
20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

1

Lab Code: 20EC605

Digital Design Using Verilog HDL

Lab Manual

Department of Electronics & Communication Engineering

Bapatla Engineering College :: Bapatla

(Autonomous)

G.B.C. Road, Mahatmajipuram, Bapatla-522102, Guntur (Dist.)

Andhra Pradesh, India.

E-Mail:bec.principal@becbapatla.ac.in

Web:www.becbapatla.ac.in

mailto:info@gcet.edu.in
mailto:info@gcet.edu.in

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

2

Contents

S.No. Title of the Experiment

1. Introduction to Verilog Simulator

2. Adders - Data Flow & Subtractors – Behavioral

3. Full adder using Half Adder various types

4. Full adder testing using Test Bench

5. Priority Encoder 74x148 or 8x3 encoder using 4x2 encoder

6. Decoder 74x138 or 3x8 decoder using 2x4 decoder

7. Multiplexer 74x151, 8:1 mux using 4:1 using 2:1 mux

8. Multiplier

9. Arithmetic Unit Implementation 74x181

10. Logical Unit Implementation

11. Fast Adders, 74x283

12. 4-Bit Parity Generator, Comparator 74x85

13. Flip flops, Level, Edge triggered

14. 4-Bit Universal shift register 74x194

15. 3-bit Linear Feedback Shift Register

16. Counters 74x163, 74x169

17. 74x194, Mod-8 Counter, Ring counter

18. Bus Transceiver, 74x245, Bus/Register Transfer

19. Simulation/Study of Static/Dynamic electrical behavior

20.

Simulation/Study of CMOS logic families, Low voltage CMOS

interfacing

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

3

Bapatla Engineering College :: Bapatla

(Autonomous)

Vision

 To build centers of excellence, impart high quality education

and instill high standards of ethics and professionalism

through strategic efforts of our dedicated staff, which allows

the college to effectively adapt to the ever-changing aspects of

education.

 To empower the faculty and students with the knowledge,

skills and innovative thinking to facilitate discovery in

numerous existing and yet to be discovered fields of

engineering, technology and interdisciplinary endeavours.

Mission

 Our Mission is to impart the quality education at par with

global standards to the students from all over India and in

particular those from the local and rural areas.

 We continuously try to maintain high standards so as to

make them technologically competent and ethically strong

individuals who shall be able to improve the quality of life and

economy of our country.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

4

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Vision

To produce globally competitive and socially responsible

Electronics and Communication Engineering graduates to

cater the ever-changing needs of the society.

Mission

 To provide quality education in the domain of

Electronics and Communication Engineering with

advanced pedagogical methods.

 To provide self-learning capabilities to enhance

employability and entrepreneurial skills and to

inculcate human values and ethics to make learners

sensitive towards societal issues.

 To excel in the research and development activities

related to Electronics and Communication Engineering.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

5

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Educational Objectives (PEO’s)

PEO-I: Equip Graduates with a robust foundation in mathematics,

science and Engineering Principles, enabling them to excel in

research and higher education in Electronics and Communication

Engineering and related fields.

PEO-II: Impart analytic and thinking skills in students to develop

initiatives and innovative ideas for Start-ups, Industry and societal

requirements.

PEO-III: Instill interpersonal skills, teamwork ability,

communication skills, leadership, and a sense of social, ethical,

and legal duties in order to promote lifelong learning and

Professional growth of the students.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

6

Program Outcomes (PO’s)

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution

of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and

analyze complex engineering problems reaching substantiated conclusions

using first principles of mathematics, natural sciences, and engineering

sciences.

PO3. Design/development of solutions: Design solutions for complex

engineering problems and design system components or processes that meet

the specified needs with appropriate consideration for the public health and

safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based

knowledge and research methods including design of experiments, analysis

and interpretation of data, and synthesis of the information to provide valid

conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and

modeling to complex engineering activities with an understanding of the

limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

PO7.Environment and sustainability: Understand the impact of the

professional engineering solutions in societal and environmental contexts,

and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

PO9. Individual and Teamwork: Function effectively as an individual, and

as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering

activities with the engineering community and with society at large, such as,

being able to comprehend and write effective reports and design

documentation, make effective presentations, and give and receive clear

instructions.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

7

PO11. Project management and finance: Demonstrate knowledge and

understanding of the engineering and management principles and apply these

to one’s own work, as a member and leader in a team, to manage projects and

in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for and have the preparation

and ability to engage in independent and life-long learning in the broadest

context of technological change.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

8

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Specific Outcomes (PSO’s)

PSO1: Develop and implement modern Electronic Technologies

using analytical methods to meet current as well as future

industrial and societal needs.

PSO2: Analyze and develop VLSI, IoT and Embedded Systems for

desired specifications to solve real world complex problems.

PSO3: Apply machine learning and deep learning techniques in

communication and signal processing.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

9

1.FULL ADDER

Aim: To design a Full Adder using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A Full Adder is a digital circuit that computes the sum of three binary bits.

Unlike a half adder, which only adds two binary numbers, a full adder

includes an additional input known as the "carry-in," allowing it to add three

bits. The three inputs are:

 A - the first bit.

 B - the second bit.

 Cin - the carry-in from a previous addition.

The outputs of a full adder are:

 Sum (S): The binary sum of the inputs.

 Carry-out (Cout): The carry that gets passed on to the next stage of

addition.

Boolean Expressions:

 Sum (S):

S=A⊕B⊕Cin

(Where ⊕ represents the XOR operation)

 Carry-out (Cout):

Cout=(A⋅B)+(Cin⋅(A⊕B))

Full adders are essential in constructing arithmetic logic units (ALUs),

where they can be cascaded together to add binary numbers of any length.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

10

This forms the basis of ripple-carry adders, which are commonly used in

digital circuits for binary addition.

Full Adder Truth Table:

 Circuit Diagram:

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

11

Source Code:

Design Block:

module fa(a,b,cin,sum,cout);

 input a,b,cin;

 output sum,cout;

 assign {cout,sum}=a+b+cin;

endmodule

Test Bench:

module fa_tb();

reg a,b,cin;

wire sum,cout;

fa n1(a,b,cin,sum,cout);

 initial begin

 a = 0;b = 0;cin = 0;

 #10 a = 0;b = 0;cin = 1;

 #10 a = 0;b = 1;cin = 0;

 #10 a = 0;b = 1;cin = 1;

 #10 a = 1;b = 0;cin = 0;

 #10 a = 1;b = 0;cin = 1;

 #10 a = 1;b = 1;cin = 0;

 #10 a = 1;b = 1;cin = 1;

 end

endmodule

Result:

Full Adder using Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

12

2. SUBTRACTORS

Aim: To design a Full Adder using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A Full Subtractor is a combinational circuit used to perform subtraction of

three binary bits. The three inputs for a full subtractor are:

1. A - the minuend (the number from which another number is to be

subtracted).

2. B - the subtrahend (the number that is to be subtracted).

3. Bin - the borrow-in from the previous subtraction.

The two outputs of a full subtractor are:

 Difference (D): The result of the subtraction.

 Borrow-out (Bout): The borrow generated for the next stage of

subtraction.

