Hall Ticket Number:

I/IV B.Tech (Regular\Supplementary) DEGREE EXAMINATION

February, 2024

Common to CE & ME

First Semester
Time: Three Hours

Advanced Optics and Material Testing

Time: Three Hours					Maximum: 70 Marks				
		uestion I compulsorily. ne question from each unit.	(14X1 = : (4X14=5			-			
			,						
1	a)	What is meant by life time of electron?		CO CO1	BL Ll	M 1M			
•	,	Illustrate stimulated emission.		COI	L2	1M			
	c)	What is a meta stable state?		COI	L1	1 M			
	d)	What are the conditions for total internal reflection?		COI	L1	1M			
	e)	Recall De-Broglie hypothesis.		CO2	L1	1M			
	f)	What is the wave length of electron accelerated by 10000V?		CO2	L1	1 M			
	g)	Velocity of matter wave is greater than velocity of light. Justify		CO ₂	L5	1 M			
	h)	Outline the Normalization condition for the wave function.		CO ₂	L2	1 M			
	i)	State Bloch theorem.		CO3	L1	1 M			
	j)	What is effective mass of an electron?		CO ₃	L1	1 M			
	k)	State Bragg's law.		CO3	L1	1 M			
	1)	What is the frequency range of Ultrasonics?		CO4	L1	1 M			
	m))	CO4	L1	1 M			
	n)		(CO4	L1	1M			
	,	Unit-I							
2	a)	Explain with neat sketches the construction and working of a Ruby Laser.		CO1	L2	8M			
	b)		(CO1	L2	6M			
		(OR)	-1 ,	001	т 2	73.4			
3			iber. (CO1 CO1	L3 L2	7M 7M			
	b)	Outline the different types of optical fibers based on mode and refractive index profil Unit-II	c. (COI	L2	/ 141			
4	a)	100 110	. (CO2	L2	8M			
	b)			CO2	L2	6M			
	,	(OR)							
5	a)	Develop Schrodinger's Time dependent wave equation.		CO2	L3	7M			
	b)	Illustrate the construction and working of Scanning Tunnelling microscope.	(CO2	L2	7 M			
_	,	Unit-III		CO2	T 1	O.			
6		List the failures of Classical free electron theory. Explain Kronig-Penny model with suitable sketches.		CO3 CO3	L1 L2	6M 8M			
	b)	(OR)	`	003	LL	OTAT			
7	a)	Write a note on Crystal lattices.	į	CO3	L1	7M			
,	b)	Explain Crystal planes and Miller indices.		CO3	L2	7M			
	-,	<u>Unit-IV</u>							
8	a)	Outline the general applications of Ultrasonics.		CO4	L2	6M			
	b)	Illustrate any one method for production of Ultrasonics.		CO4	L2	8M			
		(OR)				200 000			
9	a)	Explain Pulse echo technique with suitable diagrams.		CO4	L2	6M			
	b)	Outline the medical and Industrial applications of radio isotopes.		CO4	L2	8M			

Hall Ticket Number:

