

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

1

Lab Code: 20ECL501/SOC3
MACHINE LEARNING

Lab Manual

DDeeppaarrttmmeenntt ooff EElleeccttrroonniiccss && CCoommmmuunniiccaattiioonn EEnnggiinneeeerriinngg

BBaappaattllaa EEnnggiinneeeerriinngg CCoolllleeggee :::: BBaappaattllaa

((AAuuttoonnoommoouuss))
G.B.C. Road, Mahatmajipuram, Bapatla-522102, Guntur (Dist.)

Andhra Pradesh, India.
EE--MMaaiill::bbeecc..pprriinncciippaall@@bbeeccbbaappaattllaa..aacc..iinn

WWeebb::www.becbapatla.ac.in

mailto:info@gcet.edu.in
mailto:info@gcet.edu.in

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

2

Contents

S.No. Title of the Experiment

1. Create an array using Numpy Library and perform basic operations.

2. Import a .CSV file in PANDAS Library and perform basic operations.

3. Plot the different plots in MATPLOT Library

4.

Implement and demonstrate the FIND-S algorithm for finding the most

specific hypothesis based on a given set of training data samples. Read

the training data from a .CSV file.

5.

For a given set of training data examples stored in a .CSV file,

implement and demonstrate the Candidate-Elimination algorithm to

output a description of the set of all hypotheses consistent with the

training examples.

6.

Implement the Simple Linear Regression algorithm in order to fit data

points. Select appropriate data set for your experiment and draw

graphs

7.
Implement the Logistic Regression algorithm in order to fit data points.

Select appropriate data set for your experiment and draw graphs

8.

Write a program to demonstrate the working of the decision tree

algorithm. Use an appropriate data set for building the decision tree

and apply this knowledge to classify a new sample.

9.

Apply EM algorithm to cluster a set of data stored in a .CSV file. Use

the same data set for clustering using k-Means algorithm. Compare the

results of these two algorithms and comment on the quality of

clustering.

10.

Write a program to demonstrate the working of the Support Vector

Machine (SVM). Select appropriate data set for your experiment and

draw graphs.

11.

Write a program demonstratinghow the Hierarchical Cluster Analysis

(HCA) works. Select the appropriate data set for your experiment and

draw graphs.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

3

12.

Write a program demonstrating how the Principal Component Analysis

(PCA) works. Select the appropriate data set for your experiment and

draw graphs.

13.

Write a program demonstrating how the Kernal Principal Component

Analysis (K-PCA) works. Select the appropriate data set for your

experiment and draw graphs.

14.
Write a program demonstrating how the Q-Learning Algorithm works.

Select the appropriate data set for your experiment and draw graphs.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

4

Bapatla Engineering College :: Bapatla

(Autonomous)

Vision

• To build centers of excellence, impart high quality

education and instill high standards of ethics and

professionalism through strategic efforts of our dedicated staff,

which allows the college to effectively adapt to the ever

changing aspects of education.

• To empower the faculty and students with the knowledge,

skills and innovative thinking to facilitate discovery in

numerous existing and yet to be discovered fields of

engineering, technology and interdisciplinary endeavors.

Mission

• Our Mission is to impart the quality education at par with

global standards to the students from all over India and in

particular those from the local and rural areas.

• We continuously try to maintain high standards so as to make

them technologically competent and ethically strong

individuals who shall be able to improve the quality of life and

economy of our country.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

5

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Vision

To produce globally competitive and socially responsible

Electronics and Communication Engineering graduates to

cater the ever changing needs of the society.

Mission

• To provide quality education in the domain of Electronics

and Communication Engineering with advanced

pedagogical methods.

• To provide self learning capabilities to enhance

employability and entrepreneurial skills and to inculcate

human values and ethics to make learners sensitive

towards societal issues.

• To excel in the research and development activities

related to Electronics and Communication Engineering.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

6

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Educational Objectives (PEO’s)

PEO-I: Equip Graduates with a robust foundation in mathematics,

science and Engineering Principles, enabling them to excel in

research and higher education in Electronics and Communication

Engineering and related fields.

PEO-II: Impart analytic and thinking skills in students to develop

initiatives and innovative ideas for Start-ups, Industry and societal

requirements.

PEO-III: Instill interpersonal skills, teamwork ability,

communication skills, leadership, and a sense of social, ethical, and

legal duties in order to promote lifelong learning and Professional

growth of the students.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

7

Program Outcomes (PO’s)

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and

analyze complex engineering problems reaching substantiated conclusions

using first principles of mathematics, natural sciences, and engineering

sciences.

PO3. Design/development of solutions: Design solutions for complex

engineering problems and design system components or processes that meet

the specified needs with appropriate consideration for the public health and

safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based

knowledge and research methods including design of experiments, analysis

and interpretation of data, and synthesis of the information to provide valid

conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and

modeling to complex engineering activities with an understanding of the

limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

PO7.Environment and sustainability: Understand the impact of the

professional engineering solutions in societal and environmental contexts, and

demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

PO9. Individual and Teamwork: Function effectively as an individual, and as

a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering

activities with the engineering community and with society at large, such as,

being able to comprehend and write effective reports and design

documentation, make effective presentations, and give and receive clear

instructions.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

8

PO11. Project management and finance: Demonstrate knowledge and

understanding of the engineering and management principles and apply these

to one’s own work, as a member and leader in a team, to manage projects and

in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for and have the preparation

and ability to engage in independent and life-long learning in the broadest

context of technological change.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

9

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Specific Outcomes (PSO’s)

PSO1: Develop and implement modern Electronic Technologies

using analytical methods to meet current as well as future

industrial and societal needs.

PSO2: Analyze and develop VLSI, IoT and Embedded Systems for

desired specifications to solve real world complex problems.

PSO3: Apply machine learning and deep learning techniques in

communication and signal processing.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

10

MACHINE LEARNING

III B.Tech. V Semester (Code:20ECL501/SOC3)
Lectures : 1

Hours/Week
Tutorial : 0

Hour/Week
Practica
l

: 2
Hours/Week CIE

Marks
: 30 SEE

Marks
: 70 Credits : 2

Pre-Requisite: None

Course Objectives: Students will learn how to

 Understand how a machine learns and various applications of machine
learning Distinguish between classification and regression

 Fundamentals of Artificial neural networks

 Gain knowledge in Support Vector Machine and Baye’s classifier
principles.