Boolean Expressions:

 Difference (D):

D=A⊕B⊕Bin

Borrow-out (Bout):

Bout=(A ⋅B)+(B⋅Bin)+(A ⋅Bin)

Full subtractors are important in digital circuits for arithmetic operations,

particularly for subtracting multi-bit binary numbers. They are used in

various computational units, such as in the design of arithmetic logic units

(ALUs) and in binary subtraction operations.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

13

Full Subtractor Truth Table:

Circuit Diagram:

Source Code:

Design Block:

module Full_Subtractor_3(output D, B, input X, Y, Z);

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

14

assign D = X ^ Y ^ Z;

assign B = ~X & (Y^Z) | Y & Z;

endmodule

Test Bench:

module Full_Subtractor_3_tb;

wire D, B;

reg X, Y, Z;

Full_Subtractor_3 Instance0 (D, B, X, Y, Z);

initial begin

 X = 0; Y = 0; Z = 0;

#1 X = 0; Y = 0; Z = 1;

#1 X = 0; Y = 1; Z = 0;

#1 X = 0; Y = 1; Z = 1;

#1 X = 1; Y = 0; Z = 0;

#1 X = 1; Y = 0; Z = 1;

#1 X = 1; Y = 1; Z = 0;

#1 X = 1; Y = 1; Z = 1;

end

initial begin

 $monitor ("%t, X = %d| Y = %d| Z = %d| B = %d| D = %d", $time, X, Y, Z

, B, D);

 $dumpfile("dump.vcd");

 $dumpvars();

end

endmodule

Result:

Full Subtractor using Verilog is designed and simulated successfully

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

15

3. Full adder using Half Adder

Aim: To design a Full Adder using half adder using Verilog HDL.

Software Used: Vivado 2016.4

Circuit Diagram:

Source Code:

Design Block:

module half_adder(a,b,sum,carry);

input a,b;

output sum,carry;

assign sum = a^b;

assign carry = a&b;

endmodule

The Verilog code for Full Adder using Half Adder and OR gate:

module full_adder(a_in, b_in, c_in, sum_out, carry_out);

input a_in,b_in,c_in;

 output sum_out,carry_out;

 //Declare the internal wires

 wire w1,w2,w3;

 //Instantiate the Half-Adders using port mapping

 half_adder HA1(.a(a_in),

 .b(b_in),

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

16

 .sum(w1),

 .carry(w2));

 half_adder HA2(.a(w1),

 .b(c_in),

 .sum(sum_out),

 .carry(w3));

 //Instantiate the OR gate

 or or1(carry_out,w3,w2);

endmodule

Testbench:

module full_adder_tb();

 reg a,b,cin;

 wire sum,carry;

 integer i;

// Instantiate the full adder with order based port mapping

 full_adder DUT(a,

 b,

 cin,

 sum,

 carry);

 initial

 begin

 a = 1'b0;

 b = 1'b0;

 cin = 1'b0;

 end

 initial

 begin

 for (i=0;i<8;i=i+1)

 begin

 {a,b,cin}=i;

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

17

 #10;

 end

 end

 //monitor the changes in the variables

 initial

 $monitor("Input a=%b, b=%b, c=%b, Output sum =%b,

carry=%b",a,b,cin,sum,carry);

 //terminate simulation after 100ns

 initial

#100 $finish;

 endmodule

Result:

Full Adder using half adder in Verilog is designed and simulated

successfully

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

18

4. Priority Encoder

Aim: To design a Priority Encoder using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A Priority Encoder is a digital circuit which encodes the input signals

according to the priority. It has several input lines; its output line shows the

binary code of set active input line considered to be the highest priority. In

some cases, several inputs can be active; in this case only the most important

input is processed by the encoder, the other inputs are excluded. For

instance, let’s take a look at the 4-to-2 priority encoder: If the inputs I3 and

I1 are active high, then the encoder will return the binary code for I3 since it

has the highest priority. High-priority encoders are used in the cases when

specific signals or tasks need to be performed with higher priority than the

others.

Circuit Diagram:

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

19

The output expression are obtained as shown below,

A = D4+D5+D6+D7

B = D2+D3+D6+D7

C = D1+D3+D5+D7

Source Code:

Design Block:

module priorityencoder_83(en,i,y);

 // declare

 input en;

 input [7:0]i;

 // store and declare output values

 output reg [2:0]y;

 always @(en,i)

 begin

 if(en==1)

 begin

 // priority encoder

 // if condition to choose

 // output based on priority.

 if(i[7]==1) y=3'b111;

 else if(i[6]==1) y=3'b110;

 else if(i[5]==1) y=3'b101;

 else if(i[4]==1) y=3'b100;

 else if(i[3]==1) y=3'b011;

 else if(i[2]==1) y=3'b010;

 else if(i[1]==1) y=3'b001;

 else

 y=3'b000;

 end

 // if enable is zero, there is

 // an high impedance value.

 else y=3'bzzz;

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

20

 end

endmodule

Testbench:

module tb;

 reg [7:0]i;

 reg en;

 wire [2:0]y;

 // instantiate the model: creating

 // instance for block diagram

 priorityenoder_83 dut(en,i,y);

 initial

 begin

 // monitor is used to display the information.

 $monitor("en=%b i=%b y=%b",en,i,y);

 // since en and i are input values,

 // provide values to en and i.

 en=1; i=128;#5

 en=1; i=64;#5

 en=1; i=32;#5

 en=1; i=16;#5

 en=1; i=8;#5

 en=1; i=4;#5

 en=1; i=2;#5

 en=1; i=0;#5

 en=0;i=8'bx;#5

 $finish;

 end

endmodule

Result:

Priority Encoder in Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

21

5. DECODER

Aim: To design a decoder using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A decoder is a combinational logic circuit that converts encoded inputs into a

specific set of outputs. It essentially takes a binary input and generates an

active output corresponding to the binary code. Decoders are widely used in

applications where particular lines need to be selected or activated based on

a binary input, such as memory address decoding, data routing, and

instruction decoding. A decoder takes n binary inputs and generates 2^n

outputs, with only one of these outputs being active at any given time,

depending on the combination of the input bits. The output is typically binary,

but can also be other forms, depending on the implementation. Inputs: n

binary inputs. Outputs: 2^n outputs (one for each possible input

combination)

Truth Table:

Source Code:

Design Block:

module binary_decoder(

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

22

 input [2:0] D,

 output reg [7:0] y);

 always@(D) begin

 y = 0;

 case(D)

 3'b000: y[0] = 1'b1;

 3'b001: y[1] = 1'b1;

 3'b010: y[2] = 1'b1;

 3'b011: y[3] = 1'b1;

 3'b100: y[4] = 1'b1;

 3'b101: y[5] = 1'b1;

 3'b110: y[6] = 1'b1;

 3'b111: y[7] = 1'b1;

 default: y = 0;

 endcase

 end

endmodule

Testbench:

module tb;

 reg [2:0] D;

 wire [7:0] y;

 binary_decoder bin_dec(D, y);

 initial begin

 $monitor("D = %b -> y = %0b", D, y);

 repeat(5) begin

 D=$random; #1;

 end

 end

endmodule

Result: Decoder in Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

23

6. MULTIPLEXER

Aim: To design a multiplexer using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A multiplexer is a data selector device that selects one input from several

input lines, depending upon the enabled, select lines, and yields one single

output.A multiplexer of 2n inputs has n select lines, are used to select which

input line to send to the output. There is only one output in the multiplexer,

no matter what’s its configuration.These devices are used extensively in the

areas where the multiple data can be transferred over a single line like in the

communication systems and bus architecture hardware. Visit this post for a

crystal clear explanation to multiplexers.

