Hal	l Ti	cket	t Nu	ımb	er:		

II/IV B.Tech. (Regular/Supplementary) DEGREE EXAMINATION

July, 2025 Fourth Semester **Information Technology Probability And Statistics**

Time: Three Hours

Maximum: 70 Marks

Answer question 1 compulsorily.

Answer one question from each unit.

(14X1 = 14 Marks) (4X14 = 56 Marks)

				1 1	
			CO	BL	M
1	a)	Define mean and variance of a probability density function $f(x)$.	CO1	L1	1 M
	b)	What is the probability density function of Normal distribution.	CO1	L1	1M
	c)	Find z _{0.005}	CO1	L2	1 M
	d)	Find the mean and variance of gamma distribution with parameters α =2 and β =2.	CO1	L2	1 M
	e)	Find the value of finite population correction factor for n =50 and N=1000.	CO2	L2	1M
	f)	Find the value of $F_{0.99}$ for 12 and 15 degrees of freedom.	CO2	L2	1 M
	g)	What is the small sample confidence interval formula for the population parameter μ ?	CO2	L1	1M
	h)	Write the test statistic for one mean in simple sample case.	CO2	L1	1 M
	i)	What is $(1-\alpha)100\%$ confidence interval for difference of two means in large sample case?	CO3	L1	1M
	j)	What is the critical region for testing one variance?	CO3	L1	1M
	k)	Find the value of $\chi^2_{0.975}$ at 19 degrees of freedom.	CO3	L2	1M
	1)	Define correlation.	CO4	L1	1M
	m)	Write normal equations to fit a parabola of the form $y = a + bx + cx^2$ by the method of least squares.	CO4	L2	1M
	n)	The range of the correlation coefficient is [-1,1]	CO4	L2	1M
		<u>Unit-I</u>			
2	a)	If a random variable has the probability density $f(x) = \begin{cases} 2e^{-2x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$			
		Find the probabilities that it will take on a value	G 0.4		5 3.4
	1 \	(a). between 1 and 3 (b). greater than 0.5 (c). less than or equal to 1.	CO1	L3	7M
	b)	The time to microwave a bag of popcorn using the automatic setting can be treated as a			
		random variable having a normal distribution with standard deviation 10 seconds. If the			
		probability is 0.8212 that the bag will take less than 282.5 seconds to pop, find the probability that it will take longer than 258.3 seconds to pop.	CO1	L3	7M
		(OR)	COI	L3	/ IVI
3	a)	The probability that an electric component will fail in less than 1000 hours of			
	u)	continuous use is 0.25. Use the normal approximation to find the probability that among			
		200 such components fewer than 45 will fail in less than 1000 hours of continuous use.	CO1	L3	7M
	b)	Derive mean and variance of uniform distribution.	CO1	L3	7M
		<u>Unit-II</u>		1	
4	a)	Hard disks for computers must spin evenly, and one departure from level is called roll. The roll for any disk can be modelled as a random variable having mean 0.2250 mm and			
		standard deviation 0.0042 mm. The sample mean roll \bar{x} will be obtained from a			
		random sample of 40 disks. What is the probability that \bar{x} will lie between 0.2245 and			
		0.2260 mm.	CO2	L3	7M
	b)	A random sample of 10 observations is taken from a normal population having the			
		variance $\sigma^2 = 42.5$. Find the approximate probability of obtaining a sample standard deviation between 3.14 and 8.94.	CO2	L3	7M
		(OR)			
5	a)	In 64 randomly selected hours of production, the mean and the standard deviation of the			
		number of acceptable pieces produced by a automatic stamping machine are $\bar{x} = 1,038$			
		and $s = 146$. At the 0.05 level of significance, does this enable us to reject the null	CO2	L3	7M

