
20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

1

Lab Code:20ECL603

VLSI DESIGN
Lab Manual

PREPARED BY

 MAHABOOB SUBHANI SHAIK

DDeeppaarrttmmeenntt ooff EElleeccttrroonniiccss && CCoommmmuunniiccaattiioonn EEnnggiinneeeerriinngg

BBaappaattllaa EEnnggiinneeeerriinngg CCoolllleeggee :::: BBaappaattllaa

((AAuuttoonnoommoouuss))
G.B.C. Road, Mahatmajipuram, Bapatla-522102, Guntur (Dist.)

Andhra Pradesh, India.
EE--MMaaiill::bbeecc..pprriinncciippaall@@bbeeccbbaappaattllaa..aacc..iinn

WWeebb::www.becbapatla.ac.in

mailto:info@gcet.edu.in
mailto:info@gcet.edu.in

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

2

Contents

S.No. Title of the Experiment

 Write the Code using VERILOG, Simulate and synthesize the following:

1. Logic Gates.

2. Multiplexers/De-Multiplexers.

3. Encoders/Decoders.

4. Comparators.

5. Adders/Subtractors.

6. Multipliers.

7. Parity Generators.

8. Design of ALU.

9. Latches.

10. Flip-Flops.

11. Synchronous Counters.

12. Asynchronous Counters.

13. Shift Registers.

14. Memories.

15. CMOS Circuits.

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

3

Bapatla Engineering College :: Bapatla
(Autonomous)

Vision

 To build centers of excellence, impart high quality education

and instill high standards of ethics and professionalism through

strategic efforts of our dedicated staff, which allows the college to

effectively adapt to the ever changing aspects of education.

 To empower the faculty and students with the knowledge,

skills and innovative thinking to facilitate discovery in numerous

existing and yet to be discovered fields of engineering, technology

and interdisciplinary endeavors.

Mission

 Our Mission is to impart the quality education at par with global

standards to the students from all over India and in particular

those from the local and rural areas.

 We continuously try to maintain high standards so as to make

them technologically competent and ethically strong individuals

who shall be able to improve the quality of life and economy of

our country.

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

4

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Vision

To produce globally competitive and socially responsible

Electronics and Communication Engineering graduates to cater

the ever changing needs of the society.

Mission

 To provide quality education in the domain of Electronics

and Communication Engineering with advanced pedagogical

methods.

 To provide self learning capabilities to enhance

employability and entrepreneurial skills and to inculcate

human values and ethics to make learners sensitive

towards societal issues.

 To excel in the research and development activities related

to Electronics and Communication Engineering.

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

5

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Educational Objectives (PEO’s)

PEO-I: Equip Graduates with a robust foundation in mathematics,

science and Engineering Principles, enabling them to excel in research

and higher education in Electronics and Communication Engineering

and related fields.

PEO-II: Impart analytic and thinking skills in students to develop

initiatives and innovative ideas for Start-ups, Industry and societal

requirements.

PEO-III: Instill interpersonal skills, teamwork ability, communication

skills, leadership, and a sense of social, ethical, and legal duties in

order to promote lifelong learning and Professional growth of the

students.

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

6

Program Outcomes (PO’s)

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and

analyze complex engineering problems reaching substantiated conclusions using

first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex

engineering problems and design system components or processes that meet the

specified needs with appropriate consideration for the public health and safety,

and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based

knowledge and research methods including design of experiments, analysis and

interpretation of data, and synthesis of the information to provide valid

conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and modeling

to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

PO7.Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate

the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

PO9. Individual and Teamwork: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering

activities with the engineering community and with society at large, such as, being

able to comprehend and write effective reports and design documentation, make

effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and

understanding of the engineering and management principles and apply these to

one’s own work, as a member and leader in a team, to manage projects and in

multidisciplinary environments.

PO12. Life-long learning: Recognize the need for and have the preparation and

ability to engage in independent and life-long learning in the broadest context of

technological change.

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

7

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Specific Outcomes (PSO’s)

PSO1: Develop and implement modern Electronic Technologies using

analytical methods to meet current as well as future industrial and

societal needs.

PSO2:Analyze and develop VLSI, IoT and Embedded Systems for

desired specifications to solve real world complex problems.

PSO3: Apply machine learning and deep learning techniques in

communication and signal processing.

 BAPATLA ENGINEERING COLLEGE:: BAPATLA
 (Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

184

VLSI DESIGN LAB

III B.Tech. VI Semester (Code: 20ECL603)

Lectures : 0 Hours/Week Tutorial : 0 Hours/Week Practical : 3 Hours/Week

CIE Marks : 30 SEE Marks : 70 Credits : 1.5

Pre-Requisite: None.