Truth table:

Circuit Diagram :

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

24

Source Code:

Design Block:

module m41 (input a,

input b,

input c,

input d,

input s0, s1,

output out);

 assign out = s1 ? (s0 ? d : c) : (s0 ? b : a);

endmodule

Testbench:

module top;

wire out;

reg a;

reg b;

reg c;

reg d;

reg s0, s1;

m41 name(.out(out), .a(a), .b(b), .c(c), .d(d), .s0(s0), .s1(s1));

 initial

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

25

 begin

 a=1'b0; b=1'b0; c=1'b0; d=1'b0;

 s0=1'b0; s1=1'b0;

 #500 $finish;

end

always #40 a=~a;

always #20 b=~b;

always #10 c=~c;

always #5 d=~d;

always #80 s0=~s0;

always #160 s1=~s1;

always@(a or b or c or d or s0 or s1)

$monitor("At time = %t, Output = %d", $time, out)

endmodule

Result: Multiplexer in Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

26

6. MULTIPLIER

Aim: To design a multiplier using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A multiplier is a digital combinational circuit designed to perform

multiplication of two binary numbers. It takes two numbers (operands) as

inputs and generates a product as output. Multipliers are fundamental

components in many digital systems, including processors, signal processing

units, and various arithmetic operations. There are several types of digital

multipliers, with varying complexity and performance characteristics:

1. Array Multiplier

2. Wallace Tree Multiplier

3. Booth Multiplier

4. Sequential Multiplier

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

27

Source Code:

Design Block:

module half_adder(input a, b, output s0, c0);

 assign s0 = a ^ b;

 assign c0 = a & b;

endmodule

module full_adder(input a, b, cin, output s0, c0);

 assign s0 = a ^ b ^ cin;

 assign c0 = (a & b) | (b & cin) | (a & cin);

endmodule

module array_multiplier(input [3:0] A, B, output [7:0] z);

 reg signed p[4][4];

 wire [10:0] c; // c represents carry of HA/FA

 wire [5:0] s; // s represents sum of HA/FA

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

28

 // For ease and readability, two diffent name s and c are used instead of

single wire name.

 genvar g;

 generate

 for(g = 0; g<4; g++) begin

 and a0(p[g][0], A[g], B[0]);

 and a1(p[g][1], A[g], B[1]);

 and a2(p[g][2], A[g], B[2]);

 and a3(p[g][3], A[g], B[3]);

 end

 endgenerate

 assign z[0] = p[0][0];

 //row 0

 half_adder h0(p[0][1], p[1][0], z[1], c[0]);

 half_adder h1(p[1][1], p[2][0], s[0], c[1]);

 half_adder h2(p[2][1], p[3][0], s[1], c[2]);

 //row1

 full_adder f0(p[0][2], c[0], s[0], z[2], c[3]);

 full_adder f1(p[1][2], c[1], s[1], s[2], c[4]);

 full_adder f2(p[2][2], c[2], p[3][1], s[3], c[5]);

 //row2

 full_adder f3(p[0][3], c[3], s[2], z[3], c[6]);

 full_adder f4(p[1][3], c[4], s[3], s[4], c[7]);

 full_adder f5(p[2][3], c[5], p[3][2], s[5], c[8]);

 //row3

 half_adder h3(c[6], s[4], z[4], c[9]);

 full_adder f6(c[9], c[7], s[5], z[5], c[10]);

 full_adder f7(c[10], c[8], p[3][3], z[6], z[7]);

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

29

endmodule

Testbench:

module TB;

 reg [3:0] A, B;

 wire [7:0] P;

 array_multiplier am(A,B,P);

 initial begin

 $monitor("A = %b: B = %b --> P = %b, P(dec) = %0d", A, B, P, P);

 A = 1; B = 0; #3;

 A = 7; B = 5; #3;

 A = 8; B = 9; #3;

 A = 4'hf; B = 4'hf;

 end

endmodule

Result: Multiplier in Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

30

7. ARITHMETIC LOGIC UNIT

Aim: To design a Arithmetic Logic Unit using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

The Arithmetic Logic Unit (ALU) is a fundamental digital circuit in a

computer’s central processing unit (CPU) and is responsible for performing

arithmetic and logical operations on binary data. It is a crucial component

that determines the computing power of a processor.

Key Roles of the ALU:

1. Arithmetic Operations: Performs basic arithmetic like addition,

subtraction, multiplication, and division.

2. Logical Operations: Performs logical operations like AND, OR, XOR, and

NOT.

3. Shift Operations: Supports shift and rotate operations on binary data.

4. Comparison Operations: Compares numbers and generates flags (e.g.,

zero, carry, overflow, etc.) used in decision-making.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

31

Source Code:

Design Block:

module alu(

 input [7:0] A,B, // ALU 8-bit Inputs

 input [3:0] ALU_Sel,// ALU Selection

 output [7:0] ALU_Out, // ALU 8-bit Output

 output CarryOut // Carry Out Flag);

 reg [7:0] ALU_Result;

 wire [8:0] tmp;

 assign ALU_Out = ALU_Result; // ALU out

 assign tmp = {1'b0,A} + {1'b0,B};

 assign CarryOut = tmp[8]; // Carryout flag

 always @(*)

 begin

 case(ALU_Sel)

 4'b0000: // Addition

 ALU_Result = A + B ;

 4'b0001: // Subtraction

 ALU_Result = A - B ;

 4'b0010: // Multiplication

 ALU_Result = A * B;

 4'b0011: // Division

 ALU_Result = A/B;

 4'b0100: // Logical shift left

 ALU_Result = A<<1;

 4'b0101: // Logical shift right

 ALU_Result = A>>1;

 4'b0110: // Rotate left

 ALU_Result = {A[6:0],A[7]};

 4'b0111: // Rotate right

 ALU_Result = {A[0],A[7:1]};

 4'b1000: // Logical and

 ALU_Result = A & B;

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

32

 4'b1001: // Logical or

 ALU_Result = A | B;

 4'b1010: // Logical xor

 ALU_Result = A ^ B;

 4'b1011: // Logical nor

 ALU_Result = ~(A | B);

 4'b1100: // Logical nand

 ALU_Result = ~(A & B);

 4'b1101: // Logical xnor

 ALU_Result = ~(A ^ B);

 4'b1110: // Greater comparison

 ALU_Result = (A>B)?8'd1:8'd0 ;

 4'b1111: // Equal comparison

 ALU_Result = (A==B)?8'd1:8'd0 ;

 default: ALU_Result = A + B ;

 endcase

 end

endmodule

Testbench:

module tb_alu;

//Inputs

 reg[7:0] A,B;

 reg[3:0] ALU_Sel;

//Outputs

 wire[7:0] ALU_Out;

 wire CarryOut;

 integer i;

 alu test_unit(

 A,B, // ALU 8-bit Inputs

 ALU_Sel,// ALU Selection

 ALU_Out, // ALU 8-bit Output

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

33

 CarryOut // Carry Out Flag

);

 initial begin

 // hold reset state for 100 ns.

 A = 8'h0A;

 B = 4'h02;

 ALU_Sel = 4'h0;

 for (i=0;i<=15;i=i+1)

 begin

 ALU_Sel = ALU_Sel + 8'h01;

 #10;

 end;

 A = 8'hF6;

 B = 8'h0A;

 end

endmodule

Result:

Arithmetic Logic Unit in Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

34

8.FAST ADDERS

Aim: To design a Fast Adders using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

a) Ripple Carry Adder

Source Code:

Design Block:

module full_adder(

 input a, b, cin,

 output sum, cout);

 assign {sum, cout} = {a^b^cin, ((a & b) | (b & cin) | (a & cin))};

 //or

 //assign sum = a^b^cin;

 //assign cout = (a & b) | (b & cin) | (a & cin);

endmodule

module ripple_carry_adder #(parameter SIZE = 4) (

 input [SIZE-1:0] A, B,

 input Cin,

 output [SIZE-1:0] S, Cout);

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

35

 genvar g;

 full_adder fa0(A[0], B[0], Cin, S[0], Cout[0]);

 generate // This will instantiate full_adder SIZE-1 times

 for(g = 1; g<SIZE; g++) begin

 full_adder fa(A[g], B[g], Cout[g-1], S[g], Cout[g]);

 end

 endgenerate

endmodule

Testbench:

module RCA_TB;

 wire [3:0] S, Cout;

 reg [3:0] A, B;

 reg Cin;

 wire[4:0] add;

 ripple_carry_adder rca(A, B, Cin, S, Cout);

 assign add = {Cout[3], S};

 initial begin

 $monitor("A = %b: B = %b, Cin = %b --> S = %b, Cout[3] = %b, Addition =

%0d", A, B, Cin, S, Cout[3], add);

 A = 1; B = 0; Cin = 0; #3;

 A = 2; B = 4; Cin = 1; #3;

 A = 4'hb; B = 4'h6; Cin = 0; #3;

 A = 5; B = 3; Cin = 1; #3;

 $finish;

 end

 initial begin

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

36

 $dumpfile("waves.vcd");

 $dumpvars;

 end

endmodule

b) Carry Look Ahead Adder

Theory:

The drawback of ‘Ripple carry adder‘ is that it has a carry propagation delay

that introduces slow computation. Since adders are used in designs like

multipliers and divisions, it causes slowness in their computation. To tackle

this issue, a carry look-ahead adder (CLA) can be used that reduces

propagation delay with additional hardware complexity. LA has introduced

some functions like ‘carry generate (G)’ and ‘carry propagate (P)’ to boost the

speed. Carry Generate (G): This function denotes how the carry is generated

for single-bit two inputs regardless of any input carry. As we have seen in the

full adder, carry is generated using the equation as A.B.