		hypothe	sis $\mu = 1$,	000 a	gainst	the alte	ernative	hypothes	sis $\mu >$	1,000.						
	b)	μ =14.0.	facturer In an at the tar co	tempt	to sh	now tha	t it diffe	ers from	this va	lue, five	measur					
			at the dif						_				age			
		tar clain	ed by the	manı	ıfactu	rer µ=1	4.0 is sig			05. Assı	ume nor	nality.		CO2	L3	7M
		TD1 1	•	1 1	C		1	Unit-					.1			
6	a)	-	amic mod	_								_				
			$n_1 = 33$				_					•				
			0.38. T													
			versus t					Iso cons	struct a	95% coi	nfidence	ınterval	of	CO2	L3	14M
		the diffe	rence in 1	nean c	лупап	ne mou	uius.	(OF	5)					CO3	L3	14101
7	a)	To com	are two	kinds	of bi	ımper (niards 6		/	were mo	ounted o	n a cert	ain			
,	<i>u</i>)		compact of													
			wing are								•					
		В	umper Gu	ard 1	4	07	448	423	465	40)2	419				
		В	umper Gu	ard 2	4	34	415	412	451	43	33	429				
		I I a a 4h a	0.01.1	l af a:	:£:-		40.04	41 41	1:66	1 4	41 4		1			
			0.01 leve significa		gnific	ance to	test wne	etner tne	amerei	ice betw	een the i	wo sam	pie	CO3	L3	7M
	b)				old or	his ho	me cour	se, a gol	f profes	sional av	veraged	71.3 wit	h a	003	LS	/ 1/1
	,	Playing 10 rounds of gold on his home course, a golf professional averaged 71.3 with a standard deviation of 1.32. Test the null hypothesis that the consistency of his game or														
		his home course is actually measured by σ =1.20, against the alternative hypothesis that														
		he is less	consiste	nt. U	se the	level o	f signific							CO3	L3	7M
0	- \	T1 C. 11		. 41		L. 1	C	<u>Unit</u>				\ 1	4 -			
8	a)		owing ar when thre		_				_		_		: 10			
		Lub A	12.2		1.8	13.1			3.9	4.1	10.9	8.4				
		Lub B	10.9		5.7	13.5	9.4	4 1	1.4	15.7	10.8	14.0	0			
		Lub C	12.7	1	9.9	13.6	11.	7 1	8.3	14.3	22.8	20.4	4			
		Tost et t	 he 0.01 1	ovol o	faior	ificana	a whath	or the di	fforono	ng emen	the me	one con	ha			
			d to chan		_					•	-					
		experim		cc. A	180 68	umate	me parai	neters o	i tile ili	ouer use	u III tile	anarysis	01			
		Схрстин	JIII.											CO4	L3	14M
		I						(OI								
9	a)		ight line	of the	form	y = a+b	ox for the	e followi	ng data	by the n	nethod o	f least				
		squares:	20	60		100	140	190	220	260	300	\neg				
		X V	20 0.18	0.37		100 0.35	140 0.78	180 0.56	220 0.75	1.18	1.36			CO4	L3	7M
	b)		e the coef								1.50			CO4	ப்	/ 1 V1
			$\frac{2}{3}$ $\frac{2}{3}$		28	29	30	31	33	35	36	39				
		l														
			y 18 22 23 24 25 26 28 29 30 32]	CO4	L3	7M		

II/IV B.Tech. (Regular/Supp	20IT401	
July, 2025		Information Technology
Fourth Semester		Probability And Statistics

