

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

1

Lab Code: 20EC605/JO2-B

ARTIFICIAL INTELLIGENCE
 Lab Manual

DDeeppaarrttmmeenntt ooff EElleeccttrroonniiccss && CCoommmmuunniiccaattiioonn EEnnggiinneeeerriinngg

BBaappaattllaa EEnnggiinneeeerriinngg CCoolllleeggee :::: BBaappaattllaa

((AAuuttoonnoommoouuss))
G.B.C. Road, Mahatmajipuram, Bapatla-522102, Guntur (Dist.)

Andhra Pradesh, India.
EE--MMaaiill::bbeecc..pprriinncciippaall@@bbeeccbbaappaattllaa..aacc..iinn

WWeebb::www.becbapatla.ac.in

mailto:info@gcet.edu.in
mailto:info@gcet.edu.in

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

2

Contents

S.No. Title of the Experiment

1. Python program to implement Breadth First Search Traversal.

2. Python program to implement Water Jug Problem.

3. Python program to remove punctuations from the given string.

4. Python program to sort the sentence in alphabetical order.

5. Python program to implement Hangman game.

6. Python program to implement Tic-Tac-Toe game.

7. Python program to remove stop words for a given passage from a
text file using NLTK.

8. Python program to implement stemming for a given sentence using
NLTK.

9. Python program to implement Lemmatization using NLTK.

10. Python program to for Text Classification for the given sentence
using NLTK.

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

3

Bapatla Engineering College :: Bapatla
(Autonomous)

Vision

 To build centers of excellence, impart high quality

education and instill high standards of ethics and

professionalism through strategic efforts of our dedicated staff,

which allows the college to effectively adapt to the ever

changing aspects of education.

 To empower the faculty and students with the knowledge,

skills and innovative thinking to facilitate discovery in

numerous existing and yet to be discovered fields of

engineering, technology and interdisciplinary endeavors.

Mission

 Our Mission is to impart the quality education at par with

global standards to the students from all over India and in

particular those from the local and rural areas.

 We continuously try to maintain high standards so as to make

them technologically competent and ethically strong

individuals who shall be able to improve the quality of life and

economy of our country.

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

4

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Vision

To produce globally competitive and socially responsible

Electronics and Communication Engineering graduates to

cater the ever changing needs of the society.

Mission

 To provide quality education in the domain of Electronics

and Communication Engineering with advanced

pedagogical methods.

 To provide self learning capabilities to enhance

employability and entrepreneurial skills and to inculcate

human values and ethics to make learners sensitive

towards societal issues.

 To excel in the research and development activities

related to Electronics and Communication Engineering.

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

5

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Educational Objectives (PEO’s)

PEO-I: Equip Graduates with a robust foundation in mathematics,

science and Engineering Principles, enabling them to excel in

research and higher education in Electronics and Communication

Engineering and related fields.

PEO-II: Impart analytic and thinking skills in students to develop

initiatives and innovative ideas for Start-ups, Industry and societal

requirements.

PEO-III: Instill interpersonal skills, teamwork ability,

communication skills, leadership, and a sense of social, ethical, and

legal duties in order to promote lifelong learning and Professional

growth of the students.

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

6

Program Outcomes (PO’s)

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and

analyze complex engineering problems reaching substantiated conclusions using

first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex

engineering problems and design system components or processes that meet the

specified needs with appropriate consideration for the public health and safety,

and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based

knowledge and research methods including design of experiments, analysis and

interpretation of data, and synthesis of the information to provide valid

conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and modeling

to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

PO7.Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

PO9. Individual and Teamwork: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering

activities with the engineering community and with society at large, such as, being

able to comprehend and write effective reports and design documentation, make

effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and

understanding of the engineering and management principles and apply these to

one’s own work, as a member and leader in a team, to manage projects and in

multidisciplinary environments.

PO12. Life-long learning: Recognize the need for and have the preparation and

ability to engage in independent and life-long learning in the broadest context of

technological change.

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

7

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Specific Outcomes (PSO’s)

PSO1: Develop and implement modern Electronic Technologies

using analytical methods to meet current as well as future

industrial and societal needs.