Course Outcomes: After studying this course, the students will be able to

CO1 Analyze the mathematical and statistical prospective of machine
learning algorithms through python programming

CO2 Evaluate the machine learning models pre-processed through various
features

CO3

Design and develop the code for recommender system using Natural
Language

Processing.

CO4 Apply various Baye’s techniques for data clustering.

Mapping of Course Outcomes with Program Outcomes & Program
Specific Outcomes PO’s PSO’s

CO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3
CO1 2 2 3 3 3
CO2 3 3 3 3
CO3 3 3 3 3
CO4 2 2 3 3

AVG 2.5 2.5 3 3 3

 Syllabus

UNIT-1 (12 Hours)

INTRODUCTION - Towards Intelligent Machines, Well-Posed Machine
Learning Problems, Examples of Applications in Diverse Fields, Data

Representation, Domain Knowledge for Productive use of Machine Learning,
Machine Learning and Data Mining. UNIT-2 (12 Hours)

DECISION TREE LEARNING – Introduction, Decision tree representation,

Appropriate problems for decision tree learning. Linear Regression with Least
Square Error Criterion, Logistic Regression for Classification Tasks, Fisher’s
Linear Discriminant and Thresholding for Classification Minimum Description

Length Principle. UNIT-3 (12 Hours)

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

11

ARTIFICIAL NEURAL NETWORKS– Neural network representation,

Appropriate problems for neural network learning, Perceptrons - Gradient
descent and the Deltarule, Multilayer networks and The back propagation
algorithm. UNIT-4 (12 Hours)

BAYESIAN LEARNING – Bayes theorem, Learning with Support Vector

Machines (SVM), Variants of Basic SVM Techniques.

PRACTICAL EXERCISES

S.No. Title of the Experiment

1. Create an array using Numpy Library and perform basic operations.

2. Import a .CSV file in PANDAS Library and perform basic operations.

3. Plot the different plots in MATPLOT Library

4.

Implement and demonstrate the FIND-S algorithm for finding the most

specific hypothesis based on a given set of training data samples. Read

the training data from a .CSV file.

5.

For a given set of training data examples stored in a .CSV file,

implement and demonstrate the Candidate-Elimination algorithm to

output a description of the set of all hypotheses consistent with the

training examples.

6.

Implement the Simple Linear Regression algorithm in order to fit data

points. Select appropriate data set for your experiment and draw

graphs

7.
Implement the Logistic Regression algorithm in order to fit data points.

Select appropriate data set for your experiment and draw graphs

8.

Write a program to demonstrate the working of the decision tree

algorithm. Use an appropriate data set for building the decision tree

and apply this knowledge to classify a new sample.

9.

Apply EM algorithm to cluster a set of data stored in a .CSV file. Use

the same data set for clustering using k-Means algorithm. Compare the

results of these two algorithms and comment on the quality of

clustering.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

12

10.

Write a program to demonstrate the working of the Support Vector

Machine (SVM). Select appropriate data set for your experiment and

draw graphs.

11.

Write a program demonstratinghow the Hierarchical Cluster Analysis

(HCA) works. Select the appropriate data set for your experiment and

draw graphs.

12.

Write a program demonstratinghow the Principal Component Analysis

(PCA) works. Select the appropriate data set for your experiment and

draw graphs.

13.

Write a program demonstrating how the KernalPrincipal Component

Analysis (K-PCA) works. Select the appropriate data set for your

experiment and draw graphs.

14.
Write a program demonstrating how the Q-Learning Algorithm works.

Select the appropriate data set for your experiment and draw graphs.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

13

1. Numpy Library

Aim: To write a Python to implement of operations on matrices using

numpy library.

Software Required:

Google Colab

Theory:

Numpy is a Python package which means ‘Numerical Python’. It is the

library for logical computing, which contains a powerful n-dimensional

array object, gives tools to integrate C, C++ and so on. It is likewise helpful

in linear based math, arbitrary number capacity and so on. NumPy exhibits

can likewise be utilized as an effective multi-dimensional compartment for

generic data. NumPy Array: Numpy array is a powerful N-dimensional array

object which is in the form of rows and columns. We can initialize NumPy

arrays from nested Python lists and access it elements. A Numpy array on a

structural level is made up of a combination of:

• The Data pointer indicates the memory address of the first byte in the

array.

• The Data type or dtype pointer describes the kind of elements that are

contained within the array.

• The shape indicates the shape of the array.

• The strides are the number of bytes that should be skipped in

memory to go to the next element.

Program:

i. Basic Data Structures in Python List, tuple, set and Dictionary

import numpy as np

a=[1,2,3] #creating a list, list is mutable

print(a)

a.append(4)

https://colab.google/
https://colab.google/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

14

print(a)

b=(3,4) #creating a tuple, tuple is immutable, i.e.,

#elements can neither be added nor deleted.

c={1,3,5,7,7} #creating a set, set is mutable and duplicate elementsare

removed.

c.add(11)

print(c)

#Dictionary in Python is a collection of key-value pairs

#used to store data values like a map,

dict={1:'study',2:'play',3:'sleep'}

print(dict)

print(dict.keys())

print(dict.values())

ii. Creating Arrays

import numpy as np

a=np.array([1,2,3])

b=np.array([(1,2,3),(4,5,6)])

print(np.zeros(3))

print(np.ones((3,4)))

print(np.eye(5))

print(np.full((2,3),8))

print(np.random.random(5))

print(np.random.rand(2,3))

print(np.random.randint(1,10))

print(np.arange(0,10,1))

iii. Inspecting Properties

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

15

import numpy as np

data1=np.array([[1,2,3],[4,5,6],[7,8,9]])

print(data1)

print(np.size(data1)) #Retuns total number of elements in the array

print(np.ndim(data1))#Returns number of dimensions of array

print(np.shape(data1)) #Returns tuple of integers representing

#the size of the array in each dimension

data2=np.array([9,7,1,2])

print(data2.dtype)

iv. Copying/Sorting/Reshaping

import numpy as np

a=np.array([1,2,3,4])

b=np.array([[1,2,3],[4,5,6],[7,8,9]])

s=np.copy(a) #Copies array to new memory

print(s)

print(b.flatten()) #Flattens 2D array to 1D array

print(b.reshape(9,1))

print(np.resize(b,(2,2)))

v. Adding/Removing Elements

b1=np.array([1,2,3,4,5])

print(np.append(b1,3)) #appends values to end of the array.

print(np.insert(b1,3,6)) #Inserts value into the array before index 3.