Course Objectives: Students will be able to

Discuss basic language features of verilog HDL and the role of HDL in digital

logic design.

 Describe the steps involved in synthesis and simulation of verilog HDL code.

 Design combinational circuits using HDL Programming Language.

 Design sequential circuits using HDL Programming Language

Course Outcomes: At the end of the course, student will be able to

CO1
Demonstrate the basics of Hardware Description Languages, Program structure

and basic language elements of Verilog.

CO2
Simulate various Combinational circuits in Dataflow, Behavioral and Gate

level Abstractions.

CO3
Design sequential circuits like flip flops and counters in Behavioral description

and obtain simulation waveforms.

CO4 Synthesize Combinational and Sequential circuits using verilog HDL.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

 PO’s PSO’s

 CO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3

 CO1 3 3 3 3 3 3

 CO2 3 3 3 3 3 3

 CO3 3 3 3 3 3 3 3

 CO4 3 3 3 3 3 3

 AVG 3 3 3 3 3 3 3

LIST OF EXPERIMENTS 36 Hours

Write the Code using VERILOG, Simulate and synthesize the following:

1. Logic Gates.

2. Multiplexers/De-Multiplexers.

3. Encoders/Decoders.

4. Comparators.

5. Adders/Subtractors.

6. Multipliers.

7. Parity Generators.

 BAPATLA ENGINEERING COLLEGE:: BAPATLA
 (Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

185

8. Design of ALU.

9. Latches.

10. Flip-Flops.

11. Synchronous Counters.

12. Asynchronous Counters.

13. Shift Registers.

14. Memories.

15. CMOS Circuits.

NOTE: A minimum of 10 (Ten) experiments have to be performed and recorded

by the candidate to attain eligibility for Semester End Lab Examination.

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

8

1. LOGIC GATES

Aim: Write Verilog HDL code for the Verification of LOGIC GATES

Theory:

Logic gates are basic building blocks of digital circuits that perform logical

operations on one or more binary inputs to produce a single binary output.
Each gate implements a specific function, such as AND, OR, or NOT, which

determines the output based on the combination of inputs.

AND Operation:

The binary AND operation has two inputs and one output. It is like the ADD

operation, which takes two arguments (two inputs) and produces one result
(one output). The inputs to a binary AND operation can only be 0 or 1 and the
result can only be 0 or 1

The binary AND operation (also known as the binary AND function) will always
produce a 1 output if both of its inputs are 1 and will produce a 0 output if

one or both of its inputs are 0.

Fig.1.1 AND GATE LOGIC SYMBOL & TRUTH TABLE

OR Operation:

The binary OR operation has two inputs and one output. The inputs to a

binary OR operation can only be 0 or 1 and the result can only be 0 or 1

The binary OR operation (also known as the binary OR function) will always
produce a 1 output if either of its inputs are 1 and will produce a 0 output
if both of its inputs are 0.

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

9

Fig.1.2 OR gate logic symbol & truth table

NOT Operation:

The binary NOT operation has one input and one output. It is like the

NEGATIVE operation which takes one argument (one input) and produces
one result (one output). The input to a binary NOT operation can only be 0
or 1 and the result can only be 0 or 1

The binary NOT operation (also known as the binary NOT function or

complement function or bit invert function) will always produce a 1 output
if its input is 0 and will produce a 0 output if its input is 1.

Fig.1.3 NOT gate logic symbol & truth table

NAND Operation:

The binary NAND operation has two inputs and one output. It is like the
NEGATIVE operation which performs negation of the AND
operationand produces one result (one output). The input to a binary NAND

operation can only be 0 or 1 and the result can only be 0 or 1.

The binary NAND operation (also known as the binary NAND function or

complement AND functionwill always produce complement of AND
function.

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

10

Fig 1.4: NAND gate logic symbol & truth table

XOR Operation:

The binary XOR (exclusive OR) operation has two inputs and one output. It
is like the comparison operation, which takes two arguments (two inputs)

and produces one result (one output). The inputs to a binary XOR
operation can only be 0 or 1, and the result can only be 0 or 1.

The binary XOR operation (also known as the binary XOR function) will
always produce a 1 output if the two inputs are different and will produce

a 0 output if both inputs are the same.

Fig 1.5: XOR gate logic symbol & truth table

XNOR Operation:

The binary XNOR (exclusive NOR) operation has two inputs and one
output. It is like the comparison operation, which takes two arguments

(two inputs) and produces one result (one output). The inputs to a binary
XNOR operation can only be 0 or 1, and the result can only be 0 or 1.

The binary XNOR operation (also known as the binary XNOR function) will
always produce a 1 output if both of its inputs are the same (either both 0
or both 1) and will produce a 0 output if the inputs are different.