Hence, G = A·B (similar to how carry is generated by full adder) Carry

Propagate (P): This function denotes when the carry is propagated to the next

stage with an addition whenever there is an input carry. Let’s consider single

bit two inputs A and B.

A B Carry

In

Description

0 0 1 Carry is not propagated

(0)

0 1 1 Carry is propagated (1)

1 0 1 Carry is propagated (1)

1 1 1 Carry is propagated (1)

Thus, P = A+B

Carry computation function for next stage

Cj+1 = Gj+(Pj·Cj)

 = Aj·Bj + (Aj + Bj)·Cj

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

37

However, if you notice clearly whenever Aj=1 and Bj=1

Cj+1 = 1 (always) as Aj·Bj component nullifies effect of [(Aj + Bj)·Cj] part. Thus,

it does not matter even if you use the equation propagate function as P = A

(+) B as mentioned in other literature.

G = A·B

P = A + B or A (+) B

Block Diagram

Source Code:

Design Block:

module CarryLookAheadAdder(

 input [3:0]A, B,

 input Cin,

 output [3:0] S,

 output Cout);

 wire [3:0] Ci; // Carry intermediate for intermediate computation

 assign Ci[0] = Cin;

 assign Ci[1] = (A[0] & B[0]) | ((A[0]^B[0]) & Ci[0]);

 //assign Ci[2] = (A[1] & B[1]) | ((A[1]^B[1]) & Ci[1]); expands to

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

38

 assign Ci[2] = (A[1] & B[1]) | ((A[1]^B[1]) & ((A[0] & B[0]) | ((A[0]^B[0]) &

Ci[0])));

 //assign Ci[3] = (A[2] & B[2]) | ((A[2]^B[2]) & Ci[2]); expands to

 assign Ci[3] = (A[2] & B[2]) | ((A[2]^B[2]) & ((A[1] & B[1]) | ((A[1]^B[1]) & ((A[0]

& B[0]) | ((A[0]^B[0]) & Ci[0])))));

 //assign Cout = (A[3] & B[3]) | ((A[3]^B[3]) & Ci[3]); expands to

 assign Cout = (A[3] & B[3]) | ((A[3]^B[3]) & ((A[2] & B[2]) | ((A[2]^B[2]) &

((A[1] & B[1]) | ((A[1]^B[1]) & ((A[0] & B[0]) | ((A[0]^B[0]) & Ci[0])))))));

 assign S = A^B^Ci;

endmodule

Testbench:

module TB;

 reg [3:0]A, B;

 reg Cin;

 wire [3:0] S;

 wire Cout;

 wire[4:0] add;

 CarryLookAheadAdder cla(A, B, Cin, S, Cout);

 assign add = {Cout, S};

 initial begin

 $monitor("A = %b: B = %b, Cin = %b --> S = %b, Cout = %b, Addition =

%0d", A, B, Cin, S, Cout, add);

 A = 1; B = 0; Cin = 0; #3;

 A = 2; B = 4; Cin = 1; #3;

 A = 4'hb; B = 4'h6; Cin = 0; #3;

 A = 5; B = 3; Cin = 1;

 end

endmodule

Result: Fast Adders in Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

39

9.PARITY GENERATOR

Aim: To design a parity generator using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

It is combinational circuit that accepts an n-1 bit stream data and generates

the additional bit that is to be transmitted with the bit stream. This additional

or extra bit is termed as a parity bit.In even parity bit scheme, the parity bit

is ‘0’ if there are even number of 1s in the data stream and the parity bit is

‘1’ if there are odd number of 1s in the data stream.In odd parity bit scheme,

the parity bit is ‘1’ if there are even number of 1s in the data stream and the

parity bit is ‘0’ if there are odd number of 1s in the data stream. Let us

discuss both even and odd parity generators.

Even Parity Generator

A 3-bit message is to be transmitted with an even parity bit. Let the three

inputs A, B and C are applied to the circuits and output bit is the parity bit

P. The total number of 1s must be even, to generate the even parity bit P.The

figure below shows the truth table of even parity generator in which 1 is placed

as parity bit in order to make all 1s as even when the number of 1s in the

truth table is odd.

https://www.electronicshub.org/wp-content/uploads/2015/07/Even-Parity-Generator-Truth-Table.jpg

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

40

The K-map simplification for 3-bit message even parity generator is

From the above truth table, the simplified expression of the parity bit can be

written as

The above expression can be implemented by using two Ex-OR gates. The

logic diagram of even parity generator with two Ex – OR gates is shown

below. The three bit message along with the parity generated by this circuit

which is transmitted to the receiving end where parity checker circuit

checks whether any error is present or not.To generate the even parity bit

for a 4-bit data, three Ex-OR gates are required to add the 4-bits and their

sum will be the parity bit.

https://www.electronicshub.org/wp-content/uploads/2015/07/even-parity-generator-exp.jpg

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

41

Source Code:

Design Block:

module parity_generator(data_in , parity_out);

output parity_out ;

input [3:0]data_in ;

assign parity_out = (^ data_in);

endmodule

Test Bench:

module parity_tb();

reg [3:0]data_in;

wire parity_out;

parity_generator n1(data_in,parity_out);

initial

begin

data_in=0000;

#10 data_in=0001;

#10 data_in=1010;

#10 data_in=1011;

#10 data_in=0100;

#10 data_in=0101;

#10 data_in=1110;

#10 data_in=1111;

#10 data_in=1000;

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

42

#10 data_in=1001;

#10 data_in=0010;

#10 data_in=0011;

#10 data_in=1100;

#10 data_in=1101;

#10 data_in=0110;

#10 data_in=0111;

end

endmodule

ODD Parity Generator:

Theory:

The 3-bit data is to be transmitted with an odd parity bit. The three inputs

are A, B and C and P is the output parity bit. The total number of bits must

be odd in order to generate the odd parity bit.In the given truth table below,

1 is placed in the parity bit in order to make the total number of bits odd when

the total number of 1s in the truth table is even.

https://www.electronicshub.org/wp-content/uploads/2015/07/Odd-Parity-Generator-Truth-Table.jpg

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

43

The truth table of the odd parity generator can be simplified by using K-map

as

The output parity bit expression for this generator circuit is obtained as

P = A ⊕ B Ex-NOR C

The above Boolean expression can be implemented by using one Ex-OR gate

and one Ex-NOR gate in order to design a 3-bit odd parity generator.The

logic circuit of this generator is shown in below figure , in which . two inputs

are applied at one Ex-OR gate, and this Ex-OR output and third input is

applied to the Ex-NOR gate , to produce the odd parity bit. It is also possible

to design this circuit by using two Ex-OR gates and one NOT gate.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

44

Source Code:

Design Block:

module odd_parity(data_in , parity_out);

output parity_out ;

input [3:0]data_in ;

assign parity_out = ~(^ data_in);

endmodule

Test Bench:

module odd_parity_tb();

reg [3:0]data_in;

wire parity_out;

odd_parity n1(data_in,parity_out);

initial

begin

data_in=0000;

#10 data_in=0001;

#10 data_in=1010;

#10 data_in=1011;

#10 data_in=0100;

#10 data_in=0101;

#10 data_in=1110;

#10 data_in=1111;

#10 data_in=1000;

#10 data_in=1001;

#10 data_in=0010;

#10 data_in=0011;

#10 data_in=1100;

#10 data_in=1101;

#10 data_in=0110;

#10 data_in=0111;

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

45

end

endmodule

Result: parity generator in Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

46

10. COMPARATOR

Aim: To design a Fast Adders using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A magnitude digital Comparator is a combinational circuit that compares

two digital or binary numbers to find out whether one binary number is

equal, less than or greater than the other binary number. We logically design

a circuit for which we will have two inputs one for A and other for B and have

three output terminals, one for A > B condition, one for A = B condition and

one for A < B condition.