b2=np.array([[4,-2,1],[1,-3,0],[2,0,-1]])

print(b2)

b3=np.insert(b2,1,2,axis=1)#inserts a column of all 2's at index 1 of the

array

print(b3)

print(np.delete(b2,1,axis=0)) #Deletes row at index 1 of the array

print(np.delete(b2,0,axis=1)) #Deletes column at index 0 the array

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

16

vi. Combining/Splitting

import numpy as np

a1=np.array([[1,2,3],[3,4,5],[6,7,8]])

print(a1)

b1=np.array([[5,6,7],[7,8,9],[1,2,3]])

print(b1)

c1=np.concatenate((a1,b1),axis=0)

d1=np.concatenate((a1,b1),axis=1)

print(c1)

print(d1)

print(np.hsplit(a1,1))

print(np.vsplit(a1,1))

vii. Indexing/Slicing/Subsetting

import numpy as np

a=np.array([1,2,3,4,5,6,7])

a[3]=0 #Assigns the array element on index 3 the value of 0

print(a[2:5]) #Returns the elements at indices 2,3,4,5

b=np.array([[1,2,3],[4,5,6],[7,8,9]])

b[1,2]=-12 #Assigning the value -12 to element at index [1][2]

print(b)

print(b[1,:])

print(b[:,2])

print(b[0:2])

print(b[:,1:2])

print(b[:,[1,2]]) #selecting multiple columns at a time

print(b[[0,2],:]) #selecting multiple rows at a time

print(b<5) #Returns array with boolean values

print(b[b<5]) #Returns array elements smaller than 5

print(b.T) #Returns transpose of the array

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

17

viii. Scalar Math

data1=np.array([3,1,2,-4,5])

print(data1)

Performs scalar arithmetic on the array

print((np.add(data1,1)),(np.subtract(data1,2)),

(np.multiply(data1,-1)))

ix. Vector Math

a1=np.array([2.7,3.1,-4.3,-5.8])

a2=np.array([1,0,9,7])

print((np.add(a1,a2)),(np.subtract(a1,a2)),

(np.multiply(a1,a2)))

print(np.array_equal(a1,a2))

print(np.log(a1)) #Natural log of each element in the array

print(np.abs(a1)) #Absolute value of each element in the array

print(np.ceil(a1)) #Rounds up to the nearest int

a3=[1.7,2.1,3.6,5.3,6.2,9.5]

print(np.floor(a3)) #Rounds down to the nearest int

print(np.round(a3)) #Rounds to the nearest integer

x. Statistics

a1=np.array([1,2,3,7,8]) #creates a numpy array

print(np.min(a1),np.max(a1),np.sum(a1))

#Returns mean, variance and standard deviation of the array.

print(np.mean(a1),np.var(a1),np.std(a1))

a2=np.array([[1,2,3],[4,5,6],[7,8,9]])

print(np.var(a2,axis=1)) #Returns variance of the array.

print(np.corrcoef(a2[1:],a2[2:])) #Returns correlation coefficient of the array

Result: Hence, successfully implemented the basic operations on matrices

using numpy library.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

18

2. Pandas Library

Aim: To write a Python program for the implementation of data framing

and some perform basic operations using pandas library.

Software Required:

Google Colab

Theory:

Pandas is a powerful data manipulation and analysis library for Python. It

provides versatile data structures like series and dataframes, making it

easy to work with numeric values. In this article, we will explore five

different methods for performing numeric value operations in Pandas, along

with code examples to demonstrate their usage. Numeric value operations

in Pandas Python form the backbone of efficient data analysis, offering a

streamlined approach to handling numerical data. With specialized data

structures like Series and Data Frame, Pandas simplifies arithmetic

operations, statistical calculations, and data aggregation.

Program:

i. Importing.csv file into Colab Notebook as A DataFrame

from google.colab import

files uploaded=files.upload()

import pandas as pd

 import io

df=pd.read_csv(io.BytesIO(uploaded['enjoysport.csv']))

print(df)

import numpy as np

import pandas as pd

data1=[1,7,2] data1 = pd.Series(data1, index = ['x','y','z'])

https://colab.google/
https://colab.google/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

19

#Creates a Series

 #type data structure with specified index.Default ind ex is

#integers starting from 0.

print(data1,type(data1))

print(data1['y'])#Returns value at index 'y.' #Creating a Dictionary.

data2={"Age":[25,45,22,36,29,60],"Height(inft)":[5.6,6.1,4.9,5.7,5.1,5.9],

"Qualification":["B.Tech",'B.Tech','M.Phil','Ph.D','B.Sc','CA'],

"Salary":[18000,90000,20000,50000,40000,100000],

"Married":[False,True,True,False,True,True]}

#Converts Dictionary into a DataFrame with specified index.

data2=pd.DataFrame(data2,index=['Ram','Krishna','Sita','Prasad','Gayatri','S

hankar']) print(data2,type(data2))

ii. Finding Summary of the DataFrame

data2.info()

data2.describe()

iii. Displaying Entries of the DataFrame print(data2.columns)

print(data2.index) print(data2.values) print(data2.head())

print(data2.head(2))

iv. Displaying Entries of the DataFrame print(data2.columns)

print(data2.index)

print(data2.values)

print(data2.head())

print(data2.head(2))

v. Slicing and Indexing of DataFrame

print(data2['Salary'])

print(data2['Krishna':'Gayatri'])

print(data2[0:2])

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

20

print(data2[-3:])

print(data2['Qualification'][1:3]) print(data2.loc['Ram':'Krishna','Height(in

ft)':'Qual ification'])

print(data2.iloc[0:2,1:3])

print(data2['Age']<40])

vi. Removing a Column or a Row from a DataFrame

a=data2.drop('Age',axis=1)

print(a)

b=data2.drop('Sita',axis=0)

print(b)

vii. Adding a Column/Row to a DataFrame

address=['Kkd','Rjy','Bpt','Slo','Ong','Bza',] data2['Address']=address

print(data2)

data2.loc[len(data2.index)]=[18,5.2,'MCA',10000,'False','vskp']

print(data2)

viii. Shuffling, Sorting and Grouping #Shuffling a Data Set

c=data2.reindex(np.random.permutation(data2.index))

print(c)

#Sorting

d=data2.sort_values(by='Salary',ascending=True)

print(d)

e=data2.groupby('Qualification').count()

print(e)

Result: Hence, successfully implemented the basic operations and data

framing using panda’s library.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

21

3. Matplot Library

Aim: To write a Python program for the plotting of basic mathematical plots

using matplotlib.pyplot library.