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

11

Fig 1.6: XOR gate logic symbol & truth table

Fig 1.7: Block diagram

Fig 1.8: Logic diagram

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

12

Table 1.1 Truth table For all Logic gates:

Input Output

a_in b_in not_op and_op nand_op or_op nor_op xor_op xnor_op

0 0 1 0 1 0 1 0 1

0 1 1 0 1 1 0 1 0

1 0 0 0 1 1 0 1 0

1 1 0 1 0 1 0 0 1

VERILOG CODE :

module gates(a_in, b_in,
not_op,and_op,nand_op,or_op,nor_op,xor_op,xnor_op);

input a_in,b_in;
output
not_op,and_op,nand_op,or_op,nor_op,xor_op,xnor_op;

assign not_op= ~a_in;
assign and_op=a_in&b_in;

assign nand_op=~(a_in&b_in);
assign or_op=a_in | b_in;
assign nor_op=~(a_in | b_in);

assign xor_op=a_in^b_in;
assign xnor_op=~(a_in^b_in);

endmodule

OUTPUT:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

13

2. MULTIPLEXER/DEMULTIPLEXER

Aim: Write Verilog HDL code for the Verification of

multiplexer/demultiplexer.

Theory:

MULTIPLEXER

It is a combinational circuit which have many data inputs and single
output depending on control or select inputs. For N input lines, log n
(base2) selection lines, or we can say that for 2n input lines, n selection

lines are required. Multiplexers are also known as “Data n selector, parallel
to serial convertor, many to one circuit, universal logic circuit”.

Multiplexers are mainly used to increase amount of the data that can be
sent over the network within certain amount of time and bandwidth.

DEMULTIPLEXER

A demultiplexer (or demux) is a digital circuit that takes a single input
signal and routes it to one of several output lines, based on control signals.
It essentially performs the reverse operation of a multiplexer, distributing

data from one input to multiple outputs.

Fig 2.1: 8x1 MUX

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

14

Table 2.1: 8x1 MUX TRUTH TABLE

Inputs Output

Sel(2) Sel(1) Sel(0) i_in(7) i_in(6) i_in(5) i_in(4) i_in(3) i_in(2) i_in(1) i_in(0) Y_out

0 0 0 0 0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 0 0 1

0 1 1 0 0 0 0 1 0 0 0 1

1 0 0 0 0 0 1 0 0 0 0 1

1 0 1 0 0 1 0 0 0 0 0 1

1 1 0 0 1 0 0 0 0 0 0 1

1 1 1 1 0 0 0 0 0 0 0 1

VERILOG CODE:

module mux8_1(i_in, sel, y_out);
input [7:0] a_in;

input [2:0] sel;
output y_out;

reg y_out;
always@ (i_in,sel)
begin

case (sel)
3'b000:y_out=i_in[0];
3'b001: y_out=i_in[1];

3'b010: y_out=i_in[2];
3'b011: y_out=i_in[3];

3'b100: y_out=i_in[4];
3'b101: y_out=i_in[5];
3'b110: y_out=i_in[6];

3'b111: y_out=i_in[7];
default: y_out =3'b000;

endcase
end
endmodule

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

15

8x1 MUX OUTPUT:

Fig 2.2: 1X4 DEMUX

Table 2.2: 1X4 Demux Truth Table

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

16

Inputs outputs

A B D Z0 Z1 Z2 Z3

0 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 0 0

1 0 1 0 0 1 0

1 1 0 0 0 0 0

1 1 1 0 0 0 1

VERILOG CODE:

module demux_41(

input i,
input s0,

input s1,
output z0,
output z1,

output z2,
output z3

);
wire s1bar,s0bar;
not(s0bar,s0);

not(s1bar,s1);
and n1(z0,s0bar,s1bar);
and n2(z1,s1bar,s0);

and n3(z2,s1,s0bar);
and n4(z3,s1,s0);

endmodule

1X4 Demux Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

17

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

18

3. ENCODER/DECODER

Aim: Write Verilog HDL code for the Verification of 8:3 Encoder &

2:4Decoder.

Theory:

Encoder
In VLSI (Very Large Scale Integration), an encoder is a combinational
circuit that converts information from one format or code into another,

typically by reducing the number of input lines. For example, an encoder
takes multiple input lines and encodes them into a smaller number of
output lines, representing the active input in a binary form. This is useful

in digital systems to simplify and optimize signal processing and data
handling.

A common example is the priority encoder, which outputs the binary code

of the highest-priority active input.

Decoder
In VLSI (Very Large Scale Integration), adecoder is a combinational circuit
that converts encoded binary data from its input into a unique output

pattern. It performs the reverse operation of an encoder, taking a small
number of inputs (usually in binary form) and activating one specific

output line based on the input value.

