + MD)

B5 = X1+ X2
#temperature = int(B5 + 8) >> 4

Refine pressure

B6 = B5 - 4000

B62 = int(B6 * B6) >> 12

X1 = (B2 * B62) >> 11

X2 =int(AC2 * B6) >> 11

X3 = X1+ X2

B3 = (((AC1 * 4 + X3) << OVERSAMPLE) + 2) >> 2

X1 = int(AC3 * B6) >> 13

X2 = (B1 * B62) >> 16

X3 = ((X1 + X2) +2) >>2

B4 = (AC4 * (X3 + 32768)) >> 15

B7 = (UP - B3) * (50000 >> OVERSAMPLE)

P=(B7*2)/B4

X1 = (int(P) >> 8) * (int(P) >> 8)

X1 = (X1*3038) >>16

X2 = int(-7357 * P) >> 16

pressure = int(P + ((X1 + X2 + 3791) >> 4))

return (pressure/100.0)

Define delay between readings

delay =5

Icd_init()

Icd_string("welcome ",LCD_LINE_1)
time.sleep(1)

Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Weather Monitoring ",LCD_LINE_1)
Icd_string("System ",LCD_LINE_2)

time.sleep(1)

Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Main function

def main () :

Setup

peripheral_setup()

peripheral _loop()

#Motor Status

motor_status =0

Infinite loop

while 1 :

temp_level = ReadChannel(temp_channel)
temp = ConvertTemp(temp_level,2)

Print out results

Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Temperature ",LCD_LINE_1)
Icd_string(str(temp),LCD_LINE_2)

time.sleep(0.1)

moisture_level = ReadChannel(Moisture_channel)
Print out results

Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Moisture Level ",LCD_LINE_1)
Icd_string(str(moisture_level),LCD_LINE_2)
time.sleep(0.1)

#Rain Sesnor Data
rain_data = GPIO.input(Rain_sensor)

#Pressure Sensor Data

(chip_id, chip_version) = readBmp1801d()
pressure=readBmp180()
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Pressure Value ",LCD_LINE_1)
Icd_string(str(pressure),LCD_LINE_2)
time.sleep(0.1)

#Send data on thing speak server
thingspeak_post(temp,moisture_level,pressure,rain_data)
Procedure:
1.0pen Proteus software & design the circuit as per the circuit diagram.
2.Type the program on source code & add all required libraries.

3. Create account on www.thingsspeak.com , create one new channel & enter data as per
circuit.

4.Simulate the circuit & verify the output.

Result:

http://www.thingsspeak.com/

EXP .NO. 9. Design of digital dc voltmeter and ammeter using Arduino uno.

AIM : To design of digital dc voltmeter and ammeter using Arduino uno.

Resources Required: Proteus software,Computer

Circuit:
=10 ARD1
0 ©
R1 5
5 h
-
1 T
T BAT1 " o=
oV | | .8 ~
u ug,
8 ag
U1 5 . 9%
B E B
L vee m 3 a3
ViouT ——] LL]
) FILTER " fwz| -
IP- GND | I l'a-
| » nd|-
ACST1ZELCTR-05B-T] u §'
u L}
B B8
L 3
- ARDUING UNOD
i
CODE:

/I Variables for Measured Voltage and Calculated Current
double Vout = 0;
double Current = 0;

/I Constants for Scale Factor
/I Use one that matches your version of ACS712

const double scale_factor = 0.185; // 5A
/lconst double scale_factor = 0.1; // 20A
/lconst double scale factor = 0.066; // 30A

/I Constants for A/D converter resolution

/I Arduino has 10-bit ADC, so 1024 possible values

/I Reference voltage is 5V if not using AREF external reference
Il Zero point is half of Reference Voltage

TXD

RTS

CcTs

const double vRef = 5.00;

const double resConvert = 1024;
double resADC = vRef/resConvert;
double zeroPoint = vRef/2;

void setup(){
Serial.begin(9600);
}

void loop(){

/' Vout is read 1000 Times for precision
for(inti =0;1<1000; i++) {
Vout = (Vout + (resADC * analogRead(A0)));
delay(1);
}

/I Get Vout in mv
Vout = Vout /1000;

/I Convert Vout into Current using Scale Factor
Current = (Vout - zeroPoint)/ scale_factor;

/1 Print Vout and Current to two Current =");

Serial.print("Vout = ");
Serial.print(Vout,2);
Serial.print(" Volts");
Serial.print("\t Current =");
Serial.print(Current,2);
Serial.printin(" Amps");

delay(1000);
}

Procedure:

1.0pen Proteus software & design the circuit.
2.0pen Arduino IDE & type the program.
3.Compile & upload the program in to Proteus.

4.Simulate the circuit & verify the output.