Software Required:

Google Colab

Theory:

Matplotlib is a powerful plotting library in Python used for creating static,

animated, and interactive visualizations. Matplotlib’s primary purpose is to

provide users with the tools and functionality to represent data graphically,

making it easier to analyze and understand. It was originally developed by

John D. Hunter in 2003 and is now maintained by a large community of

developers. Matplotlib is easy to use and an amazing visualizing library in

Python. It is built on NumPy arrays and designed to work with the broader

SciPy stack and consists of several plots like line, bar, scatter, histogram,

etc.

Program:

import numpy as np

import matplotlib.pyplot as plt

x=np.linspace(0,10,100)

y=x*x

plt.figure(figsize=(4,2))

plt.plot(x,y)

plt.title('Square function')

plt.xlabel("x")

plt.ylabel("x^2")

plt.figure(figsize=(5,5))

plt.plot(x,np.sin(x))

plt.title('sin(x)')

https://colab.google/
https://colab.google/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

22

plt.xlabel("x")

plt.ylabel("sin(x)")

plt.figure(figsize=(6,3))

plt.plot(x,np.tan(x))

plt.title('Tangent function')

plt.xlabel("x")

plt.ylabel("tan(x)")

plt.figure(figsize=(3,3))

plt.plot(x,np.exp(x))

plt.title('Exponential function')

plt.xlabel("x")

plt.ylabel("e^x")

i. Scatter Plot

x=(np.random.random(10)*10).round(1)

y=(np.random.random(10)*10).round(2)

print(x,y,sep="\n")

plt.figure(figsize=(5,5))

plt.scatter(x,y)

plt.xlabel('x')

plt.ylabel('y')

ii. Bar Plot

items=np.array(['Coke','Pepsi','Fanta','Maaza','Mirin

da'])

qty=np.array([100,85,20,30,45])

plt.bar(items,qty)

plt.title('Sales')

plt.xlabel('Beverages')

plt.ylabel('Qty Sold')

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

23

iii. Pie Plot

plt.pie(qty,labels=items,autopct='%0.1f')#autopct is

used to la

#wedge with their numerical value.

plt.title("% of Sales")

iv. Histogram

import numpy as np

from matplotlib import pyplot as plt

marks=np.random.randint(0,100,60)

grade_intervals=[0,30,50,80,100]

#print(marks)

plt.hist(marks,grade_intervals)

plt.title('Student Grades')

plt.xlabel('Percentage')

plt.ylabel('No.of Students')

v. Box Plot

math_marks=np.random.randint(10,100,180)

phy_marks=np.random.randint(0,100,180)

chem_marks=np.random.randint(30,100,180)

marks=[math_marks,phy_marks,chem_marks]

plt.boxplot(marks,labels=['Maths','Physics','Chemistry'])

Result: Hence, successfully implemented the basic mathematical plots

using matplot library.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

24

4. FIND-S Algorithm

Aim: To write a Python program for the implementation of the Find-S

Algorithm for the given data set.

Software Required:

Google Colab

Theory:

The find-S algorithm is a basic concept learning algorithm in machine

learning. The find-S algorithm finds the most specific hypothesis that fits

all the positive examples. We have to note here that the algorithm considers

only those positive training example. The find-S algorithm starts with the

most specific hypothesis and generalizes this hypothesis each time it fails

to classify an observed positive training data. Hence, the Find-S algorithm

moves from the most specific hypothesis to the most general hypothesis.

Program:

from google.colab import files

uploaded=files.upload()

from google.colab.output import enable_custom_widget_manager

import pandas as pd

import numpy as np

import io

#to read the data in the csv file

df=pd.read_csv(io.BytesIO(uploaded['walkinghyp.csv']))

print(df)

#making an array of all the attributes

d=np.array(df)[:,:-1]

print(d)

#segragating the target that has positive and negative examples

https://colab.google/
https://colab.google/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

25

target = np.array(df)[:,-1]

print("The target is: ",target)

#training function to implement find-s algorithm

def train(c,t):

 for i, val in enumerate(t):

 if val == "Yes":

 specific_hypothesis= c[i].copy()

 break

for i, val in enumerate(c):

 if t[i] == "Yes":

 for x in range(len(specific_hypothesis)):

 if val[x] != specific_hypothesis[x]:

 specific_hypothesis[x] ='?'

else:

 pass

 return specific_hypothesis

print("The final hypothesis is:",train(d,target))

Data Set:

Expected Output:

The final hypothesis is: ['?' 'Sunny' '?' 'Yes' '?' '?']

Result: Hence, the Final Specific hypothesis is calculated for a given data

set by using Find-S algorithm

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

26

5. Candidate-Elimination Algorithm

Aim: To write a Python program for the implementation of the Candidate-

Elimination Algorithm for the given data set.

Software Required:

Google Colab

Theory:

The candidate elimination algorithm incrementally builds the version space

given a hypothesis space H and a set E of examples. The examples are added

one by one; each example possibly shrinks the version space by removing the

hypotheses that are inconsistent with the example. The candidate elimination

algorithm does this by updating the general and specific boundary for each

new example.

Step1: Load Data set

Step2: Initialize General Hypothesis and Specific Hypothesis.

Step3: For each training example

Step4: If example is positive example

 if attribute_value == hypothesis_value:

 Do nothing

 else:

 replace attribute value with '?' (Basically generalizing it)

Step5: If example is Negative example

 Make generalize hypothesis more specific.

Program:

from google.colab import files

uploaded=files.upload()

from google.colab.output import enable_custom_widget_manager

import numpy as np

https://colab.google/
https://colab.google/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

27

import pandas as pd

data = pd.DataFrame(data=pd.read_csv('cedatanew.csv'))

print(data)

concepts = np.array(data.iloc[:,0:-1])

print(concepts)

target = np.array(data.iloc[:,-1])

print(target)

def learn(concepts, target):

 specific_h = concepts[0].copy()

 print("initialization of specific_h and general_h")

 print(specific_h)

 general_h = [["?" for i in range(len(specific_h))] for i in range(len(specific_h))]

 print(general_h)

 for i, h in enumerate(concepts):

 if target[i] == "yes":

 for x in range(len(specific_h)):

 if h[x]!= specific_h[x]:

 specific_h[x] ='?'

 general_h[x][x] ='?'

 print(specific_h)

 print(general_h)

 if target[i] == "no":

 for x in range(len(specific_h)):

 if h[x]!= specific_h[x]:

 general_h[x][x] = specific_h[x]

 else:

 general_h[x][x] = '?'

 print(" steps of Candidate Elimination Algorithm",i+1)

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

28

 print(specific_h)

 print(general_h)

 indices = [i for i, val in enumerate(general_h) if val ==['?', '?', '?', '?', '?', '?']]

 for i in indices:

 general_h.remove(['?', '?', '?', '?', '?', '?'])

 return specific_h, general_h

s_final, g_final = learn(concepts, target)

print("Final Specific_h:", s_final, sep="\n")

print("Final General_h:", g_final, sep="\n")

Data Set:

Expected Output:

Final Specific_h: ['sunny' 'warm' '?' 'strong' '?' '?']