PSO2: Analyze and develop VLSI, IoT and Embedded Systems for

desired specifications to solve real world complex problems.

PSO3: Apply machine learning and deep learning techniques in

communication and signal processing.

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

8

 Artificial Intelligence Lab

 III B.Tech. – VI Semester (Code: 20EC605/JO2-B)

Lectures 2 Tutorial 0 Practical 2 Credits 3

Continuous Internal Evaluation 30 Semester End Examination (3 Hours) 70

Prerequisites: None

Course Objectives: Students will be able to

 To Gain a historical perspective of AI and its foundations and to learn the

difference between optimal reasoning vs human like reasoning
 To understand the notions of state space representation, exhaustive

search, heuristic search along with the time and space complexities and

to understand basic principles of AI toward problem solving, inference,
perception, knowledge and learning.

 To learn different knowledge representation techniques and to explore
the current scope, potential, limitations, and implications of intelligent
systems and to explore the current scope, potential, limitations, and

implications of intelligent systems.
 To Investigate applications of AI techniques in intelligent agents, expert

systems, artificial neural networks and other machine learning models and to
understand the applications of AI: namely Game Playing, Theorem Proving,
Expert Systems

 Course Outcomes: After studying this course, the students will be able to

CO1
Demonstrate the ability to formulate an efficient problem space for a

problem.

CO2
Exhibit the ability to select a search algorithm for a problem and
characterize its time and space complexities.

CO3
Illustrate the skill of representing knowledge using the appropriate
technique.

CO4
Utilize AI techniques to solve problems in Game Playing and Expert
Systems.

Mapping of Course Outcomes with Program Outcomes & Program
Specific Outcomes

 PO’s PSO’s
CO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3

CO1 3 3 2
CO2 3 2 3 2
CO3 2 3 2 3 2
CO4 2 3 2 3 3 2
AVG 2.5 2.67 2 3 3 2

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

9

LIST OF LAB PROGRAMS

1. Python program to implement Breadth First Search Traversal.

2. Python program to implement Water Jug Problem.

3. Python program to remove punctuations from the given string.

4. Python program to sort the sentence in alphabetical order.

5. Python program to implement Hangman game.

6. Python program to implement Tic-Tac-Toe game.

7. Python program to remove stop words for a given passage from a
text file using NLTK.

8. Python program to implement stemming for a given sentence using
NLTK.

9. Python program to implement Lemmatization using NLTK.

10. Python program to for Text Classification for the given sentence
using NLTK.

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

10

1. BREADTH FIRST SEARCH TRAVERSAL

Aim:

To write a python program to implement Breadth First Search Traversal.

Software Required: IDLE (Python 3.11)

Source Code:

Now, we will see how the source code of the program for implementing

breadth first search in python.

Consider the following graph which is implemented in the code below:

graph = {

 '5' : ['3','7'],
 '3' : ['2', '4'],

 '7' : ['8'],
 '2' : [],
 '4' : ['8'],

 '8' : []
}

visited = [] # List for visited nodes.

queue = [] #Initialize a queue

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

11

def bfs(visited, graph, node): #function for BFS

 visited.append(node)

 queue.append(node)

 while queue: # Creating loop to visit each node

 m = queue.pop(0)

 print (m, end = " ")

 for neighbour in graph[m]:

 if neighbour not in visited:

 visited.append(neighbour)

 queue.append(neighbour)

Driver Code

print("Following is the Breadth-First Search")

bfs(visited, graph, '5') # function calling

Output:

Following is the Breadth-First Search

5 3 7 2 4 8

=== Code Execution Successful ===

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

12

2. WATER JUG PROBLEM

Aim:

To write a python program to implement Water Jug Problem.