Scheme	Of	Val	luation

	ī		1				
1	a)		1M				
		The mean of the probability density is $\mu = \int_{-\infty}^{\infty} x f(x) dx$					
		And variance is $\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$					
	b)	The Probability density function of Normal distribution is	1M				
		$f\left(x;\mu,\sigma^{2}\right) = \frac{1}{\sqrt{2\pi} \sigma} e^{\frac{-\left(x-\mu\right)^{2}}{2\sigma^{2}}}; -\infty < x < \infty$					
	c)	z _{0.005} =2.575	1M 1M				
	d)						
	e)	Population correction factor is $\frac{N-n}{N-1} = \frac{950}{999} = 0.9510$					
	f)	$F_{0.99}(12,15)=1/4.01=0.2494$	1M				
	g)	The small sample confidence interval formula for the population parameter μ is	1M				
		$\left \frac{\overline{x} - t_{\alpha/2}}{\sqrt{n}} < \mu \right < \frac{\overline{x} + t_{\alpha/2}}{\sqrt{n}}$					
	h)	$\overline{X} - \mu_0$	1M				
		The test statistic for one mean in simple sample case is, $t = \frac{X - \mu_0}{s / \sqrt{n}}$					
	i)	$(1-\alpha)100\%$ confidence interval for difference of two means in large sample case is	1M				
		$(\bar{x} - \bar{y}) \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$					
	j)	The critical region for testing $\sigma^2 = \sigma_0^2$	1M				
		Alternative hypothesis Reject the null hypothesis if					
		$\sigma^2 < \sigma_0^2$					
		$\sigma^2 > \sigma_0^2 \qquad \chi^2 > \chi_\alpha^2$					
		$\sigma^2 \neq \sigma_0^2 \qquad \chi^2 < \chi_{1-\alpha/2}^2 \text{ or } \chi^2 > \chi_{\alpha/2}^2$					
	k)	The value of $\chi^2_{0.975}$ at 19 degrees of freedom=8.907	1M				
	1)	It is defined as when the changes in the values of one variable are associated with the	1M				
	_	changes in the values of the other variable is called correlation.					
	m)	By the method of least squares, the normal equations to fit a parabola of the form					
		$\sum y = na + b \sum x + b \sum x^2$					
			1M				
		$y = a + bx + cx^2$ are $\sum xy = a\sum x + b\sum x^2 + b\sum x^3$					
		$\sum x^2 y = a \sum x^2 + b \sum x^3 + b \sum x^4$					
	n)	The range of the correlation coefficient is [-1,1]	1M				

2	a)	Given probability density function is $f(x) = \begin{cases} 2e^{-2x} & \text{for } x > 0 \\ 0 & \text{for } x < 0 \end{cases}$	
		$P(1 < X < 3) = \int_{1}^{3} f(x) dx = \int_{1}^{3} 2e^{-2x} dx = 2\left(\frac{e^{-2x}}{-2}\right)_{1}^{3} = e^{-2} - e^{-6} = 0.1328$	
		(b). $P(X > 0.5) = \int_{0.5}^{\infty} f(x) dx = \int_{0.5}^{\infty} 2e^{-2x} dx = 2\left(\frac{e^{-2x}}{-2}\right)_{0.5}^{\infty} = e^{-1} = 0.3678$	
		(c). $P(X \le 1) = \int_{-\infty}^{1} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{1} f(x) dx = 0 + \int_{0}^{1} 2e^{-2x} dx$	
		$=2\left(\frac{e^{-2x}}{-2}\right)_0^1=1-e^{-2}=0.8646$	7M
	b)	Given the time to microwave a bag of popcorn using the automatic setting can be treated as a random variable having a normal distribution. Let it be X . Also given standard deviation, σ =10 seconds. And the probability that the bag will take less than 282.5 seconds to pop is 0.8212.	
		$i.e, P(X \le 282.5) = 0.8212$	
		$\Rightarrow P\left(\frac{X-\mu}{\sigma} \le \frac{282.5-\mu}{\sigma}\right) = 0.8212$	
		$\Rightarrow P\left(Z \le \frac{282.5 - \mu}{\sigma}\right) = 0.8212$	
		$\Rightarrow F\left(\frac{282.5 - \mu}{\sigma}\right) = 0.8212 = F(0.92)$	
		$\Rightarrow \frac{282.5 - \mu}{\sigma} = 0.92$	
		$\Rightarrow \mu = 273.3 \text{ sec}$ The graph of illies that the hard will take to be smill taken as the manning of the second	
		The probability that the bag will take longer than 258.3 seconds to pop is $P(X \ge 258.3) = P\left(\frac{X - \mu}{\sigma} \ge \frac{258.3 - \mu}{\sigma}\right)$	
		$=P\bigg(Z \ge \frac{258.3 - 273.3}{10}\bigg)$	
		$= P(Z \ge -1.5)$	
3	a)	= 1-F(-1.5) = F(1.5) = 0.9332 Here the number of electric components that will fail in less than 1000 hours of	7M
		continuous use is the random variable. Given n=200, p=0.25, q=1-p =1-0.25 =0.75	
		Mean, μ =np =50	
		Standard deviation, $\sigma = \sqrt{npq} = \sqrt{200(0.2)(0.75)} = \sqrt{37.5} = 6.1237$	
		The probability that the component fewer than 45 will fail in less than 1000 hours of continuous use is	
		$P(X < 45) = P(X \le 44.5)$	
		$=P\left(\frac{X-\mu}{\sigma}\leq\frac{44.5-\mu}{\sigma}\right)$	
		$= P\bigg(Z \le \frac{44.5 - 50}{6.1237}\bigg)$	
		$=P(Z\leq -0.8981)$	
		= F(-0.90) = 0.1841	7M