4-Bit Magnitude Comparator

A comparator used to compare two binary numbers each of four bits is called

a 4-bit magnitude comparator. It consists of eight inputs each for two four bit

numbers and three outputs to generate less than, equal to and greater than

between two binary numbers.

In a 4-bit comparator the condition of A>B can be possible in the following

four cases:

1. If A3 = 1 and B3 = 0

2. If A3 = B3 and A2 = 1 and B2 = 0

3. If A3 = B3, A2 = B2 and A1 = 1 and B1 = 0

4. If A3 = B3, A2 = B2, A1 = B1 and A0 = 1 and B0 = 0

Similarly, the condition for A<B can be possible in the following four cases:

1. If A3 = 0 and B3 = 1

2. If A3 = B3 and A2 = 0 and B2 = 1

3. If A3 = B3, A2 = B2 and A1 = 0 and B1 = 1

4. If A3 = B3, A2 = B2, A1 = B1 and A0 = 0 and B0 = 1

The condition of A=B is possible only when all the individual bits of one

number exactly coincide with corresponding bits of another number.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

47

Circuit Diagram:

Source Code:

Design Block:

module comparator_4bit_bh(

 output reg EQ,

 output reg GT,

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

48

 output reg LT,

 input [3:0] a,

 input [3:0] b

);

 always @(*) begin

 LT = (a < b);

 EQ = (a == b);

 GT = (a > b);

 end

 endmodule

Testbench:

module comparator_tb;

 // Declare wires for outputs

 wire EQ;

 wire GT;

 wire LT;

 // Declare registers for inputs

 reg [3:0] a;

 reg [3:0] b;

 // Instantiate the comparator module

 comparator_4bit_bh dut(EQ,GT,LT,a,b);

 initial begin

 // Test scenario for greater than

 a = 5;

 b = 3;

 #10; // Wait for 10 time units

 // Display the inputs and outputs

 $display("a = %d, b = %d, EQ = %b, GT = %b, LT = %b", a, b, EQ, GT, LT);

 // Test scenario for less than

 a = 3;

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

49

 b = 5;

 #10; // Wait for 10 time units

 // Display the inputs and outputs

 $display("a = %d, b = %d, EQ = %b, GT = %b, LT = %b", a, b, EQ, GT, LT);

 // Test scenario for equal to

 a = 4;

 b = 4;

 #10; // Wait for 10 time units

 // Display the inputs and outputs

 $display("a = %d, b = %d, EQ = %b, GT = %b, LT = %b", a, b, EQ, GT, LT);

 // Finish the simulation

 $finish;

 end

endmodule

Result: Comparator in Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

50

11. FLIPFLOPS

Aim: To design a SR, D, JK,T flipflops using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

SR FLIPFLOP:

The SET-RESET flip flop is designed with the help of two NOR gates and also

two NAND gates. These flip flops are also called S-R Latch.It is also called a

Gated S-R flip flop.

The problems with S-R flip flops using NOR and NAND gate is the

invalid state. This problem can be overcome by using a bistable SR flip-flop

that can change outputs when certain invalid states are met, regardless of the

condition of either the Set or the Reset inputs. For this, a clocked S-R flip flop

is designed by adding two AND gates to a basic NOR Gate flip flop. The circuit

diagram and truth table is shown below.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

51

A clock pulse [CP] is given to the inputs of the AND Gate. When the value of

the clock pulse is ‘0’, the outputs of both the AND Gates remain ‘0’. As soon

as a pulse is given the value of CP turns ‘1’. This makes the values at S and

R to pass through the NOR Gate flip flop. But when the values of both S and

R values turn ‘1’, the HIGH value of CP causes both of them to turn to ‘0’ for

a short moment. As soon as the pulse is removed, the flip flop state becomes

intermediate. Thus either of the two states may be caused, and it depends on

whether the set or reset input of the flip-flop remains a ‘1’ longer than the

transition to ‘0’ at the end of the pulse. Thus the invalid states can be

eliminated.

Source Code:

Design Block:

module sr_ff(s,r,clk,rst, q,qb);

input s,r,clk,rst;

output q,qb;

wire s,r,clk,rst,qb;

 reg q;

 always@(posedge clk)

 begin

 if(rst)

 q<=1'b0;

 else if(s==1'b0&&r==1'b0) q<=q;

 else if(s==1'b0&&r==1'b1) q<=1'b0;

 else if(s==1'b1&&r==1'b0) q<=1'b1;

 else if(s==1'b1&&r==1'b1) q<=1'bx;

 end

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

52

 assign qb=~q;

 endmodule

Test Bench:

module srff_tb();

reg s,r,clk,rst;

wire q,qb;

sr_ff p(s,r,clk,rst,q,qb);

initial

begin

clk=0;

s=0; r=0;

#5 rst=1;

#30 rst=0;

$monitor($time,"clk=%b,rst=%b,s=%b,r=%b,q=%b,qb=%b",clk,rst,s,r,q,qb);

#100 $finish;

end

always #5 clk=~clk;

always #30 s=~s;

always #40 r=~r;

endmodule

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

53

D FLIPFLOP:

The circuit diagram and truth table is given below.

D flip flop is actually a slight modification of the above explained clocked SR

flip-flop. From the figure you can see that the D input is connected to the S

input and the complement of the D input is connected to the R input. The D

input is passed on to the flip flop when the value of CP is ‘1’. When CP is

HIGH, the flip flop moves to the SET state. If it is ‘0’, the flip flop switches to

the CLEAR state.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

54

Source Code:

Design Block:

module dff(D,clk,reset,Q);

input D,clk,reset;

output Q;

reg Q;

always @(posedge clk)

begin

 Q <= D;

end

endmodule

Test Bench:

module dff_tb();

reg D;

reg clk;

reg reset;

wire Q;

dff d1(D,clk,reset,Q);

initial begin

 clk=0;

 forever #10 clk = ~clk;

end

initial begin

 reset=1;

 D <= 0;

 #100;

 reset=0;

 D <= 1;

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

55

 #100;

 D <= 0;

 #100;

 D <= 1;

end

endmodule

JK FLIPFLOP:

Flip-flops are fundamental building blocks of sequential circuits. A flip flop

can store one bit of data. Hence, it is known as a memory cell. Since they

work on the application of a clock signal, they come under the category of

synchronous circuits.The J-K flip-flop is the most versatile of the basic flip

flops. The JK flip flop is a gated SR flip-flop with the addition of a clock

input circuitry that prevents the illegal or invalid output condition that can

occur when both inputs S and R are equal to logic 1. Due to this additional

clocked input, a JK flip-flop has four possible input combinations, “logic 1”,

“logic 0”, “no change” and “toggle”.