For example, a 2-to-4 decoder takes 2 binary input lines and decodes them
to activate one of 4 output lines. Decoders are commonly used in memory

address decoding and other digital systems where specific control signals
need to be activated based on input conditions.

Fig 3.1: 8:3 Encoder

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

19

Table 3.1: 8:3 Encoder truth table:

Digital Inputs Binary outputs

D7 D6 D5 D4 D3 D2 D1 D0 Y2 Y1 Y0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 00 00 0 0 0 0 1 1 1

VERILOG CODE:

module encoder_8_3(
input d7,

input d6,
input d5,
input d4,

input d3,
input d2,
input d1,

input d0,
output y2,

output y1,
output y0
);

or n1(y0,d3,d2,d1,d0);
or n2(y1,d5,d4,d1,d0);

or n3(y2,d6,d4,d2,d0);
endmodule

Fig3.2: 2:4 Decoder

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

20

Table 3.2: 2:4 Decoder Truth table:

Inputs outputs

en d_in(1) d_in(0) d_op(3) d_op(2) d_op1() d_op0()

1 X X Z Z Z Z

0 0 0 0 0 0 1

0 0 1 0 0 1 0

0 1 0 0 1 0 0

0 1 1 1 0 0 0

VERILOG CODE:

module decoder (d_in,en,d_op);

input [1:0] d_in;

input en;

output [3:0] d_op;

reg [3:0] d_op;

always @(d_in,en)

begin

if (en==1)

d_op=4'bzzzz;

else

case (d_in)

2'b00: d_op = 4'b0001;

2'b01: d_op= 4'b0010;

2'b10:d_op= 4'b0100;

2'b11: d_op= 4'b1000;

default: d_op = 4'bxxxx;

endcase

end

endmodule

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

21

2:4 Decoder Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

22

4. COMPARATOR

Aim: Write Verilog HDL code for the Verification of 1-BIT & 4-BIT

COMPARATOR.

Theory:
The Digital Comparator is another very useful combinational logic circuit

used to compare the value of two binary digit.

Digital or Binary Comparators are made up from
standard AND, NOR and NOT gates that compare the digital signals

present at their input terminals and produce an output depending upon
the condition of those inputs.

The purpose of a Digital Comparator is to compare a set of variables or
unknown numbers, for example A (A1, A2, A3, …. An, etc) against that of a
constant or unknown value such as B (B1, B2, B3, …. Bn, etc) and

produce an output condition or flag depending upon the result of the
comparison. For example, a magnitude comparator of two 1-bits, (A and B)
inputs would produce the following three output conditions when

compared to each other.

Which means: A is greater than B, A is equal to B, or A is less than B

This is useful if we want to compare two variables and want to produce an

output when any of the above three conditions are achieved. For example,
produce an output from a counter when a certain count number is
reached. Consider the simple 1-bit comparator below.

Fig4.1:1-bit Comparator

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

23

Table 4.1: 1-bit Comparator Truth Table:

A B C(lesser) D(equal) E(greater)

0 0 0 1 0

0 1 1 0 0

1 0 0 0 1

1 1 0 1 0

VERILOG CODE:

module bcomp (a, b, c, d, e)
input a, b;
output c, d, e;

assign c= (~a) & b;
assign d= ~(a ^ b);

assign e= a & (~b);
end module

1-bit Comparator Output:

Fig4.2: 4-bit Comparator

VERILOG CODE:

module comp (a, b,aeqb,agtb,altb);

 input [3:0] a,b;
 output aeqb,agtb,altb;

 reg aeqb,agtb,altb;

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

24

 always @(a or b)

 begin
 aeqb=0; agtb=0; altb=0;
 if(a==b)

 aeqb=1;
 else if (a>b)

 agtb=1;
 else
 altb=1;

 end
endmodule

4-bit Comparator Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

25

5. ADDER/SUBTRACTOR

AIM: Write an HDL code to describe the functions of half adder, full

adders, half subtractor&full subtractor.

Theory:

HALF ADDER:
A half adder has two inputs for the two bits to be added and two outputs

one from the sum ‘ S’ and other from the carry ‘ c’ into the higher adder
position. Above circuit is called as a carry signal from the addition of the

less significant bits sum from the X-OR Gate the carry out from the AND
gate.

 Table 5.1: Truth table:

Fig 5.1: Half adder logic diagram

Boolean expressions:
 S=a b

 C=a b

VERILOG CODE:
 module ha (a, b, s, c)
 input a, b;

 output s, c;
 assign s= a ^ b;

 assign c= a & b;
 end module

OUTPUT:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

26

FULL ADDER:

A full adder is a combinational circuit that forms the arithmetic sum of

input; it consists of three inputs and two outputs. A full adder is useful to
add three bits at a time but a half adder cannot do so. In full adder sum

output will be taken from X-OR Gate, carry output will be taken from OR
Gate.