b)	For the uniform distribution, the probability density function is	7M
	$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{for } \alpha < x < \beta \\ 0 & \text{elsewhere} \end{cases} $ Mean, $\mu = \int_{-\infty}^{\infty} x f(x) dx$	
	$= \int_{-\infty}^{\alpha} x f(x) dx + \int_{\alpha}^{\beta} x f(x) dx + \int_{\beta}^{\infty} x f(x) dx$	
	$= \int_{\alpha}^{\beta} x \left(\frac{1}{\beta - \alpha} \right) dx = \left(\frac{1}{\beta - \alpha} \right) \left(\frac{x^2}{2} \right)_{\alpha}^{\beta}$	
	$= \left(\frac{1}{\beta - \alpha}\right) \left(\frac{\beta^2 - \alpha^2}{2}\right) = \frac{\alpha + \beta}{2}$	
	Variance, $\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$	
	$=\int_{-\infty}^{\infty}x^{2}f(x)dx-\mu^{2}$	
	$= \int_{\alpha}^{\beta} x^2 \frac{1}{\beta - \alpha} dx - \mu^2$	
	$= \frac{1}{\beta - \alpha} \left[\frac{x^3}{3} \right]_{\alpha}^{\beta} - \left(\frac{\beta + \alpha}{2} \right)^2$	
	$=\frac{\beta^3-\alpha^3}{3(\beta-\alpha)}-\left(\frac{\beta+\alpha}{2}\right)^2$	
	$=\frac{(\beta-\alpha)(\beta^2+\alpha^2+\alpha\beta)}{3(\beta-\alpha)}-\left(\frac{\beta+\alpha}{2}\right)^2$	
	$=\frac{\left(\beta^2+\alpha^2+\alpha\beta\right)}{3}-\frac{\beta^2+\alpha^2+2\alpha\beta}{4}$	
	$=\frac{\beta^2+\alpha^2-2\alpha\beta}{12}=\frac{\left(\beta-\alpha\right)^2}{12}$	
	Variance, $\sigma^2 = \frac{(\beta - \alpha)^2}{12}$	
a)	Given $\mu = 0.2250$, $n = 40$, $\sigma = 0.0042$ We have to find out $P(0.2245 < \overline{X} < 0.2260)$. We will use Central limit theorem.	
	Now, P(0.2245 < \overline{X} < 0.2260) = P($\frac{0.2245 - 0.2250}{0.0042/\sqrt{40}}$ < $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ < $\frac{0.2260 - 0.2250}{0.00425/\sqrt{40}}$)	
	= P(-0.753 < Z < 1.506)	
	= F(1.506) - F(-0.753) = F(1.506) - (1-F(0.753))	
	= F(1.506) - 1 + F(0.753) (average of .75 and .76 = $0.9332 - 1 + 0.7734$ is .755)	
h)	= 0.7066	7M
b)	Given $n = 10$, $\sigma^2 = 42.5$. We have to find out $P(3.14 < S < 8.94)$	
		7M