I/IV B.Tech (Regular\Supplementary) DEGREE EXAMINATION

March, 2023 First Semester **Common to CE &ME Branches**

Advanced Optics and Material Testing

		ree Hours Advanced Optics and Maximi	um: 70 Ma	_
		· ·	4 = 14 Mar 14=56 Mar	-
1			X14=14 Ma	
-	a)	What is a LASER?	CO1,L1	1M
	b)	Define the pumping.	CO1,L1	1M
	c)	State the principle of an optical fiber.	CO1,L1	1M
	d)	Write any two advantages of optical fibers ove copper cables.	CO1,L1	1M
	e)	Give two properties of matter waves	CO2,L2	1M
	f)	Determine the wavelength of an electron accelerated from rest through a potential difference of 100 volts.	CO2,L3	1M
	g)	State Heisenberg uncertainty principle	CO2,L1	1 M
	h)	Failures of classical free electron theory	CO3,L3	1 M
	i)	What are Lattice parameters.	CO3,L1	1 M
	j)	What is the main assumption of Kronig Penny model.	CO3,L1	1 M
	k)	State bragg's law	CO4,L1	1 M
	1)	Properties of ultrasonic waves.	CO4,L1	1 M
	m)	Define NDT.	CO4,L2	1M
	n)	Mention the applications of radio isotopes.		1 M
2	`	UNIT I	CO1 I 1	101/
2.	a)	Explain in detail the Principle, construction and working of He-Ne laser with its merits.	CO1,L1	10M
	b)	Differentiate spontaneous and stimulated emission (OR)	CO1,L2	4M
3.	a)	Derive an expression for the acceptance angle and numerical aperture in an optical fiber	CO1,L3	10M
٦.	b)	Short note on Fibre optic communication system	CO1,L3	4M
	0)	UNIT II	CO1,L2	1111
4.	a)	Derive schroedinger time independent wave equation	CO2,L1	8M
	b)	Explain Davission and Germer experiment for the existence of wave nature of electrons. (OR)	CO2,L2	6M
5.	a)	Derive Schroedinger equation for the particle in an one dimensional box. And deduce for y and z axis.	CO2,L3	8M
	b)	Explain the construction of scanning tunnelling microscope UNIT III	CO2,L2	6M
6.	a)	Explain the formation of energy band gap using Kronig Penny model	CO3,L1	10M
	b)	Derive an expression for effective mass of an electron.	CO3,L2	4M
		(OR)		
7.	a)	With the construction explain the working of X-ray powder diffraction method.	CO3,L2	10M
	b)	State and explain Bragg's law.	CO3,L1	4M
0		UNIT IV	GG 4 T G	
8.	a)	Mention the applications of ultrasonic waves.	CO4,L2	7M
	b)	Explain Principle, construction and Working of Magnetostriction electric generator in	CO4,L1	7M
		producing ultrasonic		
9.	9)	(OR) Explain the scanning methods in NDT	CO4,L1	7M
7.	a) b)	Mention the properties of α,β,γ -rays	CO4,L1	7M
	U)	Mention the properties of α, β, ξ -rays	CO+,L3	/ 1VI

Hal	l Ti	cket	t Nu	ımb	er:		

I/IV B.Tech (Regular) DEGREE EXAMINATION

April, 2022

Common to CE and ME

First Semester

Advanced Optics and Material Testing Maximum: 70 Marks

Time: Three HoursMaximum: 70 MarksAnswer Question NO. 1 compulsorily.(14X1 = 14 Marks)Answer ONE questions from each unit.(4X14=56 Marks)

		M	C	O BL
1.	a)	What is the ratio of He and Ne mixture in He-Ne laser?		CO1
	b)	Define population inversion in laser.		CO1
	c)	Give the principle of an optical fiber		CO1
	d)	Define numerical aperture in optical fiber.		CO1
	e)	Give the expression for energy of particle in potential box.		CO2
	f)	What are matter waves?		CO2
	g)	Give two physical significance of wave function.		CO2
	h)	State Heisenberg uncertainty principle		CO2
	i)	Failures of classical free electron theory		CO3
	j)	What are lattice parameters?		CO3
	k)	Classify sound with respect to frequency.		CO4
	1)	State bragg's law		CO3
	m)	List two properties of ultrasonic.		CO4
	n)	Define NDT.		CO4
		UNIT I		,
2.	a)	Distinguish between Spontaneous and stimulated emission	10M	CO1
	b)	Explain with a neat diagram the principle, construction and working of a semiconductor	4M	CO1
		laser.		
		(OR)		
3.	a)	Explain in detail the Principle, construction and working of He-Ne laser.	10M	CO1
	b)	Differentiate spontaneous and stimulated emission	4M	CO1
		(OR)		
4.	a)	Classification of an optical fibre based on modes and refractive index	10M	CO2
	b)	Short notes on the losses of an optical fiber	4M	CO2
		UNIT II		
5.	a)	Derive schroedinger time independent wave equation	4M	CO2
	b)	Explain the debroglie's concept of matter waves and give wavelength.	10M	CO2
		(OR)		
6.	a)	Explain the significance of a wavefunction	4M	CO3
	b)	Derive Schroedinger equation for the particle in an one dimensional box.	10M	CO3
		UNIT III		
7.	a)	Derive an expression for effective mass of an electron.	10M	CO3
	b)	Explain the formation of energy bands using Kronig-Penny model.	4M	CO3
		(OR)		
8.	a)	Explain how the structure of crystal will be determined by powder method with neat	4M	CO4
	ĺ	diagram.		
	b)	Draw the Miller planes for (111), (001)	10M	CO4
	ĺ	UNIT IV		
9.	a)	Mention the applications of ultrasonics.	4M	CO4
	b)	Explain Principle, construction and Working of Magnetostriction generator in producing	10M	CO4
		ultrasonic		