Fig 5.2: Full adder Block diagram

Table 5.2: Full adder Truth table

Inputs outputs

a_in b_in c_in sum carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

27

Fig 5.3: Full adder Logic diagram

VERILOG CODE:

module fulladder(a_in, b_in, c_in, sum, carry);

input a_in, b_in,c_in;

output sum, carry;

 assign sum = a_in^b_in^c_in;

 assign carry = (a_in & b_in) | (b_in & c_in) | (a_in & c_in);

endmodule

Full adder output:

Half Subtractor:

A half subtractor is a combinational circuit that performs the subtraction
of two single-bit binary numbers. It has two inputs, the minuend and

subtrahend, and two outputs: one for the difference ('D') and one for the

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

28

borrow ('B'). The difference is generated using an XOR gate, while the

borrow signal is produced using an AND gate, followed by a NOT gate.

Fig 5.4: Half subtractor Logic diagram

Table 5.3: Half subtractor Truth table

VERILOG CODE:

module hs (a, b, d, br)
 input a, b;
 output d, br;
 assign d= a ^ b;
 assign br= ~a & b;
endmodule

Half Subtractor Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

29

Full Subtractor:

A full subtractoris a combinational circuit that subtracts three binary bits:

the minuend (A), subtrahend (B), and a borrow-in (Bin). It has two outputs:
the difference(D) and the borrow-out(Bout). The difference is calculated using
XOR gates, as \(D = A \oplus B \oplus Bin \), while the borrow-out

indicates if a borrow is needed for the next higher bit, determined by \(Bout
= (Bin \cdot (A \oplus B)) + (\overline{A} \cdot B) \). This allows the full

subtractor to handle multi-bit subtractions efficiently.

Fig 5.5: Full subtractor Logic diagram

Table 5.4: Full subtractor Truth table

Inputs outputs

A B Cin D BR

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

VERILOG CODE:

module fs (a, b, c, d, br)

 input a, b, c;

 output d, br;

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

30

 assign d= a ^ b ^ c;

 assign br=((~a)& (b ^ c)) | (b & c);

 endmodule

Full Subtractor Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

31

6.MULTIPLIER

AIM: Write an HDL code to describe the functions of a 4-bit Multiplier using

full adders.

Theory:

A multiplier is a combinational circuit designed to perform multiplication of
two binary numbers. It takes two sets of binary inputs (multiplicand and

multiplier) and produces an output representing their product. Multipliers
are commonly used in arithmetic units, digital signal processing, and
processors, and their design focuses on optimizing speed, area, and power

consumption for efficient operation.

VERILOG CODE:

module mul(a,b,out);

input [4:0]a;
input [4:0]b;

output [9:0]out;
assign out=(a*b);

endmodule

Multiplier Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

32

7.PARITY GENERATOR
AIM: Write an HDL code to describe the functions of a parity generator.

Theory:

A parity generator is a digital circuit that computes a parity bit based on a
set of input bits. It adds an extra bit, known as the parity bit, to ensure that

the total number of 1s in the combined set of input bits (including the parity
bit) is either even (even parity) or odd (odd parity). Parity generators are

commonly used in error detection schemes in digital communication and
storage systems to help identify transmission errors.

Even Parity Generator:

Fig 7.1: Even parity generator Circuit diagram

Table 7.1: Even parity generator Truth table:

3 Bit message Even parity bit generator(P)

A B C Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

33

VERILOG CODE:

module even_parity_generator(input A,input B,input C,output p); reg p;

always @(A,B,C)

begin case({A,B,C})

3'b000:{p}=1'b0;

3'b001:{p}=1'b0;

3'b010:{p}=1'b0;

3'b011:{p}=1'b1;

3'b100:{p}=1'b0;

3'b101:{p}=1'b1;

3'b110:{p}=1'b1;

3'b111:{p}=1'b0;

default:{p}=1'bx;

endcase

end endmodule

Even parity generator Output:

Odd Parity Generator:

Fig 7.2: Odd parity generator Circuit diagram

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

34

Table7.2: Odd parity generator Truth table:

3 Bit message Odd parity bit generator(P)

A B C Y

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

VERILOG CODE:
module oddparity(input a, input b, input c, output y);

reg d;

always @ (a,b,c)

begin case({a,b,c})

3'b000:{d}=1'b0;

3'b001:{d}=1'b1;

3'b010:{d}=1'b1;

3'b011:{d}=1'b0;

3'b100:{d}=1'b1;

3'b101:{d}=1'b0;

3'b110:{d}=1'b0;

3'b111:{d}=1'b1;

endcase end

endmodule

Odd parity generator Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

35

8. DESIGN OF ALU
AIM: Write an HDL code to design ALI(Arithmetic Logic Unit).

Theory:
An ALU (Arithmetic Logic Unit) is a fundamental digital circuit that performs

arithmetic operations (like addition, subtraction, and multiplication) and
logical operations (such as AND, OR, XOR) on binary data. It is a key
component of a processor, responsible for executing the core mathematical

and logical computations required by the CPU. The ALU is designed to be
efficient in terms of speed, area, and power consumption in VLSI circuits.