		But $P(3.14^2 < S^2 < 8.94^2) = P(9(3.14)^2 / 42.5 < ((n-1)S^2/\sigma^2) < 9(8.94)^2 / 42.5)$	
		$= P(2.0879 < \chi^2 < 16.9249)$	
		$= P(2.088 < \chi^2 < 16.925)$	
		$= P(\chi^2 > 2.088) - P(\chi^2 > 16.925)$	
		= $0.95 - 0.01$ (from Table 5 with $\upsilon = 9$) = 0.94	
5	a)	Null hypothesis, H_0 : $\mu = 1000$	
		Alternative hypothesis, H_1 : $\mu > 1000$	
		Level of Significance $\alpha = 0.05$	
		Sample size, n = 64	
		x=1,038	
		$s = 146$ (when $n \ge 30$ we will replace s by σ)	
		Test statistic, $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	
		·	
		$=\frac{1,038-1000}{146/\sqrt{64}} = 2.08$	
		140/ 04	
		$Z_{0.05} = 1.645$ Since $Z = 2.08$ is positive and is greater than 1.645, the null hypothesis must be rejected	
		at level $\alpha = 0.05$. Hence accept the alternative hypothesis.	7M
	b)	Null hypothesis, H_0 : $\mu = 14.0 \text{psi}$	
		Alternative hypothesis, H_1 : $\mu \neq 14.0$ psi	
		Level of Significance, $\alpha = 0.05$ Sample size, $n = 5$	
		Sample mean $\overline{X} = 14.4$	
		Sample variance $s^2 = 0.025$	
		s = 0.1581	
		Test statistic, $t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}} = \frac{14.4 - 14.0}{0.1581 / \sqrt{5}} = 5.6574$	
		$t_{0.025}$ (4 d.f) = 2.776 Since $t = 5.6574$ is greater than 2.776, the null hypothesis must be rejected at level	
		$\alpha = 0.05$. So, accept the alternative hypothesis.	7M
6	a)	Null Hypothesis, H_0 ; $\mu_1 - \mu_2 = 0$	
		Alternate Hypothesis, H_1 : $\mu_1 - \mu_2 \neq 0$ Level of significance: $\alpha = 0.05$	
		x = 115.1 $y = 114.6$	
		$ \begin{array}{lll} s_1 = 0.47 & s_2 = 0.38 \\ n_1 = 33 & n_2 = 31 \end{array} $	
		Test Statistic, $Z = \frac{(\overline{X} - \overline{Y}) - \delta_0}{\sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{n}}} = \frac{(115.1 - 114.6)}{\sqrt{\frac{0.47^2}{33} + \frac{0.38^2}{31}}} = 4.69$	
		$\sqrt{\frac{S_1^2}{1} + \frac{S_2^2}{2}} \qquad \sqrt{\frac{0.47^2}{23} + \frac{0.38^2}{21}}$	
		$V_{1} n_{1} n_{2} V_{2} SS SI$ $Z_{0.025} = 1.96$	
		Decision: Since $Z = 4.69 > Z_{0.025} = 1.96$, we have to reject the null hypothesis. So,	
		accept the alternate hypothesis	
		A 95% confidence interval of the difference in mean dynamic modulus is given by $\sqrt{\frac{2}{2}}$	
		$(\overline{x} - \overline{y}) \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	
		$\Rightarrow (115.1 - 114.6) \pm z_{0.025} \sqrt{\frac{0.47^2}{33} + \frac{0.38^2}{31}}$	14M

