
IV/IV B.Tech (Regular) DEGREE EXAMINATION

OCTOBER, 2016 Electronics and Communication Engineering Seventh Semester VLSI Design Time: Three Hours Maximum: 60 Marks Answer Question No.1 compulsorily. (1X12 = 12 Marks)Answer ONE question from each unit. (4X12=48 Marks) **1.** Answer all questions (1X12=12 Marks) Write any two advantages of E beam masks. а What are the disadvantages of NMOS depletion mode pull up inverter. b Why n-well CMOS circuits superior to p-well CMOS circuits? с d Define sheet resistance (R_s) . Mention the purpose of design rules. e f What is the purpose of scaling? Design Dynamic CMOS 2 input nor gate. g Give the stick diagram color encoding scheme for any two layers. h i Design 2 input Exor gate using transmission gates. j What is the basic difference between PLA and PAL? What is the difference between the following two lines of Verilog code k #5 a = b;a = #5 b;1 What does `timescale 1ns/ 1ps signifies in a Verilog code?

UNIT – I

2.a	What are different approaches to CMOS fabrication? Describe n-well CMOS fabrication process with	
	neat sketches	8M
2.b	Compare CMOS technologies with bipolar technologies.	4M

(OR)

- With neat circuit diagram and waveforms discuss voltage transfer characteristics of CMOS inverter. 6M 3.a
- In the inverter circuit, what is meant by $Z_{p,u}$ and $Z_{p,d}$? Derive the required ratio between $Z_{p,u}$ and $Z_{p,d}$ 3.b if an nMOS inverter is to be driven through one or more pass transistors. 6M

UNIT – II

- Draw the stick diagram and a mask layout for an 8:1 nMOS inverter circuit. Both the input and output 4.a 8M points should be on the poly-silicon layer.
- An off chip capacitance load of 5 pF is to be driven from CMOS inverter. Set out suitable 4M4.b arrangements giving appropriate channel L: W ratios and dimensions. Calculate the number of inverter stages required, and the delay exhibited by the overall arrangement driving the 5 pF load.

(\mathbf{OR})

Derive expressions for rise-time and fall-time of CMOS inverter 6M 5.a How the following parameters effected when constant electric field scaling model applied. 5.b 6M b) Gate capacitance (C_g) c) Channel resistance (R_{on}) d) Maximum operating a)Gate area (A_g) frequency (f_0) e) Switching energy per gate (E_g) f) Power speed product (P_a)

UNIT – III

- Construct a color-coded stick diagram to represent the design of the NAND and NOR CMOS 6M 6.a structures and indicate pull-up/pull-down ratios in each case 6M
- Design two-phase clock generator using D flip-flops. 6.b

7.a	a Design CMOS multiplexer based 1-bit full adder logic with buffered SUM output			
7.b	Discuss architectural issues in design process	4M		
	UNIT – IV			
8.a	a Draw FPGA architecture and explain each block briefly.			
8.b	b Explain different types of gate-array-based ASICs.			
	(OR)			
9.a	Discuss typical design flow for designing VLSI IC circuits.	6M		
9.b	Design an 8-bit counter by using a forever loop, named block, and disabling of named block. The			
	counter starts at count = 7 and finishes at count = 54. The count is incremented at positive edge of			
	clock. The clock has a time period of 10. The counter counts through the loop only once and then is			

disabled.