Hal	ll Ticket Number:								

I/IV B.Tech (Regular) DEGREE EXAMINATION

JULY, 2021

Time: Three Hours

Common to CE and ME

First Semester

Advanced Optics and Material Testing Maximum:70 Marks

Answer Question NO. 1 compulsorily. (14X1 = 14 Marks)
Answer ONE questions from each unit. (4X14=56 Marks)

Ansı	wer C	•		6 Marks)
	· .	M_	C	
1.	a)	What is population inversion?		CO1
	b)	What are the characteristics of LASER?		CO1
	c)	An optical fibre has an acceptance angle 26.80°. Calculate its numerical aperture.		CO1
	d)	Write any two advantages of optical fibres.		CO1
	e)	Calculate the energy required for an electron to jump from ground state to first exited state in a potential well of width L,		CO2
	f)	What are the properties of matter waves?		CO2
	g)	Calculate de Broglie wave length of an electron moving with a potential of 64V.		CO2
	h)	Define Effective mass of electron?		CO3
	i)	What are Drawbacks of quantum free electron theory?		CO3
	j)	Draw the crystal planes of (111), and (100).		CO3
	k)	State Bragg's Law.		CO3
	1)	What are ultrasonics?		CO4
	m)	What is meant by Non-destructive testing?		CO4
	n)	What are α , β , γ rays?		CO4
		UNIT I	•	
2.	a)	Distinguish between Spontaneous and stimulated emission	6M	CO1
	b)	Explain with a neat diagram the principle, construction and working of a semiconductor laser.	8M	CO1
		(OR)		
3.	a)	Derive an expression for acceptance angle and numerical aperture for an optical fibre.	6M	CO1
	b)	Explain optical fibre communication with neat block diagram and also explain optical transmission losses in optical fibres.	8M	CO1
		UNIT II		
4.	a)	Derive time independent Schrodinger equation.	7M	CO2
	b)	Explain Heisenberg uncertainty principle, based on this, show the non-existence of	7M	CO2
		electrons inside the nucleus.	7171	
		(OR)		
5.	a)	Calculate the wave lengths of electron using Bragg law and de Broglie hypothesis using the data as obtained in the Davission and Germer experiment.	10M	CO2
	b)	Explain the physical significance of wave function ψ.	4M	CO2
	0)	UNIT III	-1141	CO2
6.	a)	Explain the 'Kronig-penny' model of solids and show that it leads to energy band structure of solids.	10M	CO3
	b)	Write any four drawbacks of the classical free electron theory of metals.	4M	CO3
	0)	(OR)	4141	003
7.	a)	What are miller indices? How are they obtained	6M	CO3
٠.	b)	Describe the seven crystal systems with diagrams.	8M	CO3
	0)	UNIT IV	GIVI	003
8.	a)	With a neat diagram explain the production of ultrasonic waves by piezo electric oscillator method	8M	CO4
	b)	List out the properties of ultrasonic waves	6M	CO4
	0)	(OR)	0171	CO4
9.	3)	What are Nuclear radio isotopes? Explain them.	7M	CO4
٦.	a) b)	Mention the applications of radio isotopes in medical and industry.	7M	CO4
	U)	included the applications of faulo isotopes in included and industry.	/ 1/1	UU4