Software Required: IDLE (Python 3.11)

Source Code:

This function is used to initialize the
dictionary elements with a default value.

from collections import defaultdict

jug1 and jug2 contain the value
for max capacity in respective jugs

and aim is the amount of water to be measured.

jug1, jug2, aim = 4, 3, 2

Initialize dictionary with

default value as false.

visited = defaultdict(lambda: False)

Recursive function which prints the
intermediate steps to reach the final

solution and return boolean value
(True if solution is possible, otherwise False).

amt1 and amt2 are the amount of water present
in both jugs at a certain point of time.

def waterJugSolver(amt1, amt2):

 # Checks for our goal and
 # returns true if achieved.

 if (amt1 == aim and amt2 == 0) or (amt2 == aim and amt1 == 0):
 print(amt1, amt2)
 return True

 # Checks if we have already visited the

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

13

 # combination or not. If not, then it proceeds further.

 if visited[(amt1, amt2)] == False:
 print(amt1, amt2)

 # Changes the boolean value of
 # the combination as it is visited.

 visited[(amt1, amt2)] = True

 # Check for all the 6 possibilities and
 # see if a solution is found in any one of them.

 return (waterJugSolver(0, amt2) or
 waterJugSolver(amt1, 0) or

 waterJugSolver(jug1, amt2) or
 waterJugSolver(amt1, jug2) or

 waterJugSolver(amt1 + min(amt2, (jug1-amt1)),
 amt2 - min(amt2, (jug1-amt1))) or
 waterJugSolver(amt1 - min(amt1, (jug2-amt2)),

 amt2 + min(amt1, (jug2-amt2))))

 # Return False if the combination is

 # already visited to avoid repetition otherwise
 # recursion will enter an infinite loop.

 else:
 return False

print("Steps: ")

Call the function and pass the
initial amount of water present in both jugs.

waterJugSolver(0, 0)

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

14

Output:

Steps:

0 0

4 0

4 3

0 3

3 0

3 3

4 2

0 2

=== Code Execution Successful ===

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

15

3. REMOVE PUNCTUATIONS FROM THE GIVEN STRING

Aim:

To write a python program to remove punctuations from the given string.

Software Required: IDLE (Python 3.11)

Source Code:

define punctuation

 punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~'''

#my_str = "Hello!!!, he said ---and went."

To take input from the user

my_str = input("Enter a string: ")

remove punctuation from the string

no_punct = ""

for char in my_str:

 if char not in punctuations:

 no_punct = no_punct + char

display the unpunctuated string

print(no_punct)

Output:

Enter a string: Hello!!!, he said ---and went.

Hello he said and went

=== Code Execution Successful ===

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

16

4. SORT THE SENTENCE IN ALPHABETICAL ORDER

Aim:

To write a python program to sort the sentence in alphabetical order.

Software Required: IDLE (Python 3.11)

Source Code:

The following code sorts words in alphabetical order

Taking user input

sentence = input("Enter a sentence: ")

Splitting the sentence into words

words = sentence.split()

Sorting the words

words.sort()

Printing the sorted words

print("The sorted words are:")

for word in words:

 print(word)

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

17

Output:

Enter a sentence: I am studying in Bapatla Engineering College

The sorted words are:

Bapatla

College

Engineering

I

am

in

studying

=== Code Execution Successful ===

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

18

5. HANGMAN GAME

Aim:

To write a python program to implement Hangman game.

Software Required: IDLE (Python 3.11)

Source Code:

#importing the time module

import time

#welcoming the user

name = input("What is your name? ")

print ("Hello, " + name, "Time to play hangman!")

#wait for 1 second

time.sleep(1)

print ("Start guessing...")

time.sleep(0.5)

#here we set the secret. You can select any word to play with.

word = ("secret")

#creates an variable with an empty value

guesses = ''

#determine the number of turns

turns = 10

Create a while loop

#check if the turns are more than zero

while turns > 0:

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

19

 # make a counter that starts with zero

 failed = 0

 # for every character in secret_word

 for char in word:

 # see if the character is in the players guess

 if char in guesses:

 # print then out the character

 print (char,end=""),

 else:

 # if not found, print a dash

 print ("_",end=""),

 # and increase the failed counter with one

 failed += 1

 # if failed is equal to zero

 # print You Won

 if failed == 0:

 print ("You won")

 # exit the script

 break

 # ask the user go guess a character

 guess = input("guess a character:")

 # set the players guess to guesses

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

20

 guesses += guess

 # if the guess is not found in the secret word

 if guess not in word:

 # turns counter decreases with 1 (now 9)

 turns -= 1

 # print wrong

 print ("Wrong")

 # how many turns are left

 print ("You have", + turns, 'more guesses')

 # if the turns are equal to zero

 if turns == 0:

 # print "You Lose"

 print ("You Lose")

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

21

Output:

What is your name? sumanth

Hello, sumanth Time to play hangman!