RESULT :

EXP .NO. 10. Design home automation using Raspberry Pi

AIM : To design home automation using Raspberry Pi .
Resources Required: Proteus software, Computer

Circuit:

—)
—0 m

g 8 EE

= }naJ19 ue4 10suag ainjeidwa) HNAIJ 10410] ¥aT
o|nPo Oav . T

ﬂ, EI0ID - - W
el AT = 7]
4] -

438 [HI O——4
(o)
HIZZIA KD ﬁ HEITH ey O—
aHa — LY
i

1non
] S P n n
FHD |——
d V1d s20I HOT HHOL ?
LHa7
" 50N G—— i I
e i O—p— ok _Hm eno | -

[5A+lin —
(Whem

A 4 Ty

_ FRSR0ID L
1005 Q——— 130 1dSI0ID IVOSROID Vs

53 | B0 IdS901d3 E
o T NONI0D ODHSIONS [b
oSN = OSINEOID OUXLFIOID | L

_
|
|
|
|
| O O IS0NGI0IdE
2 _u _ 12019 |-=——0) 120149
|
|
|
_
|
|
|

IS EENSYE
B

0l Clle INID 0IISI0ET HOID 0 ®01d2
FEONES Q——— TNID OIWE0NED (20N ——{) Poids

Z0IdD I wEg ooRmoIE 101D | B
70169 7] E9 0IOTI0NS 9I0IdS [B2
Z0IE T 9 0IOUI0NS £I0IdS [B2

L0l 04 INFD OISDRI0ED ZI0IdD nm|o ZL0Id9
0189 O 39 OIS0 801dD) —) 50149
FOIED O|._ 2D DINOIED SIS ———) 50145

O30
+ad

ZhO D (O

HOSN3S VO 20N ils) Id htmn_n_mmm

LSV

CODE:

import spidev

import time

import RPi.GPIO as GPIO
import pio

import Ports

GPI10.setmode(GPIO.BOARD)
GPIO.setwarnings(False)

pio.uart=Ports.UART () # Define serial port

Open SPI bus
spi = spidev.SpiDev()
spi.open(0,0)

Define GPIO to LCD mapping
LCD RS=7

LCD_E =11
LCD_D4=12

LCD D5 =13

LCD_D6 =15

LCD D7 =16

bulb_pin = 32
motor_pin = 18

pir_pin = 31

gas_pin =29

buzzer_pin =33

Define sensor channels
Idr_channel =0
temp_channel =1

define pin for lcd

Timing constants
E_PULSE = 0.0005
E_DELAY =0.0005
delay =1

GPI10.setup(LCD_E, GPIO.OUT) #E
GPI10.setup(LCD_RS, GPIO.OUT) # RS
GPI10.setup(LCD_D4, GP10.0OUT) # DB4
GPI10.setup(LCD_D5, GP1O.OUT) # DB5
GPI10.setup(LCD_D6, GP10.0OUT) # DB6
GPI0.setup(LCD_D7, GPIO.OUT) # DB7
GPIO.setup(bulb_pin, GPIO.OUT) # DB7

GPIO.setup(motor_pin, GP10.0UT) # DB7
GPIO.setup(buzzer_pin, GP10.0UT) # DB7
GPIO.setup(gas_pin, GPIO.IN) # DB7

GPIO.setup(pir_pin, GPIO.IN) # DB7

Define some device constants

LCD WIDTH =16 # Maximum characters per line
LCD_CHR = True

LCD_CMD = False

LCD_LINE_1 =0x80 # LCD RAM address for the 1st line
LCD_LINE_2 =0xCO0 # LCD RAM address for the 2nd line

Function Name :lcd_init()

Function Description : this function is used to initialized lcd by sending the different
commands

def lcd_init():
Initialise display
Icd_byte(0x33,LCD_CMD) # 110011 Initialise
Icd_byte(0x32,LCD_CMD) # 110010 Initialise
Icd_byte(0x06,LCD_CMD) # 000110 Cursor move direction
Icd_byte(0OxOC,LCD_CMD) # 001100 Display On,Cursor Off, Blink Off
Icd_byte(0x28,LCD_CMD) # 101000 Data length, number of lines, font size
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
time.sleep(E_DELAY)
Function Name :lcd_byte(bits ,mode)
Fuction Name :the main purpose of this function to convert the byte data into bit and send to
Icd port
def Icd_byte(bits, mode):
Send byte to data pins
bits = data
mode = True for character
False for command

GPIO.output(LCD_RS, mode) # RS

High bits
GPIO.output(LCD_D4, False)
GPIO.output(LCD_D5, False)
GPIO.output(LCD_D6, False)
GPIO.output(LCD_D7, False)
if bits&0x10==0x10:

GPIO.output(LCD_D4, True)
if bits&0x20==0x20:

GPIO.output(LCD_D5, True)
if bits&0x40==0x40:

GPIO.output(LCD_D6, True)
if bits&0x80==0x80:

GPIO.output(LCD_D7, True)

Toggle 'Enable’ pin
Icd_toggle_enable()

Low bits
GPIO.output(LCD_D4, False)
GPIO.output(LCD_D5, False)
GPIO.output(LCD_D6, False)
GPIO.output(LCD_D7, False)
if bits&0x01==0x01.:
GPIO.output(LCD_D4, True)
if bits&0x02==0x02:
GPIO.output(LCD_D5, True)
if bits&0x04==0x04:
GPIO.output(LCD_D6, True)
if bits&0x08==0x08:
GPIO.output(LCD_D7, True)

Toggle 'Enable’ pin
Icd_toggle_enable()
Function Name : Icd_toggle_enable()
Function Description:basically this is used to toggle Enable pin
def Icd_toggle_enable():
Toggle enable
time.sleep(E_DELAY)
GPIO.output(LCD_E, True)
time.sleep(E_PULSE)
GPIO.output(LCD _E, False)
time.sleep(E_DELAY)
Function Name :lcd_string(message,line)
Function Description :print the data on lcd
def lcd_string(message, line):
Send string to display

message = message.ljust(LCD_WIDTH," ")
Icd_byte(line, LCD_CMD)

for i in range(LCD_WIDTH):

Icd_byte(ord(message[i]),LCD_CHR)

Function to read SPI data from MCP3008 chip
Channel must be an integer 0-7
def ReadChannel(channel):

adc = spi.xfer2([1,(8+channel)<<4,0])

data = ((adc[1]&3) << 8) + adc[2]

return data

Function to calculate temperature from
TMP36 data, rounded to specified

number of decimal places.

def ConvertTemp(data,places):

ADC Value

(approx) Temp Volts
0 -50 0.00

78 -25 0.25

155 0 0.50

233 25 0.75

310 50 1.00

465 100 1.50

775 200 2.50
#1023 280 3.30

temp = ((data * 330)/float(1023))
temp = round(temp,places)
return temp

Define delay between readings

delay =5

Icd_init()

Icd_string("welcome ",LCD_LINE_1)

time.sleep(1)

while 1:
gas_data = GPIO.input(gas_pin)
if(gas_data == True):
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Fire Detected",LCD_LINE_1)
Icd_string("Buzzer On",LCD_LINE_2)
GPIO.output(bulb_pin, False)
GPI10O.output(motor_pin, False)
GPI10O.output(buzzer_pin, True)
time.sleep(0.5)
while(1):

Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Sending Message”,LCD_LINE_1)
pio.uart.printin("AT")
pio.uart.printin("AT+CMGF=1")
pio.uart.printin(*AT+CMGS=\"+919922512017\"\r")
pio.uart.printin("Fire Detected")
pir_data = GPIO.input(pir_pin)
if(pir_data == True):
light_level = ReadChannel(ldr_channel)
time.sleep(0.2)
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Person Detected ",LCD_LINE_1)
time.sleep(0.5)
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Automatic Light and ",LCD_LINE_1)
Icd_string("Fan System Active ",LCD_LINE_2)
time.sleep(0.5)
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Light Intencsty ",LCD_LINE_1)
Icd_string(str(light_level),LCD_LINE_2)
time.sleep(0.5)
if(light_level <100):
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Bulb ON",LCD_LINE_2)
GPIO.output(bulb_pin, True)
time.sleep(0.5)
else:
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Bulb OFF",LCD_LINE_2)
GPIO.output(bulb_pin, False)
time.sleep(0.5)
Print out results
temp_level = ReadChannel(temp_channel)
time.sleep(0.5)
temperature = ConvertTemp(temp_level,2)
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Temperature ",LCD_LINE_1)
Icd_string(str(temperature),LCD_LINE_2)
time.sleep(0.5)
if(temperature > 30):
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Fan ON ",LCD_LINE_1)
GPIO.output(motor_pin, True)
time.sleep(0.5)
else:
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Fan Off ",LCD_LINE_1)
GPIO.output(motor_pin, False)

time.sleep(0.5)

else:
Icd_byte(0x01,LCD_CMD) # 000001 Clear display
Icd_string("Person Not Detected",LCD_LINE_1)
GPIO.output(motor_pin, False)
GPIO.output(bulb_pin, False)
time.sleep(0.5)

Procedure:

1.0pen Proteus software & design the circuit.
2.0n Source code type the program.

3.Add all required libraries

4.Simulate the circuit & verify the output.

RESULT :