VERILOG CODE:
module ALU(s, A, B, F);
 input [2:0] s;

 input [3:0] A, B;

 output[3:0] F;

 reg [3:0] F;

 always @(s or A or B)

 case (s)

 0: F =4'b0000;

 1: F= B - A;

 2: F= A- B;

 3: F= A + B;

 4: F= A^ B;

 5: F= A|B;

 6: F= A & B;

 7: F= 4'b1111;

 endcase

endmodule

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

36

OUTPUT

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

37

9.LATCHES

AIM: Write an HDL code to verifythe working of latches.

Theory:
A latch is a type of digital circuit that stores and maintains a binary state
(either 0 or 1). It is a basic building block of memory in electronics, often
used to hold a value until it is changed by an input signal. Latches are

typically controlled by signals like "enable" or "clock" to determine when the
stored value should be updated.

Fig 9.1: SR latch

Table 9.1: Truth table

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

38

VERILOG CODE:
module latchsr(

input s,

input r,

output q,

output qbar

);

nand n1(q,s,qbar);

nand n2(qbar,r,q);

endmodule

SR latch Output:

Fig 9.2: D latch

Table 9.2: D latch Truth table

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

39

VERILOG CODE:

module D_latch (enable ,din ,reset ,dout);

output dout ;

reg dout ;

input enable ;

wire enable ;

input din ;

wire din ;

input reset ;

wire reset ;

always @ (enable or din or reset) begin

if (reset)

dout = 0;

 else begin if (enable)

dout = din; end

end endmodule

D latch Output

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

40

10. FLIP-FLOPS

AIM: Write an HDL code to verify the working of Flip- flops.

Theory:

A flip-flopin VLSI is a memory element that stores a single bit of data and is

used for synchronization in digital circuits. It is edge-triggered, meaning it
changes its output only on the rising or falling edge of a clock signal.

There are different types of flip-flops (e.g., D flip-flop, JK flip-flop, T flip-flop),
but they all share the basic property of changing their output only when the

clock edge occurs, making them more suitable for synchronous circuits
compared to latches.

Flip-flops are key building blocks in registers, counters, and other sequential
circuits.

Fig 10.1: D flip-flop

Table 10.1: D flip-flop Truth table:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

41

VERILOG CODE:

module DFF2(clock, Reset, d, q);

 input clock;

 input Reset;

 input d;

 output q;

reg q;

always@(posedge clock or negedge Reset)

if (~Reset)

q=1'b0;

else

q=d;

endmodule

D flip-flop Output:

Fig 10.2: T flip-flop

Table 10.2: T flip-flop Truth table:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

42

VERILOG CODE:

module TFF(clock, Reset, t, q);
 input clock;
 input Reset;
 input t;
 output q;
 reg q;
 always@(posedge clock , negedge Reset)
 if(~Reset) q=0;
 else if (t) q=~q;
 else q=q;

endmodule

T flip-flop Output:

Fig 10.3: SR flip-flop

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

43

Table 10.3: SR flip-flop Truth table

VERILOG CODE:
module srff(q,q1,r,s,clk);

 output q,q1;

 input r,s,clk;

 reg q,q1;

 initial

 begin
 q=1'b0;

 q1=1'b1;

 end

 always @(posedge clk)

 begin
 case({s,r})

 {1'b0,1'b0}:begin q=q; q1=q1;end

 {1'b0,1'b1}:begin q=1'b0; q1=1'b1;end

 {1'b1,1'b0}:begin q=1'b1; q1=1'b0;end

 {1'b1,1'b1}:begin q=1'bx; q=1'bx;end

 endcase

 end
endmodule

SR flip-flop Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

44

Fig 10.4: JK flip-flop

Table 10.4: JK flip-flop Truth table

VERILOG CODE:
module JKFF(Clock, Reset, j, k, q);

input Clock;
input Reset;
input j;

input k;
output q;
reg q;

always@(posedge Clock, negedge Reset)
if(~Reset)

q=0;
else

begin case({j,k})

2'b00: q=q;
2'b01: q=0;

2'b10: q=1;
2'b11: q=~q;

endcase

end
endmodule

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

45

JK flip-flop Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

46

11.SYNCHRONOUS UP/DOWN COUNTER(4BIT)

AIM: Write an HDL code to verify the SYNCHRONOUS UP/DOWN

COUNTER.