Truth table:

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

56

Source Code:

Design Block:

module JK_flipflop (

 input clk, rst_n,

 input j,k,

 output reg q,

 output q_bar

);

 // always@(posedge clk or negedge rst_n) // for asynchronous reset

 always@(posedge clk) begin // for synchronous reset

 if(!rst_n) q <= 0;

 else begin

 case({j,k})

 2'b00: q <= q; // No change

 2'b01: q <= 1'b0; // reset

 2'b10: q <= 1'b1; // set

 2'b11: q <= ~q; // Toggle

 endcase

 end

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

57

 end

 assign q_bar = ~q;

endmodule

Testbench:

module tb;

 reg clk, rst_n;

 reg j, k;

 wire q, q_bar;

 JK_flipflop dff(clk, rst_n, j, k, q, q_bar);

 always #2 clk = ~clk;

 initial begin

 clk = 0; rst_n = 0;

 $display("Reset=%b --> q=%b, q_bar=%b", rst_n, q, q_bar);

 #3 rst_n = 1;

 $display("Reset=%b --> q=%b, q_bar=%b", rst_n, q, q_bar);

 drive(2'b00);

 drive(2'b01);

 drive(2'b10);

 drive(2'b11); // Toggles previous output

 drive(2'b11); // Toggles previous output

 #5;

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

58

 $finish;

 end

 task drive(bit [1:0] ip);

 @(posedge clk);

 {j,k} = ip;

 #1 $display("j=%b, k=%b --> q=%b, q_bar=%b",j, k, q, q_bar);

 endtask

 initial begin

 $dumpfile("dump.vcd");

 $dumpvars(1);

 end

endmodule

T FLIPFLOP:

T stands for ("toggle") flip-flop to avoid an intermediate state in SR flip-flop.

We should provide only one input to the flip-flop called Trigger input Toggle

input to avoid an intermediate state occurrence. Then the flip - flop acts as a

Toggle switch. The next output state is changed with the complement of the

present state output. This process is known as Toggling. We can construct

the T flip-flop by making changes in the JK flip-flop. The T flip-flop has only

one input, which is constructed by connecting the input of JK flip-flop. This

single input is called T.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

59

Source Code:

Design Block:

module tff (input clk, input rstn, input t, output reg q);

 always @ (posedge clk) begin

 if (!rstn)

 q <= 0;

 else

 if (t)

 q <= ~q;

 else

 q <= q;

 end

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

60

endmodule

Testbench:

module tb;

 reg clk;

 reg rstn;

 reg t;

 tff u0 (.clk(clk),

 .rstn(rstn),

 .t(t),

 .q(q));

 always #5 clk = ~clk;

 initial begin

 {rstn, clk, t} <= 0;

 $monitor ("T=%0t rstn=%0b t=%0d q=%0d", $time, rstn, t, q);

 repeat(2) @(posedge clk);

 rstn <= 1;

 for (integer i = 0; i < 20; i = i+1) begin

 reg [4:0] dly = $random;

 #(dly) t <= $random;

 end

 #20 $finish;

 end

endmodule

Result: Flipflops in Verilog are designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

61

12. UNIVERSAL SHIFT REGISTER

Aim: To design a Universal shift register using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A universal shift register is a sequential logic that can store data within and

on every clock pulse it transfers data to the output port.The universal shift

register can be used as:

 Parallel In Parallel Out shift register

 Parallel In Serial Out shift register

 Serial In Parallel Out shift register

 Serial In Serial Out shift register

Mode control

(select)

Operation

0 0 No change

0 1 Shift right

1 0 Shift left

1 1 Parallel load

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

62

Source Code:

Design Block:

module universal_shift_reg(

 input clk, rst_n,

 input [1:0] select, // select operation

 input [3:0] p_din, // parallel data in

 input s_left_din, // serial left data in

 input s_right_din, // serial right data in

 output reg [3:0] p_dout, //parallel data out

 output s_left_dout, // serial left data out

 output s_right_dout // serial right data out

);

 always@(posedge clk) begin

 if(!rst_n) p_dout <= 0;

 else begin

 case(select)

 2'h1: p_dout <= {s_right_din,p_dout[3:1]}; // Right Shift

 2'h2: p_dout <= {p_dout[2:0],s_left_din}; // Left Shift

 2'h3: p_dout <= p_din; // Parallel in - Parallel out

 default: p_dout <= p_dout; // Do nothing

 endcase

 end

 end

 assign s_left_dout = p_dout[0];

 assign s_right_dout = p_dout[3];

endmodule

Testbench:

module TB;

 reg clk, rst_n;

 reg [1:0] select;

 reg [3:0] p_din;

 reg s_left_din, s_right_din;

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

63

 wire [3:0] p_dout; //parallel data out

 wire s_left_dout, s_right_dout;

 universal_shift_reg usr(clk, rst_n, select, p_din, s_left_din, s_right_din,

p_dout, s_left_dout, s_right_dout);

 always #2 clk = ~clk;

 initial begin

 $monitor("select=%b, p_din=%b, s_left_din=%b, s_right_din=%b --> p_dout

= %b, s_left_dout = %b, s_right_dout = %b",select, p_din, s_left_din,

s_right_din, p_dout, s_left_dout, s_right_dout);

 clk = 0; rst_n = 0;

 #3 rst_n = 1;

 p_din = 4'b1101;

 s_left_din = 1'b1;

 s_right_din = 1'b0;

 select = 2'h3; #10;

 select = 2'h1; #20;

 p_din = 4'b1101;

 select = 2'h3; #10;

 select = 2'h2; #20;

 select = 2'h0; #20;

 $finish;

 end

 // To enable waveform

 initial begin

 $dumpfile("dump.vcd"); $dumpvars;

 end

 endmodule

Result: Universal shift register in Verilog is designed and simulated

successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

64

13.LINEAR FEEDBACK SHIFT REGISTER

Aim: To design a Linear Feedback Shift Register using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

Linear Feedback Shift Register (LFSR) is a sequential shift register that

generates pseudo-random binary sequences. It operates by shifting bits and

feeding back a linear combination of its previous values. An LFSR consists of

a shift register and a feedback function. The register contains a series of flip-

flops, each storing a single bit. The feedback is typically an XOR operation

applied to selected bits of the register, and the result is fed back into the

input.Shift Register: It is a series of flip-flops where each clock cycle shifts the

bits one position to the right.Feedback: A linear feedback function (usually an

XOR of certain bits of the register) determines the value of the bit that gets

shifted into the register.Feedback Taps: These are the positions in the register

whose values are XORed together to form the feedback. Periodicity: LFSRs are

periodic; after a certain number of shifts, the sequence repeats. The maximum

period for an LFSR of length nnn is 2n−12^n - 12n−1, which happens when

the feedback taps are selected correctly (this is called a maximal-length

LFSR).Pseudorandomness: The sequence generated by an LFSR appears

random, but it is deterministic and repeats after the period.Applications:

LFSRs are widely used in communication systems, cryptography, error

detection and correction (CRC), random number generation, and digital signal

processing.Fibonacci LFSR: The feedback is applied to the input directly from

the XOR of selected bits from the current state.Galois LFSR: The feedback

affects the state during each clock cycle as the bits are shifted, improving

efficiency in hardware implementations.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

65

Source Code:

Design Block:

module LFSR(input clk, rst, output reg [3:0] op);

 always@(posedge clk) begin

 if(rst) op <= 4'hf;

 else op = {op[2:0],(op[3]^op[2])};

 end

endmodule

Testbench:

module TB;

 reg clk, rst;

 wire [3:0]op;

 LFSR lfsr1(clk, rst, op);

 initial begin

 $monitor("op=%b",op);

 clk = 0; rst = 1;

 #5 rst = 0;

 #50; $finish;

 end

 always #2 clk=~clk;

 initial begin

 $dumpfile("dump.vcd"); $dumpvars;

 end

endmodule

Result: Linear Feedback Shift Register in Verilog is designed and simulated

successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

66

13.COUNTERS

Aim: To design a counter using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

UP COUNTER:

An up-counter counts in ascending order from 0 up to a predefined maximum

value (e.g., 1111 for a 4-bit counter, which is 15 in decimal) and then rolls

back to 0. Each time a clock pulse is received, the counter increases by one.

An up counter consists of the following components: Flip-Flops: Typically, T

flip-flops or JK flip-flops are used. For a counter with n-bits, n-flip-flops are

required. Clock Input: All flip-flops receive the same clock signal (in

synchronous counters) or different clock signals (in asynchronous counters).

Binary Output: The output is a binary number, representing the current

count. Binary Up Counter: Counts in binary from 0 to the maximum value.