Start guessing...

______guess a character:h

Wrong

You have 9 more guesses

______guess a character:e

_e__e_guess a character:s

se__e_guess a character:c

sec_e_guess a character:r

secre_guess a character:t

secret You won

=== Code Execution Successful ===

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

22

6. TIC-TAC-TOE GAME

Aim:

To write a python program to implement Tic-Tac-Toe game.

Software Required: IDLE (Python 3.11)

Source Code:

Tic-Tac-Toe Program using random number in Python

importing all necessary libraries

import numpy as np

import random

from time import sleep

Creates an empty board

def create_board():

 return(np.array([[0, 0, 0],

 [0, 0, 0],

 [0, 0, 0]]))

Check for empty places on board

def possibilities(board):

 l = []

 for i in range(len(board)):

 for j in range(len(board)):

 if board[i][j] == 0:

 l.append((i, j))

 return(l)

Select a random place for the player

def random_place(board, player):

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

23

 selection = possibilities(board)

 current_loc = random.choice(selection)

 board[current_loc] = player

 return(board)

Checks whether the player has three

of their marks in a horizontal row

def row_win(board, player):

 for x in range(len(board)):

 win = True

 for y in range(len(board)):

 if board[x, y] != player:

 win = False

 continue

 if win == True:

 return(win)

 return(win)

Checks whether the player has three

of their marks in a vertical row

def col_win(board, player):

 for x in range(len(board)):

 win = True

 for y in range(len(board)):

 if board[y][x] != player:

 win = False

 continue

 if win == True:

 return(win)

 return(win)

Checks whether the player has three

of their marks in a diagonal row

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

24

def diag_win(board, player):

 win = True

 y = 0

 for x in range(len(board)):

 if board[x, x] != player:

 win = False

 if win:

 return win

 win = True

 if win:

 for x in range(len(board)):

 y = len(board) - 1 - x

 if board[x, y] != player:

 win = False

 return win

Evaluates whether there is

a winner or a tie

def evaluate(board):

 winner = 0

 for player in [1, 2]:

 if (row_win(board, player) or

 col_win(board, player) or

 diag_win(board, player)):

 winner = player

 if np.all(board != 0) and winner == 0:

 winner = -1

 return winner

Main function to start the game

def play_game():

 board, winner, counter = create_board(), 0, 1

 print(board)

 sleep(2)

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

25

 while winner == 0:

 for player in [1, 2]:

 board = random_place(board, player)

 print("Board after " + str(counter) + " move")

 print(board)

 sleep(2)

 counter += 1

 winner = evaluate(board)

 if winner != 0:

 break

 return(winner)

Driver Code

print("Winner is: " + str(play_game()))

Output:

 [[0 0 0]

 [0 0 0]

 [0 0 0]]

Board after 1 move

[[0 0 0]

 [0 0 0]

 [1 0 0]]

Board after 2 move

[[0 0 0]

 [0 2 0]

 [1 0 0]]

Board after 3 move

[[0 1 0]

 [0 2 0]

 [1 0 0]]

Board after 4 move

[[0 1 0]

 [2 2 0]

 [1 0 0]]

Board after 5 move

[[1 1 0]

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

26

 [2 2 0]

 [1 0 0]]

Board after 6 move

[[1 1 0]

 [2 2 0]

 [1 2 0]]

Board after 7 move

[[1 1 0]

 [2 2 0]

 [1 2 1]]

Board after 8 move

[[1 1 0]

 [2 2 2]

 [1 2 1]]

Winner is: 2

=== Code Execution Successful ===

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

27

7. REMOVE STOP WORDS FOR A GIVEN PASSAGE

FROM A TEXT FILE USING NLTK

Aim:

To write a python program to remove stop words for a given passage from a

text file using NLTK.