Theory:
A synchronous up/down counter is a digital circuit that can count in both
increasing (up) and decreasing (down) order based on a control signal, with

all operations occurring simultaneously with the clock pulse. In the "up"
mode, the counter increments its value, and in the "down" mode, it
decrements with each clock cycle. Since all flip-flops are triggered by the

same clock signal, the counter updates its output synchronously, ensuring
reliable and precise timing. This type of counter is commonly used in
applications like digital clocks, position tracking, and reversible counting

systems.

Fig 11.1: Synchronous up/down counter(4bit)

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

47

Table 11.1: Synchronous up/down counter (4bit) Truth table

CK Q3 Q2 Q1 Q0 Q3’ Q2’ Q1’ Q0’

0 0 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1 0

2 0 0 1 0 1 1 0 1

3 0 0 1 1 1 1 0 0

4 0 1 0 0 1 0 1 1

5 0 1 0 1 1 0 1 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 0 0

8 1 0 0 0 0 1 1 1

9 1 0 0 1 0 1 1 0

10 1 0 1 0 0 1 0 1

11 1 0 1 1 0 1 0 0

12 1 1 0 0 0 0 1 1

13 1 1 0 1 0 0 1 0

14 1 1 1 0 0 0 0 1

15 1 1 1 1 0 0 0 0

VERILOG CODE:
module syncup(input c,inputclr, input updown, output [3:0] q);
reg [3:0]temp,q;

always @(posedge c or posedgeclr) begin
if(clr)

 temp=4'b0000;
else if(updown)
 temp=temp+1'b1;

else
 temp=temp-1'b1;
assign q=temp; end

endmodule

Synchronous up/down counter(4bit) Output:

UPDOWN=0

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

48

UPDOWN=1

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

49

12. ASYNCHRONOUS COUNTER

AIM: Write an HDL code to verify the ASYNCHRONOUS COUNTER.

Theory:
An asynchronous counter also known as a ripple counter, is a type of digital

counter where the flip-flops are not all triggered by the same clock signal.
Instead, the output of one flip-flop serves as the clock input for the next flip-
flop in the chain. This causes a delay, as each flip-flop responds to the

change in the previous one, creating a "ripple" effect through the counter.

Asynchronous counters are simpler in design but slower compared to

synchronous counters due to this ripple delay. They are commonly used in
applications where high speed is not a critical factor, such as simple timers

or low-frequency counting tasks.

Fig 12.1: Asynchronous counter

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

50

Table 12.1: Asynchronous counter Truth table:

Clk Count 3 Count 2 Count 1 Count 0

1 0 0 0 0

1 0 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 0 1 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 0 1

VERILOG CODE:
module asyncou(clk,count);

input clk;

output[3:0] count;

reg[3:0] count;

wire clk;

initial

count =4'b0;

always @(negedge clk) count[0]<=~count[0];

always @(negedge count[0]) count[1]<=~count[1];

always @(negedge count[1]) count[2]<=~count[2];

always @(negedge count[2]) count[3]<=~count[3];

endmodule

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

51

Asynchronous counter Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

52

13.SHIFT REGISTERS

AIM: Write an HDL code for verification of SHIFT REGISTERS.

Theory:
A register is a small, high-speed storage unit within a CPU or digital circuit

that temporarily holds data, instructions, or memory addresses for quick
access during processing. Registers are faster than regular memory (RAM)
and are crucial for the CPU to perform operations efficiently. There are

different types of registers based on their function.

SERIAL – IN SERIAL – OUT SHIFT REGISTER

Serial-in to Serial-out (SISO) - the data is shifted serially “IN” and “OUT” of the
register, one bit at a time in either a left or right direction under clock control.

VERILOG CODE:
module siso(clk,rst,a,q);

input a;
input clk,rst;
output q;

reg q;
always@(posedgeclk,posedgerst)

begin
if(rst==1'b1)

q<=1'b0;

else
q<=a;

end
endmodule

Serial – in serial – out shift register Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

53

SERIAL – IN PARALLEL – OUT SHIFT REGISTER

Serial-in to Parallel-out (SIPO) - the register is loaded with serial data, one bit at a time,

with the stored data being available at the output in parallel form.