Final General_h: [['sunny', '?', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?', '?']]

Result: Hence, the Final Specific hypothesis and Final General are calculated

for a given data set by using Candidate elimination algorithm.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

29

6. Simple Linear Regression Algorithm

Aim: To write a Python program for the implementation of the Simple Linear

Regression Algorithm for the separation of the given data set.

Software Required:

Google Colab

Theory:

Regression: It predicts the continuous output variables based on the

independent input variable. like the prediction of house prices based on

different parameters like house age, distance from the main road, location,

area, etc. Linear regression is also a type of machine-learning algorithm more

specifically a supervised machine-learning algorithm that learns from the

labelled datasets and maps the data points to the most optimized linear

functions. which can be used for prediction on new datasets. Linear regression

makes predictions for continuous/real or numeric variables such as sales,

salary, age, product price, etc. Linear regression algorithm shows a linear

relationship between a dependent (y) and one or more independent (y)

variables, hence called as linear regression. Since linear regression shows the

linear relationship, which means it finds how the value of the dependent

variable changes according to the value of the independent variable.

Program:

from google.colab import files

uploaded=files.upload()

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import io

df=pd.read_csv(io.BytesIO(uploaded['MBA Salary.csv']))

https://colab.google/
https://colab.google/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

30

print(df)

x=df.iloc[:,-2]

x=x.values

x=x.reshape(-1,1)

print(x)

y=df.iloc[:,-1]

y=y.values

y=y.reshape(-1,1)

print(y)

plt.scatter(x,y)

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.05)

x_train=x_train/max(x_train)

y_train=y_train/max(y_train)

print(y_train)

x_test=x_test/max(x_test)

y_test=y_test/max(y_test)

print(y_test)

from sklearn.linear_model import LinearRegression

model=LinearRegression()

model.fit(x_train,y_train)

print('model intercept:',model.intercept_)

print('model coefficients',model.coef_)

plt.scatter(x_train, y_train)

plt.plot(x_train, model.predict(x_train))

y_pred=model.predict(x_test)

print(y_pred)

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

31

from sklearn.metrics import mean_squared_error

print(mean_squared_error(y_test,y_pred))

plt.scatter(x_test,y_test)

plt.plot(x_test,y_pred)

Data Set:

Expected Output:

model intercept: [-0.57941749]

model coefficients [[1.46641514]]

Result: Hence, the model intercept and model coefficients are calculated for a

given data set by using linear regression algorithm

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

32

7. Logistic Regression Algorithm

Aim: To write a Python program for the implementation of the Logistic

Regression Algorithm for the given data set and to find its accuracy.

Software Required:

Google Colab

Theory:

Logistic regression is a supervised machine learning algorithm used for

classification tasks where the goal is to predict the probability that an instance

belongs to a given class or not. Logistic regression is a statistical algorithm

which analyze the relationship between two data factors.For example, we have

two classes Class 0 and Class 1 if the value of the logistic function for an input

is greater than 0.5 (threshold value) then it belongs to Class 1 otherwise it

belongs to Class 0. It’s referred to as regression because it is the extension of

linear regression but is mainly used for classification problems.

Program:

from google.colab import files

uploaded=files.upload()

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import io

import seaborn as sns

df=pd.re

ad_csv(io.BytesIO(uploaded['User_Data.csv']))

print(df)

https://colab.google/
https://colab.google/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

33

X = df.iloc[:, [2,3]].values

Y = df.iloc[:, 4].values

X

Y

Splitting the dataset into the Training set and Test set

from sklearn.model_selection import train_test_split

X_Train, X_Test, Y_Train, Y_Test = train_test_split(X, Y, test_size = 0.25, rando

m_state = None)

Fitting the Logistic Regression into the Training set

from sklearn.linear_model import LogisticRegression

classifier = LogisticRegression(random_state = 0)

classifier.fit(X_Train, Y_Train)

Y_Pred = classifier.predict(X_Test)

Y_Pred

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(Y_Test, Y_Pred)

cm

Heatmap of Confusion matrix

sns.heatmap(pd.DataFrame(cm), annot=True)

from sklearn.metrics import accuracy_score

accuracy =accuracy_score(Y_Test, Y_Pred)

accuracy

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

34

Data Set:

Expected Output:

Accuracy: 0.61

Result: Hence, the Accuracy and Confusion matrix is calculated for a given

data set using logistic regression algorithm

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

35

8. Decision Tree Algorithm

Aim: To write a Python program for the implementation of the Decision Tree

Algorithm for the given data set and to find its accuracy and confusion matrix.

Software Required:

Google Colab

Theory:

A decision tree is a flowchart-like structure used to make decisions or

predictions. It consists of nodes representing decisions or tests on attributes,

branches representing the outcome of these decisions, and leaf nodes

representing final outcomes or predictions. Each internal node corresponds to

a test on an attribute, each branch corresponds to the result of the test, and

each leaf node corresponds to a class label or a continuous value.

The process of creating a decision tree involves:

1. Selecting the Best Attribute: Using a metric like Gini impurity, entropy,

or information gain, the best attribute to split the data is selected.

2. Splitting the Dataset: The dataset is split into subsets based on the

selected attribute.

3. Repeating the Process: The process is repeated recursively for each

subset, creating a new internal node or leaf node until a stopping

criterion is met (e.g., all instances in a node belong to the same class or

a predefined depth is reached).