Decade Counter (BCD Counter): Counts from 0 to 9 and then resets to 0. This

is a type of up counter that generates a Binary-Coded Decimal (BCD) output.

Modulus Counter (MOD Counter): A counter that counts from 0 to a

predefined value (less than the maximum) and then resets. Up counters are

used in various applications: Timers, Event Counters, Frequency Dividers,

Digital Instruments

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

67

Source Code:

Design Block:

module up_counter(input clk, reset, output[3:0] counter);

reg [3:0] counter_up;

// up counter

always @(posedge clk or posedge reset)

begin

if(reset)

 counter_up <= 4'd0;

else

 counter_up <= counter_up + 4'd1;

end

assign counter = counter_up;

endmodule

Testbench:

module upcounter_testbench();

reg clk, reset;

wire [3:0] counter;

up_counter dut(clk, reset, counter);

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

68

initial begin

clk=0;

forever #5 clk=~clk;

end

initial begin

reset=1;

#20;

reset=0;

end

endmodule

DOWN COUNTER:

THEORY:

A Down Counter is a type of digital sequential circuit that counts downward

from a preset value to zero. Like up counters, down counters are made using

flip-flops, and they are widely used in timing applications, event counting,

frequency division, and other digital systems. The main difference from an up

counter is that the count decreases on each clock pulse instead of increasing.

A down counter starts from a predefined maximum value and decreases by

one with each clock pulse until it reaches zero, after which it either stops or

rolls over back to the maximum value (depending on the design). The output

is in binary form and decrements with each clock cycle.A typical down counter

consists of:Flip-Flops: Each flip-flop represents a single bit in the binary

count. For a counter with nnn bits, nnn flip-flops are required.Clock Input:

Like up counters, down counters can either be synchronous (where all flip-

flops share the same clock signal) or asynchronous (where each flip-flop is

triggered by the output of the preceding flip-flop).Binary Output: The

counter’s output is a binary number representing the current count.In a down

counter, the binary number decreases on each clock pulse.If it is a continuous

down counter, after reaching zero, the counter rolls over to its maximum value

and continues counting down. If it’s a terminal down counter, it stops when

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

69

the count reaches zero.Binary Down Counter: Counts downward in binary,

from the maximum value down to zero.Decade (BCD) Down Counter: Counts

from 9 down to 0 in Binary Coded Decimal (BCD) format.Modulus (MOD)

Down Counter: A MOD-N counter counts down from N-1 to 0. For example, a

MOD-10 counter counts down from 9 to 0.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

70

Source Code:

Design Block:

module down_counter(input clk, reset, output [3:0] counter);

reg [3:0] counter_down;

// down counter

always @(posedge clk or posedge reset)

begin

if(reset)

 counter_down <= 4'hf;

else

 counter_down <= counter_down - 4'd1;

end

assign counter = counter_down;

endmodule

Testbench:

module downcounter_testbench();

reg clk, reset;

wire [3:0] counter;

down_counter dut(clk, reset, counter);

initial begin

clk=0;

forever #5 clk=~clk;

end

initial begin

reset=1;

#20;

reset=0;

end

endmodule

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

71

UP-DOWN COUNTER:

THEORY:

An Up-Down Counter is a type of digital sequential circuit that can count in

both directions: upward (incrementing) and downward (decrementing),

depending on a control signal. This feature makes it versatile in applications

where bidirectional counting is needed, such as in position tracking,

reversible timers, or event counters. An up-down counter operates similarly

to a regular counter but includes a control signal that determines the

counting direction: When the control signal is set to 1 (or HIGH), the counter

behaves as an up counter, incrementing its value on each clock pulse. When

the control signal is set to 0 (or LOW), the counter behaves as a down counter,

decrementing its value on each clock pulse. An up-down counter consists of

Flip-Flops: Typically, T flip-flops or JK flip-flops are used. For an n-bit

counter, n- flip-flops are needed. Control Signal: Determines whether the

counter counts upward or downward. Clock Input: Provides the timing signal

to drive the counter’s state transitions. Binary Output: The counter produces

a binary output representing the current count. The up-down counter uses

the control signal to dictate the direction of counting. Each clock pulse results

in either an increment (up) or a decrement (down) of the counter's value based

on the control input. Up Counting Mode: The counter increments on every

clock pulse, moving from a low value (e.g., 0000) to the maximum value (e.g.,

1111 for a 4-bit counter).Down Counting Mode: The counter decrements on

every clock pulse, moving from the maximum value (e.g., 1111) to the

minimum value (e.g., 0000).Up-down counters are used in a wide variety of

digital systems, especially where counting in both directions is required as

Digital Position Trackers, Reversible Timers, Digital Instruments, Frequency

Counters and Dividers.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

72

Source Code:

Design Block:

module up_down_counter(input clk, reset,up_down, output[3:0] counter);

reg [3:0] counter_up_down;

// down counter

always @(posedge clk or posedge reset)

begin

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

73

if(reset)

 counter_up_down <= 4'h0;

else if(~up_down)

 counter_up_down <= counter_up_down + 4'd1;

else

 counter_up_down <= counter_up_down - 4'd1;

end

assign counter = counter_up_down;

endmodule

Testbench:

module updowncounter_testbench();

reg clk, reset,up_down;

wire [3:0] counter;

up_down_counter dut(clk, reset,up_down, counter);

initial begin

clk=0;

forever #5 clk=~clk;

end

initial begin

reset=1;

up_down=0;

#20;

reset=0;

#200;

up_down=1;

end

endmodule

Result: counters in Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

74

14.RING COUNTER

Aim: To design a Ring Counter using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A Ring Counter is a type of digital sequential circuit that cycles through a

fixed sequence of binary states. It is made by shifting a single "1" or "0"

through a series of flip-flops arranged in a ring. Ring counters are commonly

used in timing circuits, pattern generation, and state machines. A ring

counter is a shift register where the output of the last flip-flop is fed back to

the input of the first flip-flop. The counter "rings" or circulates a single '1' or

'0' bit through the register stages. For a 4-bit ring counter: It starts with a

single '1' at the first flip-flop, e.g., 1000.With each clock pulse, the '1' shifts

to the next flip-flop, and eventually returns to the first flip-flop after four

cycles, making it a cyclic counter. Basic Ring Counter: A single '1' (or '0')

circulates through the flip-flops. Johnson Ring Counter (Twisted Ring

Counter): A variation where the inverted output of the last flip-flop is fed into

the input of the first flip-flop, creating a count sequence twice the length of a

standard ring counter. A ring counter consists of Flip-flops: Typically, D flip-

flops are used, where each flip-flop represents one bit of the counter. For an

n-bit ring counter, n-flip-flops are required. Clock Input: Drives the state

transitions of the flip-flops. Feedback Path: The output of the last flip-flop is

fed back to the input of the first flip-flop to create the ring.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

75

Source Code:

Design Block:

module ring_ctr (

 input clk,

 input rstn,

 output reg [WIDTH-1:0] out);

 always @ (posedge clk) begin

 if (!rstn)

 out <= 1;

 else begin

 out[WIDTH-1] <= out[0];

 for (int i = 0; i < WIDTH-1; i=i+1) begin

 out[i] <= out[i+1];

 end

 end

 end

endmodule

Testbench:

module tb;

 parameter WIDTH = 4;

 reg clk;

 reg rstn;

 wire [WIDTH-1:0] out;

 ring_ctr u0 (.clk (clk),

 .rstn (rstn),

 .out (out));

 always #10 clk = ~clk;

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

76

 initial begin

 {clk, rstn} <= 0;

 $monitor ("T=%0t out=%b", $time, out);

 repeat (2) @(posedge clk);

 rstn <= 1;

 repeat (15) @(posedge clk);

 $finish;

 end

endmodule

Result: Ring counters in Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

77

15.Bus Transceiver

Aim: To design a Bus Transceiver using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

A bus transceiver is a bidirectional communication device that enables data

transfer between two buses. It allows for the flow of data in both directions,

either from bus A to bus B or from bus B to bus A, depending on the control

signal. These are commonly used in systems where different parts need to

share data but operate at different times. Bus: A bus is a communication pathway

shared by multiple devices, typically used to transfer data, control signals, and

power. It reduces the number of physical connections by allowing multiple devices

to use the same connection lines. Transceiver: A transceiver (Transmitter +

Receiver) is a device that can send and receive data. In the case of bus

transceivers, it allows communication between two buses by driving signals

in both directions. Bidirectional Data Flow: A bus transceiver is capable of

handling bidirectional data transmission. Control signals decide the direction

of the data flow—either from Bus A to Bus B or from Bus B to Bus A. Control

Signals: There are typically two control signals—one to enable the transceiver and

one to control the direction of data flow. Enable (EN): When this signal is active,

the transceiver is enabled, allowing data to pass through. Direction (DIR): This

signal controls the direction of data flow. If it is set in one state (e.g., high),

data flows from Bus A to Bus B; if set to the opposite state (e.g., low), data

flows from Bus B to Bus A. Bidirectional Buffers: The transceiver consists of

buffers that can be driven in either direction, depending on the control

signals. Isolation: When the transceiver is not enabled, it can isolate the two

buses, preventing them from interacting.