VERILOG CODE:
module SIPO(a, clk, rst, q);

 input clk,rst;
input a;

output [3:0]q;
wire [3:0]q;
reg [3:0]temp;

always@(posedgeclk,posedgerst)
begin

if(rst==1'b1)

temp<=4'b0000;
else

begin
temp<=temp<<1'b1;
temp[0]<=a;

end
end
assign q=temp;

 endmodule

Serial – in parallel – out shift register Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

54

PARALLEL – IN PARALLEL – OUT SHIFT REGISTER

Parallel-in to Parallel-out (PIPO) - the parallel data is loaded simultaneously into the

register, and transferred together to their respective outputs by the same clock pulse.

VERILOG CODE:

module pipo(din,clk,rst,dout);

input [3:0] din;

input clk,rst;

output [3:0] dout;

wire [3:0] din;

wire clk,rst;

reg [3:0] dout;

always @(posedge clk or negedgerst)

begin

if(!rst)

begin

dout<= 4'b0;

end

else

begin

dout<= din;

end

end

endmodule

Parallel – in parallel – out shift register Output:

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

55

14. MEMORIES

AIM: Write an VHDL code for verify the working of memories.

Theory

memories refer to storage components used to store and retrieve

digital data in a VLSI circuit. These are crucial for designing and

simulating integrated circuits that require data handling, such as

microprocessors, signal processors, and other digital systems.

RAM

(Random Access Memory): A type of volatile memory that allows

data to be read and written at any address location randomly. It

loses its contents when power is turned off. RAM is used for

temporary data storage during processing.

VERILOG CODE

module RAM (

 input wire
clk,

 input wire
we,

 input wire
[3:0] addr,

 input wire
[7:0] din,

 output reg
[7:0] dout

);

reg [7:0] mem
[0:15];

always
@(posedge clk)
begin

 if (we) begin
 mem[addr]
<= din;

 end else
begin
 dout <=
mem[addr];

 end

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

56

end

endmodule

ROM (Read-Only Memory): A non-volatile memory where

data is permanently written during the manufacturing process or

once during initialization. The contents cannot be modified

during normal operation, and it is mainly used for storing fixed

data, like firmware.

VERILOG CODE
module ROM (

input wire [3:0] addr,// 4-bit address input (16

locations) output reg [7:0] dout // 8-bit data output

);

// ROM initialized with 16 8-bit

values reg [7:0] mem [15:0];

initial begin

// Preload some values into the ROM

mem[0] = 8'hAA;

mem[1] = 8'hBB;

mem[2] = 8'hCC;

mem[3] = 8'hDD;

mem[4] = 8'h11;

mem[5] = 8'h22;

mem[6] = 8'h33;

mem[7] = 8'h44;

mem[8] = 8'h55;

mem[9] = 8'h66;

mem[10] =

8'h77; mem[11]

= 8'h88;

mem[12] =

8'h99; mem[13]

= 8'hAA;

mem[14] =

8'hBB; mem[15]

= 8'hCC;

end

always @(*) begin

dout = mem[addr]; // Read operation

(asynchronous) end

endmodule

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

57

15. CMOS CIRCUITS
AIM: Write a VHDL code to design CMOS CIRCUITS.

Theory:

A CMOS circuit (Complementary Metal-Oxide-Semiconductor)

is an electronic circuit built using both PMOS (P-type Metal-

Oxide- Semiconductor) and NMOS (N-type Metal-Oxide-

Semiconductor) transistors. CMOS technology is widely used for

constructing integrated circuits (ICs), including microprocessors,

microcontrollers, and memory chips, due to its low power

consumption, high noise immunity, and scalability.

Fig 15.1: CMOS inverter circuit
VERILOG CODE:

moduleine233(input x, output f

);

supply1vdd;

supply0gnd;

body pmos

p1(f,vdd,x);

nmosn1(f,gnd,x);

endmodule

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

58

OUTPUT

Fig 15.2: CMOS NAND

VERILOG CODE

modulecmosnand2(

input x, inputy, output f

);

supply1vdd; supply0gnd;

wire a; pmosp1 (f,vdd, x);

pmosp2 (f,vdd,y);

nmosn1(f,a, x);

nmosn2(a,gnd,y);

endmodule

modulecmosnand2(

input x, inputy, output f

);

supply1vdd; supply0gnd;

wire a; pmosp1 (f,vdd, x);

pmosp2 (f,vdd,y);

nmosn1(f,a, x);

nmosn2(a,gnd,y);

endmodule

20ECL603 VLSI DESIGN LAB MANUAL Dept. of ECE

59

OUTPUT

Fig 15.3:CMOS NOR

VERILOG CODE
modulecmosnor11(input x,

inputy, output f

);

supply1vdd; supply0gnd; wire

a; pmosp1(a,vdd,y);

pmosp2(f,a, x);

nmosn1(f,gnd,x)

;

nmosn2(f,gnd,y);

\ endmodule

20ECL603VLSI DESIGN LAB Dept. of ECE

60

OUTPUT