Software Required: IDLE (Python 3.11)

Source Code:

import nltk

from nltk.corpus import stopwords

nltk.download('stopwords')

def remove_stop_words(string):

 stop_words = set(stopwords.words('english'))

 words = string.split()

 filtered_words = [word for word in words if word.lower() not in

stop_words]

 new_string = ' '.join(filtered_words)

 return new_string

Example usage

input_string = "This is an example sentence to remove stop words from."

result = remove_stop_words(input_string)

print("Original string:", input_string)

print("Modified string:", result)

Output:

Original string: This is an example sentence to remove stop words from.

Modified string: example sentence remove stop words from.

=== Code Execution Successful ===

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

28

8. STEMMING FOR A GIVEN SENTENCE USING NLTK

Aim:

To write a python program to implement stemming for a given sentence

using NLTK.

Software Required: IDLE (Python 3.11)

Source Code:

import these modules

from nltk.stem import PorterStemmer

from nltk.tokenize import word_tokenize

ps = PorterStemmer()

choose some words to be stemmed

words = ["program", "programs", "programmer", "programming",

"programmers"]

for w in words:

 print(w, " : ", ps.stem(w))

Output:

program : program

programs : program

programmer : programm

programming : program

programmers : program

=== Code Execution Successful ===

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

29

9. LEMMATIZATION USING NLTK

Aim:

To write a python program to implement Lemmatization using NLTK.

Software Required: IDLE (Python 3.11)

Source Code:

import these modules

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

print("rocks :", lemmatizer.lemmatize("rocks"))

print("corpora :", lemmatizer.lemmatize("corpora"))

a denotes adjective in "pos"

print("better :", lemmatizer.lemmatize("better", pos="a"))

Output:

rocks : rock

corpora : corpus

better : good

=== Code Execution Successful ===

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

30

10. TEXT CLASSIFICATION FOR THE GIVEN

SENTENCE USING NLTK.

Aim:

To write a python program for Text Classification for the given sentence

using NLTK.

Software Required: IDLE (Python 3.11)

Source Code:

import nltk

import random

Import the movie_reviews corpus

from nltk.corpus import movie_reviews

Download necessary resources

nltk.download('movie_reviews')

Load the movie reviews dataset

documents = [(list(movie_reviews.words(fileid)), category)

 for category in movie_reviews.categories()

 for fileid in movie_reviews.fileids(category)]

random.shuffle(documents)

Create a list of all words in the dataset

all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())

Select the top 2000 words as features

word_features = list(all_words)[:2000]

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

31

def document_features(document):

 """Extract features from a document."""

 document_words = set(document)

 features = {}

 for word in word_features:

 features[f'contains({word})'] = (word in document_words)

 return features

Create feature sets

featuresets = [(document_features(doc), category) for (doc, category) in

documents]

Split data into training and testing sets

train_set, test_set = featuresets[1000:], featuresets[:1000]

Train a Naive Bayes classifier

classifier = nltk.NaiveBayesClassifier.train(train_set)

Evaluate the classifier

print(f'Accuracy: {nltk.classify.accuracy(classifier, test_set)}')

classifier.show_most_informative_features(10)

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

32

Output:

[nltk_data] Downloading package movie_reviews to /root/nltk_data...

[nltk_data] Package movie_reviews is already up-to-date!

Accuracy: 0.816

Most Informative Features

contains(outstanding) = True pos : neg = 15.6 : 1.0

contains(damon) = True pos : neg = 11.9 : 1.0

contains(wonderfully) = True pos : neg = 7.1 : 1.0

contains(remake) = True neg : pos = 7.1 : 1.0

contains(seagal) = True neg : pos = 6.9 : 1.0

contains(poorly) = True neg : pos = 6.4 : 1.0

contains(awful) = True neg : pos = 6.0 : 1.0

contains(era) = True pos : neg = 5.8 : 1.0

contains(wasted) = True neg : pos = 5.7 : 1.0

contains(portrayal) = True pos : neg = 5.5 : 1.0

=== Code Execution Successful ===

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

33

Appendix

Installing NLTK Data

NLTK comes with many corpora, toy grammars, trained models, etc. A

complete list is posted at: https://www.nltk.org/nltk_data/

To install the data, first install NLTK (see

https://www.nltk.org/install.html), then use NLTK’s data downloader as

described below.