Unsupervised Machine Learning is the process of teaching a computer

to use unlabeled, unclassified data and enabling the algorithm to

operate on that data without supervision. Without any previous data

training, the machine’s job in this case is to organize unsorted data

according to parallels, patterns, and variations.

https://colab.google/
https://colab.google/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

36

Program:

import numpy as np

import pandas as pd

from sklearn.metrics import confusion_matrix

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report

import io

data=pd.read_csv(io.BytesIO(uploaded['Iris.csv']))

print(data)

x=data.values[:,1:5]

y=data.values[:,-1]

y=y.reshape(-1,1)

#print(y)

#print(x)

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

#Perform training with GiniIndex

clf_gini=DecisionTreeClassifier(criterion='gini',rand

om_state=100,max_depth=3)

clf_gini.fit(x_train,y_train)

#Perform training with Entropy

clf_entropy=Decision Tree Classifier (criterion='entropy', random_state=100,

max_depth=3)

clf_entropy.fit(x_train,y_train)

y_pred=clf_entropy.predict(x_test)

print("Confusion Matrix:",confusion_matrix(y_test, y_pred))

print ("Accuracy :",accuracy_score(y_test,y_pred)*100)

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

37

Data Set:

Expected Output:

Confusion Matrix: [[20 0 0]

 [0 8 0]

 [0 1 16]]

Accuracy: 97.77777777777777

Result: Hence, the Accuracy and Confusion matrix is calculated for a given

data set using decision tree algorithm

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

38

9. K-Means Algorithm

Aim: To write a Python program for the implementation of the K-Means

Algorithm to classify the given data set.

Software Required:

Google Colab

Theory:

Kmeans clustering, assigns data points to one of the K clusters depending on

their distance from the center of the clusters. It starts by randomly assigning

the clusters centroid in the space. Then each data point assign to one of the

cluster based on its distance from centroid of the cluster. After assigning each

point to one of the cluster, new cluster centroids are assigned. This process

runs iteratively until it finds good cluster. In the analysis we assume that

number of cluster is given in advanced and we have to put points in one of the

group.

In some cases, K is not clearly defined, and we have to think about the optimal

number of K. K Means clustering performs best data is well separated. When

data points overlapped this clustering is not suitable. K Means is faster as

compare to other clustering technique. It provides strong coupling between the

data points. K Means cluster do not provide clear information regarding the

quality of clusters. Different initial assignment of cluster centroid may lead to

different clusters. Also, K Means algorithm is sensitive to noise. It may have

stuck in local minima.

Program:

from google.colab import files

uploaded=files.upload()

import numpy as nm

https://colab.google/
https://colab.google/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

39

import matplotlib.pyplot as mtp

import pandas as pd

import io

dataset = pd.read_csv(io.BytesIO (uploaded['Iris.csv']))

print(dataset)

x = dataset.iloc[:, [3, 4]].values

#finding optimal number of clusters using the elbow method

from sklearn.cluster import KMeans

wcss_list= [] #Initializing the list for the values of WCSS

#Using for loop for iterations from 1 to 10.

for i in range(1, 11):

 kmeans = KMeans(n_clusters=i, init='k means++', random_state= 42)

 kmeans.fit(x)

 wcss_list.append(kmeans.inertia_)

mtp.plot(range(1, 11), wcss_list)

mtp.title('The Elobw Method Graph')

mtp.xlabel('Number of clusters(k)')

mtp.ylabel('wcss_list')

mtp.show()

#training the K-means model on a dataset

kmeans = KMeans(n_clusters=5, init='k-means++', random_state= 42)

y_predict= kmeans.fit_predict(x)

#visulaizing the clusters

mtp.scatter(x[y_predict == 0, 0], x[y_predict == 0, 1], s = 100, c =

'blue', label = 'Cluster 1') #for first cluster

mtp.scatter(x[y_predict == 1, 0], x[y_predict == 1, 1], s = 100, c =

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

40

'green', label = 'Cluster 2') #for second cluster

mtp.scatter(x[y_predict== 2, 0], x[y_predict == 2, 1], s = 100, c =

'red', label = 'Cluster 3') #for third cluster

mtp.scatter(x[y_predict == 3, 0], x[y_predict == 3, 1], s = 100, c =

'cyan', label = 'Cluster 4') #for fourth cluster

mtp.scatter(x[y_predict == 4, 0], x[y_predict == 4, 1], s = 100, c =

'magenta', label = 'Cluster 5') #for fifth cluster

mtp.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s =

300, c = 'yellow', label ='Centroid')

mtp.title('Clusters of customers')

mtp.xlabel('PETAL LENGTH')

mtp.ylabel('PETAL WIDTH')

mtp.legend()

mtp.show()

Data Set:

Expected Output:

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

41

Result: Hence the data is classified for a given data set by using K-Means

Algorithm.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

42

10. Support Vector Machine

Aim: To write a Python program for the implementation of the Support Vector

Machine for the given data set and to find its accuracy.

Software Required:

Google Colab

Theory:

Support Vector Machine (SVM) is a supervised machine learning algorithm

used for both classification and regression. Though we say regression problems

as well it’s best suited for classification. The main objective of the SVM

algorithm is to find the optimal hyperplane in an N-dimensional space that can

separate the data points in different classes in the feature space. The

hyperplane tries that the margin between the closest points of different classes

should be as maximum as possible. The dimension of the hyperplane depends

upon the number of features. If the number of input features is two, then the

hyperplane is just a line. If the number of input features is three, then the

hyperplane becomes a 2-D plane. It becomes difficult to imagine when the

number of features exceeds three.

Program:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from google.colab import files

uploaded=files.upload()

data=pd.read_csv('Iris.csv')

data.head()

#Encoding the categorical column

https://colab.google/
https://colab.google/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

43

data=data.replace({"Species": {"Iris-setosa":1,"Iris versicolor":2,"Iris-

virginica":3}})

#Visualize the new dataset

data.head()

#plt.figure(1)

sns.heatmap(data.corr())

plt.title('Correlation On iris Classes')

x = data.iloc[:,:-1]

y = data.iloc[:, -1].values

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test = train_test_split(x, y

, test_size = 0.25, random_state = 0)

#Create the SVM model

from sklearn.svm import SVC

classifier = SVC(kernel = 'linear', random_state = 0)

#Fit the model for the data

classifier.fit(x_train, y_train)

#Make the prediction

y_pred = classifier.predict(x_test)

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

print(cm)

from sklearn.metrics import accuracy_score

print ("Accuracy:",accuracy_score(y_test,y_pred)*100

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

44

Data Set:

Expected Output:

[[13 0 0]

[0 16 0]

[0 0 9]]

Accuracy : 100.0

Result: Hence, the accuracy is calculated for given data set for support vector

machine.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

45

11. Hierarchical Cluster Analysis (HCA)

Aim: To write a Python program for the implementation of the Hierarchical

Cluster Analysis (HCA) on a dataset and visualise the resulting dendrogram.