		$\Rightarrow (115.1 - 114.6) \pm 1.96 \sqrt{\frac{0.47^2}{33} + \frac{0.38^2}{31}}$	
		$\Rightarrow (115.1-114.0)\pm 1.90\sqrt{\frac{33}{33}} + \frac{1}{31}$	
		\Rightarrow 0.5 ± 1.96*0.10655	
		$\Rightarrow 0.5 - 0.208838 < \mu 1 - \mu 2 < 0.5 + 0.208838$	
		·	
		$\Rightarrow 0.291162 < \mu_1 - \mu_2 < 0.708838$	
7	a)	Null Hypothesis, H_0 ; $\mu_1 - \mu_2 = 0$	
		Alternate Hypothesis, H_1 : $\mu_1 - \mu_2 \neq 0$ Level of significance: $\alpha = 0.01$	
		$\bar{x} = 427.33$ $\bar{y} = 429$ $s_1^2 = 597.86$ $s_2^2 = 202$	
		$n_1 = 6$ $n_2 = 6$	
		Test Statistic, $t = \frac{1}{\sqrt{1 + \frac{1}{2}}}$ where $S_p^2 = \frac{(x_1 - y_2)^2 + (x_2 - y_2)^2}{n + n - 2}$	
		Test Statistic, $t = \frac{(\overline{X} - \overline{Y}) - \delta}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ where $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	
		$=\frac{(427.33-429)}{19.998\sqrt{\frac{1}{6}+\frac{1}{6}}}$	
		$19.998\sqrt{\frac{1}{1}+\frac{1}{1}}$	
		• • •	
		= -0.1446	
		$t_{0.005}$ 10 d.f = 3.169 Decision: Since t = -0.1446 > -t _{0.005} = -3.169 , we have to accept the null hypothesis.	7M
	b)	Null hypothesis: $\sigma = 1.20$	7141
		Alternative hypothesis: $\sigma > 1.20$	
		Level of significance $\alpha = 0.05$	
		$n = 10, \sigma = 1.20$	
		s = 1.32	
		Test statistic, $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$	
		σ_0^2	
		$(10-1)(1.32)^2$	
		$=\frac{(10-1)(1.32)^2}{(1.20)^2}$	
		=10.89	
		$(n-1)S^2$	
		Decision : Since $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} = 10.89$ does not exceed 16.919, the value of $\chi_{0.05}^2$	
		U	
		for 9 degrees of freedom, the null hypothesis cannot be rejected. So, accept the null	
		hypothesis.	7M
8	a)	Given $k = 3$ samples and the sizes are $n_1 = 8$, $n_2 = 8$ and $n_3 = 8$, 2.2
		$T_1 = 74.8$ (the sum of all the values under Lub A)	
		$T_2 = 91.4$ (the sum of all the values under Lub B)	
		$T_3 = 133.7$ (the sum of all the values under Lub C) The grand total, $T \bullet = T_1 + T_2 + T_3 = 299.9$	
		N = $n_1 + n_2 + n_3 = 8 + 8 + 8 = 24$	
		$T \bullet^2 (299.9)^2$	
		$C = \frac{T \bullet^2}{N} = \frac{(299.9)^2}{24} = 3747.5$	
		$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}^2 - C$	
		i=1 $j=1$	
		= $(12.2)^2 + (11.8)^2 + (13.1)^2 + \dots + (22.8)^2 + (20.4)^2 - 3747.5$	
		= 507.3896	14M
	<u> </u>		1-11/1