Apart from individual data packages, you can download the entire

collection (using “all”), or just the data required for the examples and

exercises in the book (using “book”), or just the corpora and no grammars

or trained models (using “all-corpora”).

Interactive installer

For central installation on a multi-user machine, do the following from an

administrator account.

Run the Python interpreter and type the commands:

>>> import nltk

>>> nltk.download()

A new window should open, showing the NLTK Downloader. Click on the

File menu and select Change Download Directory. For central installation,

set this to C:\nltk_data (Windows), /usr/local/share/nltk_data (Mac), or

/usr/share/nltk_data (Unix). Next, select the packages or collections you

want to download.

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

34

If you did not install the data to one of the above central locations, you will

need to set the NLTK_DATA environment variable to specify the location of

the data. (On a Windows machine, right click on “My Computer” then select

Properties > Advanced > Environment Variables > User Variables > New...)

Test that the data has been installed as follows. (This assumes you

downloaded the Brown Corpus):

>>> from nltk.corpus import brown

>>> brown.words()

['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...]

Installing via a proxy web server

If your web connection uses a proxy server, you should specify the proxy

address as follows. In the case of an authenticating proxy, specify a

username and password. If the proxy is set to None then this function will

attempt to detect the system proxy.

>>> nltk.set_proxy('http://proxy.example.com:3128', ('USERNAME',

'PASSWORD'))

>>> nltk.download()

Command line installation

The downloader will search for an existing nltk_data directory to install

NLTK data. If one does not exist it will attempt to create one in a central

location (when using an administrator account) or otherwise in the user’s

filespace. If necessary, run the download command from an administrator

account, or using sudo. The recommended system location is C:\nltk_data

(Windows); /usr/local/share/nltk_data (Mac); and /usr/share/nltk_data

(Unix). You can use the -d flag to specify a different location (but if you do

this, be sure to set the NLTK_DATA environment variable accordingly).

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

35

Run the command python -m nltk.downloader all. To ensure central

installation, run the command sudo python -m nltk.downloader -d

/usr/local/share/nltk_data all.

Windows: Use the “Run…” option on the Start menu. Windows Vista users

need to first turn on this option, using Start -> Properties -> Customize to

check the box to activate the “Run…” option.

Test the installation: Check that the user environment and privileges are

set correctly by logging in to a user account, starting the Python

interpreter, and accessing the Brown Corpus (see the previous section).

Manual installation

Create a folder nltk_data, e.g. C:\nltk_data, or /usr/local/share/nltk_data,

and subfolders chunkers, grammars, misc, sentiment, taggers, corpora,

help, models, stemmers, tokenizers.

Download individual packages from https://www.nltk.org/nltk_data/ (see

the “download” links). Unzip them to the appropriate subfolder. For

example, the Brown Corpus, found at:

https://raw.githubusercontent.com/nltk/nltk_data/gh-

pages/packages/corpora/brown.zip is to be unzipped to

nltk_data/corpora/brown.

Set your NLTK_DATA environment variable to point to your top level

nltk_data folder.

20EC605/JO2-B Artificial Intelligence Lab Manual Dept. of ECE

36

References

1. Artificial Intelligence: Building Intelligent Systems ByParag Kulkarni and

Prachi Joshi, PHI Publications.

2. Russell, Norvig: Artificial intelligence, A Modern Approach, Pearson

Education, Second Edition. 2004.

3. Rich, Knight, Nair: Artificial intelligence, Tata McGraw Hill, Third Edition

2009.

4. Introduction to Artificial Intelligence by Eugene Charniak, Pearson.

5. Introduction to Artificial Intelligence and expert systems Dan

W.Patterson. PHI.

6. Artificial Intelligence by George Flugerrearson fifth edition.

7. Saroj Kaushik. Artificial Intelligence. Cengage Learning. 2011