Software Required:

Google Colab

Theory:

Hierarchical cluster analysis is an algorithm that groups similar objects into

groups called clusters. The endpoint is a set of clusters, where each cluster is

distinct from each other cluster, and the objects within each cluster are

broadly similar to each other.

Hierarchical clustering is an unsupervised learning method for clustering data

points. The algorithm builds clusters by measuring the dissimilarities between

data. Unsupervised learning means that a model does not have to be trained,

and we do not need a "target" variable. This method can be used on any data to

visualize and interpret the relationship between individual data points.

Program:

import pandas as pd

import numpy as np

from scipy.cluster.hierarchy import dendrogram, linkage

from sklearn.preprocessing import StandardScaler

import matplotlib.pyplot as plt

import seaborn as sns

from google.colab import files

uploaded = files.upload() # Use this to upload your CSV file

Assuming the uploaded file is 'data.csv'

https://colab.google/
https://colab.google/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

46

df = pd.read_csv('data.csv')

df.head() # Display the first few rows of the dataset

Drop rows with missing values (if any)

df = df.dropna()

Select numerical features for clustering

X = df.select_dtypes(include=[np.number])

Standardize the data

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

Create linkage matrix

Z = linkage(X_scaled, method='ward')

plt.figure(figsize=(10, 7))

dendrogram(Z)

plt.title('Dendrogram for Hierarchical Clustering')

plt.xlabel('Samples')

plt.ylabel('Distance')

plt.show()

from scipy.cluster.hierarchy import cut_tree

clusters = cut_tree(Z, n_clusters=3) # Example: 3 clusters

df['Cluster'] = clusters

sns.scatterplot(x=X_scaled[:, 0], y=X_scaled[:, 1], hue=df['Cluster'])

plt.title('Clusters Visualization')

plt.show()

Result:

Hence, Summarize the findings of the hierarchical cluster analysis, including

the number of clusters, the characteristics of each cluster, and any insights

gained from the dendrogram.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

47

12. Principal Component Analysis (PCA)

Aim: To write a Python program for the implementation of the Principal

Component Analysis for the given data set and to find its Final Principal

component.

Software Required:

Google Colab

Theory:

As the number of features or dimensions in a dataset increases, the amount of

data required to obtain a statistically significant result increases exponentially.

This can lead to issues such as overfitting, increased computation time, and

reduced accuracy of machine learning models this is known as the curse of

dimensionality problems that arise while working with high-dimensional data.

As the number of dimensions increases, the number of possible combinations

of features increases exponentially, which makes it computationally difficult to

obtain a representative sample of the data. It becomes expensive to perform

tasks such as clustering or classification because the algorithms need to

process a much larger feature space, which increases computation time and

complexity. Additionally, some machine learning algorithms can be sensitive to

the number of dimensions, requiring more data to achieve the same level of

accuracy as lower-dimensional data.

To address the curse of dimensionality, Feature engineering techniques are

used which include feature selection and feature extraction. Dimensionality

reduction is a type of feature extraction technique that aims to reduce the

number of input features while retaining as much of the original information as

possible.

In this article, we will discuss one of the most popular dimensionality reduction

techniques i.e. Principal Component Analysis(PCA).

https://colab.google/
https://colab.google/
https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/videos/curse-of-dimensionality-in-machine-learning/
https://www.geeksforgeeks.org/what-is-feature-engineering/
https://www.geeksforgeeks.org/dimensionality-reduction/
https://www.geeksforgeeks.org/dimensionality-reduction/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

48

Program:

Importing PCA

from sklearn.decomposition import PCA

Let's say, components = 2

pca = PCA(n_components=2)

pca.fit(Z)

x_pca = pca.transform(Z)

Create the dataframe

df_pca1 = pd.DataFrame(x_pca,

 columns=['PC{}'.

 format(i+1)

 for i in range(n_components)])

print(df_pca1)

giving a larger plot

plt.figure(figsize=(8, 6))

plt.scatter(x_pca[:, 0], x_pca[:, 1],

 c=cancer['target'],

 cmap='plasma')

labeling x and y axes

plt.xlabel('First Principal Component')

plt.ylabel('Second Principal Component')

plt.show()

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

49

Data Set:

 PC1 PC2
0 9.184755 1.946870

1 2.385703 -3.764859
2 5.728855 -1.074229

3 7.116691 10.266556
4 3.931842 -1.946359
..

564 6.433655 -3.573673
565 3.790048 -3.580897

566 1.255075 -1.900624
567 10.365673 1.670540
568 -5.470430 -0.670047

[569 rows x 2 columns]

Expected Output:

Result: Hence, the Final Principal component is calculated for given data set

for Principal Component Analysis.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

50

13.Kernal Principal Component Analysis (K-PCA)

Aim: To write a Python program for the implementation of the Kernal Principal

Component Analysis for the given data set and apply the kernel PCA to a non-

linear dataset using scikit-learn

Software Required:

Google Colab

Theory:

is a tool which is used to reduce the dimension of the data. It allows us to

reduce the dimension of the data without much loss of information. PCA

reduces the dimension by finding a few orthogonal linear combinations

(principal components) of the original variables with the largest variance. The

first principal component captures most of the variance in the data. The second

principal component is orthogonal to the first principal component and

captures the remaining variance, which is left of first principal component and

so on. There are as many principal components as the number of original

variables. These principal components are uncorrelated and are ordered in

such a way that the first several principal components explain most of the

variance of the original data. To learn more about PCA you can read the

article Principal Component Analysis

PCA is a linear method. That is it can only be applied to datasets which are

linearly separable. It does an excellent job for datasets, which are linearly

separable. But, if we use it to non-linear datasets, we might get a result which

may not be the optimal dimensionality reduction. Kernel PCA uses a kernel

function to project dataset into a higher dimensional feature space, where it is

linearly separable. It is similar to the idea of Support Vector Machines. There

are various kernel methods like linear, polynomial, and gaussian.

Kernel Principal Component Analysis (KPCA) is a technique used in machine

learning for nonlinear dimensionality reduction. It is an extension of the

classical Principal Component Analysis (PCA) algorithm, which is a linear

method that identifies the most significant features or components of a dataset.

https://colab.google/
https://colab.google/
https://www.geeksforgeeks.org/principal-component-analysis-with-python/

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

51

KPCA applies a nonlinear mapping function to the data before applying PCA,

allowing it to capture more complex and nonlinear relationships between the

data points.