1	70 W	1 F						
	$SS(Tr) = \sum_{i}$	$\sum_{i=1}^{k} \frac{T_i^2}{n_i} - C$				in Test	=	
lı	= 23	0.5858					-	
-	SSE = SST -	-SS(Tr) = 27	6.8038					
	$F_{0.01}(3-1,24-3) = F_{0.01}(2,21) = 5.78$							
	Analysis of v	variance table	:					
	Source of variation	Degrees of freedom	Sum of squares	Mean square	F			
	Treatment	k-1	SS(Tr)	MS(Tr) = SS(Tr)/(k - 1)	MS(Tr)/MSE			
	s = 23	2	230.5858	115.2929	8.7468			
	SSE_SS()	N-k	SSE	MSE = SSE/(N - k)	* · · · · · · · · · · · · · · · · · · ·			
	Sagar 3. 1, 7 %	21	276.8038	13.1811	=	1,	4	
	Total	N-1	SST		g g	4.		
	*** a.i .	23	507.3896			-1		
-	must be reje	cted. So, acco	ept the alterna				um luiki	
a)		d of least squar	re, the normal	equations to fit a straight line	of the form			
	1 -	$=\sum_{y}$					8 - F	
	1							
	Form the give	en data, n =8,	$\sum x = 1280, \sum$	$\sum x^2 = 2,72,000 \sum xy = 11$	150.6		Pier To Registra	
b)	Then $y = 0.05$	84+0.0040x					7M	
-	The coefficien	nt of correlatio	n					
	$r = \frac{1}{(n\sum x^2 - 1)^n}$	$\frac{n\sum xy - \sum x}{-(\sum x)^2 n}$	$\frac{\sum y}{y^2 - \left(\sum y\right)^2}$			213.2101		
5			rv-8171 \	$\nabla x^2 = 9875 \nabla y^2 - 6763$			n de la companya de l	
						5 () 4	7M	
	a) b)	$= 23$ $SSE = SST - F_{0.01}(3-1,24-1)$ $Analysis of v$ $Source of variation$ $Treatment$ S $Error$ $Total$ $Decision: Simust be rejet the same for the same for the same for the same for the given that the same is the same is the same is the same is the same for the same is the same for the same for the same is the same for the same is the same is the same for the same is the same for the same is the same is$	F _{0.01} (3-1,24-3) = F _{0.01} (2,2). Analysis of variance table Source of variation Treatment Source of freedom Treatment Source of variation Treatment Source of freedom Note that the same for the three lubins are some for the three lubins are some form the given data, n = 8, then y = 0.0584+0.0040x The coefficient of correlation The size of variance table Degrees of freedom Note that the same is a size of the same for the three lubins are some for the three lubins are some for the given data, n = 8, then y = 0.0584+0.0040x The coefficient of correlation The size of the size data n = 10, the siz	$= 230.5858$ $SSE = SST - SS(Tr) = 276.8038$ $F_{0.01}(3-1,24-3) = F_{0.01}(2,21) = 5.78$ Analysis of variance table: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$= 230.5858$ $SSE = SST - SS(Tr) = 276.8038$ $F_{0.01}(3-1,24-3) = F_{0.01}(2,21) = 5.78$ Analysis of variance table: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$SSE = SST - SS(Tr) = 276.8038$ $F_{0.01}(3-1,24-3) = F_{0.01}(2,21) = 5.78$ Analysis of variance table: $Source \text{ of variation}} \qquad Degrees \text{ of freedom}} \qquad Sum \text{ of squares}} \qquad Mean square \qquad F$ $Treatment \qquad k-1 \qquad SS(Tr) \qquad MS(Tr) = SS(Tr)/(k-1) \qquad MS(Tr)/MSE \qquad 8.7468$ $SSE = SSE \qquad N-k \qquad SSE \qquad MSE = SSE/(N-k) \qquad 115.2929 \qquad 8.7468$ $SSE = N-1 \qquad SST \qquad 13.1811$ $N-1 \qquad SST \qquad 23 \qquad 507.3896$ $Decision: Since F = 8.7468 \text{ exceed the value of } F_{0.01}(2,21) = 5.78, \text{ the null hyprimus to be rejected. So, accept the alternative hypothesis. That is the weight losses the same for the three lubricants. a) By the method of least square, the normal equations to fit a straight line of the form y = a + bx are na + b\sum x = \sum y a\sum x + b\sum x^2 = \sum xy Form the given data, n = 8, \sum x = 1280, \sum x^2 = 2,72,000 \sum xy = 1150.6 Then y = 0.0584+0.0040x b) The coefficient of correlation r = \frac{n\sum xy - \sum x\sum y}{(n\sum x^2 - (\sum x)^2)(n\sum y^2 - (\sum y)^2)} For the give data n = 10, \sum x = 311, \sum y = 257, \sum xy = 8171, \sum x^2 = 9875, \sum y^2 = 6763$	$SSE = SST - SS(Tr) = 276.8038$ $SSE = SST - SS(Tr) = 276.8038$ $F_{0.01}(3-1,24-3) = F_{0.01}(2,21) = 5.78$ Analysis of variance table: $\begin{array}{ c c c c c c c }\hline Source of variance table: \\\hline Source of variation \\\hline Source of variatio$	

forwarded 23/1/2025 Scheme Prepared by
N. Karunakar
Assistant Professor
Department of Mathematics
BEC, Bapatla
9247450048