Source Code:

Design Block:

module bus_transceiver_74LS245 (

 input [7:0] A, // 8-bit bus A

 input [7:0] B, // 8-bit bus B

 input DIR, // Direction control: 1 -> A to B, 0 -> B to A

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

78

 input G, // Enable: Active low (0 -> enabled, 1 -> disabled)

 output reg [7:0] bus_A, // Output for bus A

 output reg [7:0] bus_B // Output for bus B

);

// Transceiver behavior

always @(*) begin

 if (!G) begin // When G is low, transceiver is enabled

 if (DIR) begin

 // A to B direction

 bus_B = A;

 bus_A = 8'bz; // Bus A in high impedance (disconnected)

 end else begin

 // B to A direction

 bus_A = B;

 bus_B = 8'bz; // Bus B in high impedance (disconnected)

 end

 end else begin

 // When G is high, both buses are in high impedance (disabled)

 bus_A = 8'bz;

 bus_B = 8'bz;

 end

end

endmodule

Testbench:

module tb_bus_transceiver_74LS245;

 reg [7:0] A; // 8-bit bus A

 reg [7:0] B; // 8-bit bus B

 reg DIR; // Direction control

 reg G; // Enable signal

 wire [7:0] bus_A; // Output for bus A

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

79

 wire [7:0] bus_B; // Output for bus B

 // Instantiate the bus transceiver

 bus_transceiver_74LS245 uut (

 .A(A),

 .B(B),

 .DIR(DIR),

 .G(G),

 .bus_A(bus_A),

 .bus_B(bus_B)

);

 // Test procedure

 initial begin

 // Initialize inputs

 A = 8'b00000000;

 B = 8'b00000000;

 DIR = 1'b0; // Initial direction

 G = 1'b1; // Disable

 // Display initial state

 $monitor("Time: %0t | G: %b | DIR: %b | A: %b | B: %b | bus_A: %b |

bus_B: %b",

 $time, G, DIR, A, B, bus_A, bus_B);

 // Test 1: Enable and transfer from A to B

 #10;

 G = 1'b0; // Enable

 A = 8'b10101010; // Test data for A

 DIR = 1'b1; // Set direction A to B

 #10;

 // Test 2: Transfer from B to A

 B = 8'b11001100; // Test data for B

 DIR = 1'b0; // Set direction B to A

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

80

 #10;

 // Test 3: Disable transceiver

 G = 1'b1; // Disable

 #10;

 // Test 4: Check outputs when disabled

 A = 8'b11111111; // New test data for A

 B = 8'b00000000; // New test data for B

 #10;

 // End simulation

 $finish;

 end

endmodule

Result: Bus Transceiver in Verilog is designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

81

15. Simulation/Study of Static/Dynamic electrical behavior

Aim: To design a Simulation/Study of Static/Dynamic electrical behavior

using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

Simulating and studying the static and dynamic electrical behavior of digital

circuits in Verilog involves understanding and analyzing how the circuit

behaves under different conditions, focusing on both its steady-state (static)

and transient (dynamic) characteristics.

1. Static Behavior:

o Static Characteristics refer to the steady-state response of a

circuit. This includes voltage levels for logic '0' and logic '1', noise

margins, and power consumption at rest.

o Common static behavior metrics include:

 Logic Levels: Voltage levels for logical '0' and '1'.

 Noise Margins: The difference between the minimum input

voltage recognized as a logical '0' and the maximum input

voltage recognized as a logical '1'.

 Power Consumption: The power consumed by the circuit

when in a stable state.

2. Dynamic Behavior:

o Dynamic Characteristics refer to how a circuit responds to

changes over time, including delay times, rise and fall times, and

power consumption during transitions.

o Common dynamic behavior metrics include:

 Propagation Delay: Time taken for a change in input to

affect the output.

 Transition Times: Time taken for the output to switch

from low to high or vice versa.

 Power Consumption During Transitions: Power used

when the circuit changes states.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

82

Source Code:

Design Block:

module nand_gate (

 input A,

 input B,

 output Y

);

 assign Y = ~(A & B);

endmodule

Testbench:

`timescale 1ns / 1ps

module tb_nand_gate;

 // Inputs

 reg A;

 reg B;

 // Outputs

 wire Y;

 // Instantiate the NAND gate

 nand_gate uut (

 .A(A),

 .B(B),

 .Y(Y)

);

 // Test procedure

 initial begin

 // Monitor output

 $monitor("A = %b, B = %b, Y = %b", A, B, Y);

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

83

 // Test all combinations of inputs

 A = 0; B = 0; #10; // 00 -> Y = 1

 A = 0; B = 1; #10; // 01 -> Y = 1

 A = 1; B = 0; #10; // 10 -> Y = 1

 A = 1; B = 1; #10; // 11 -> Y = 0

 // End simulation

 $finish;

 end

endmodule

Result: Simulation/Study of Static/Dynamic electrical behavior in Verilog is

designed and simulated successfully.

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

84

16. Simulation/Study of CMOS logic families, Low voltage

CMOS interfacing

Aim: To design a Simulation/Study of CMOS logic families, Low voltage

CMOS interfacing using Verilog HDL.

Software Used: Vivado 2016.4

Theory:

When studying CMOS (Complementary Metal-Oxide-Semiconductor) logic

families and low-voltage CMOS interfacing, Verilog can be used to model the

behavior of CMOS circuits, allowing for the simulation of various logic families

and their interaction with low-voltage environments.

CMOS Logic Families

1. Standard CMOS: This family uses complementary PMOS and NMOS

transistors to implement logic functions. It is characterized by low

power consumption and high noise margins.

2. Low-Voltage CMOS: This variant of standard CMOS operates at lower

supply voltages (typically below 1.8V), making it suitable for battery-

operated devices. It requires careful design to ensure adequate noise

margins and switching speeds.

3. Other CMOS Variants:

o Dual-Supply CMOS: Utilizes different supply voltages for different

parts of the circuit.

o Dynamic CMOS: Reduces power consumption by using a clock

signal to control the charge and discharge of nodes.

Source Code:

Design Block:

module cmos_inverter (

 input A,

 output Y);

 assign Y = ~A;

endmodule

20EC605 /JO2A -Digital Design Using Verilog HDL Dept. of ECE

85

Testbench:

`timescale 1ns / 1ps

module tb_cmos_inverter;

 reg A;

 wire Y;

 cmos_inverter uut (

 .A(A),

 .Y(Y));

 initial begin

 // Monitor output

 $monitor("Time: %0t | A = %b, Y = %b", $time, A, Y);

 A = 0; #10; // Input 0

 A = 1; #10; // Input 1

 $finish;

 end

endmodule

Result: Simulation/Study of CMOS logic families, Low voltage CMOS

interfacing in Verilog is designed and simulated successfully.

	Even Parity Generator