Program:

import matplotlib.pyplot as plt

from sklearn.datasets import make_moons

X, y = make_moons(n_samples=500, noise=0.02, random_state=417)

plt.scatter(X[:, 0], X[:, 1], c=y)

plt.show()

#taking pca

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

X_pca = pca.fit_transform(X)

plt.title("PCA")

plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y)

plt.xlabel("Component 1")

plt.ylabel("Component 2")

plt.show()

#As you can see PCA failed to distinguish the two classes.

#Applying kernel PCA on this dataset with RBF kernel with a gamma value of

15.

from sklearn.decomposition import KernelPCA

kpca = KernelPCA(kernel='rbf', gamma=15)

X_kpca = kpca.fit_transform(X)

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

52

plt.title("Kernel PCA")

plt.scatter(X_kpca[:, 0], X_kpca[:, 1], c=y)

plt.show()

Expected Output:

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

53

Results: Hence, successfully applied the kernel PCA to a non-linear dataset

using scikit-learn for the given data set.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

54

14. Q-Learning Algorithm

Aim: To write a Python program for the implementation of the Q-Learning

Algorithm for the given data set and calculate the Learned Q-table.

Software Required:

Google Colab

Theory: Q-learning is a machine learning approach that enables a model to

iteratively learn and improve over time by taking the correct action. Q-learning

is a type of reinforcement learning.

With reinforcement learning, a machine learning model is trained to mimic the

way animals or children learn. Good actions are rewarded or reinforced, while

bad actions are discouraged and penalized.

With the state-action-reward-state-action form of reinforcement learning, the

training regimen follows a model to take the right actions. Q-learning provides

a model-free approach to reinforcement learning. There is no model of the

environment to guide the reinforcement learning process. The agent -- which is

the AI component that acts in the environment -- iteratively learns and makes

predictions about the environment on its own.

Q-learning also takes an off-policy approach to reinforcement learning. A Q-

learning approach aims to determine the optimal action based on its current

state. The Q-learning approach can accomplish this by either developing its

own set of rules or deviating from the prescribed policy. Because Q-learning

may deviate from the given policy, a defined policy is not needed.

Program:

import numpy as np

Define the environment

n_states = 16 # Number of states in the grid world

n_actions = 4 # Number of possible actions (up, down, left, right)

goal_state = 15 # Goal state

https://colab.google/
https://colab.google/
https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML
https://www.techtarget.com/searchenterpriseai/definition/reinforcement-learning

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

55

Initialize Q-table with zeros

Q_table = np.zeros((n_states, n_actions))

Define parameters

learning_rate = 0.8

discount_factor = 0.95

exploration_prob = 0.2

epochs = 1000

Q-learning algorithm

for epoch in range(epochs):

 current_state = np.random.randint(0, n_states) # Start from a random state

 while current_state != goal_state:

 # Choose action with epsilon-greedy strategy

 if np.random.rand() < exploration_prob:

 action = np.random.randint(0, n_actions) # Explore

 else:

 action = np.argmax(Q_table[current_state]) # Exploit

 # Simulate the environment (move to the next state)

 # For simplicity, move to the next state

 next_state = (current_state + 1) % n_states

 # Define a simple reward function (1 if the goal state is reached, 0

otherwise)

 reward = 1 if next_state == goal_state else 0

 # Update Q-value using the Q-learning update rule

 Q_table[current_state, action] += learning_rate * \

 (reward + discount_factor *

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

56

 np.max(Q_table[next_state]) - Q_table[current_state, action])

 current_state = next_state # Move to the next state

After training, the Q-table represents the learned Q-values

print("Learned Q-table:")

print(Q_table)

Expected Output:

Learned Q-table:

[[0.48767498 0.48377358 0.48751874 0.48377357]

 [0.51252074 0.51317781 0.51334071 0.51334208]

 [0.54036009 0.5403255 0.54018713 0.54036009]

 [0.56880009 0.56880009 0.56880008 0.56880009]

 [0.59873694 0.59873694 0.59873694 0.59873694]

 [0.63024941 0.63024941 0.63024941 0.63024941]

 [0.66342043 0.66342043 0.66342043 0.66342043]

 [0.6983373 0.6983373 0.6983373 0.6983373]

 [0.73509189 0.73509189 0.73509189 0.73509189]

 [0.77378094 0.77378094 0.77378094 0.77378094]

 [0.81450625 0.81450625 0.81450625 0.81450625]

 [0.857375 0.857375 0.857375 0.857375]

 [0.9025 0.9025 0.9025 0.9025]

 [0.95 0.95 0.95 0.95]

 [1. 1. 1. 1.]

 [0. 0. 0. 0.]]

Results: Hence, successfully the implemented the Q-Learning Algorithm for the

given data set and calculated its Learned Q-table.

20ECL501/SOC3 MACHINE LEARNING Dept. of ECE

57

REFERENCES

1. Applied Machine Learning, M.Gopal, McGraw Hill Education, 1st Edition,

2018, ISBN-13:978-93-5316-025-8.

2. Machine Learning by Tom Mitchell, McGraw Hill1997, 1st edition

3. Pattern Recognition and Machine Learning by Bishop, 2006 1st Edition,

ISBN: 978-0-387-31073-2

4. Machine Learning For Absolute Beginners: A Plain English Introduction

(Second Edition) by Oliver Theobald.

5. Fundamentals of Machine Learning for Predictive Data Analytics:

Algorithms, Worked Examples, and Case Studies by John D. Kelleher,

Brian Mac Namee, and Aoife D'Arcy

6. Machine Learning For Dummies by John Paul Mueller and Luca

Massaron

7. Machine Learning for Hackers by Drew Conway and John Myles White

8. Machine Learning in Action by Peter Harrington

9. https://github.com/

10. https://www.geeksforgeeks.org/

11. https://www.kaggle.com/

https://www.amazon.com/Machine-Learning-Absolute-Beginners-Introduction-ebook/dp/B07335JNW1/
https://www.amazon.com/Machine-Learning-Absolute-Beginners-Introduction-ebook/dp/B07335JNW1/
https://www.amazon.com/Fundamentals-Machine-Learning-Predictive-Analytics/dp/0262029448/
https://www.amazon.com/Fundamentals-Machine-Learning-Predictive-Analytics/dp/0262029448/
https://www.amazon.com/Fundamentals-Machine-Learning-Predictive-Analytics/dp/0262029448/
http://shop.oreilly.com/product/0636920018483.do
https://www.amazon.com/gp/product/1617290181/
https://github.com/
https://www.geeksforgeeks.org/

