II/IV B.Tech (Regular) DEGREE EXAMINATION

OCTOBER, 2016 Electronics and Communication Engineering DIGITAL ELECTRONICS Third Semester Time: Three Hours Maximum: 60 Marks Answer Question No.1 compulsorily. (1X12 = 12 Marks)Answer ONE question from each unit. (4X12=48 Marks) 1. Answer all questions (1X12=12 Marks) Convert $(1011010)_2$ into gray code. a Represent (-95)₁₀ using Signed 2's Complement form. b с Prove x + y = xy. Specify any two degenerate forms of two level implementations. d e Simplify $F(b,c,a,d) = \sum m(2,3,4,7,11,12,15)$. Implement a Half Adder using Basic Gates. f Design a 8:1 MUX using 4:1 MUX. g Write the excitation table for JK flip-flop. h Differentiate Combinational and Sequential logic implementation of the circuits. i In order to save the power consumption the logic family best suited for design is _____ i k Draw a two bit up counter using JK flip-flops. 1 Which PLD is used in electronic toys. UNIT – I Find the subtraction of $(12345)_{10}$ -(479)₁₀ using 10's and 9's complement methods. 6M 2.a 2.b What are the logic gates? Explain its functionality using Truth table, Boolean expression, its circuit symbol. 6M (**OR**)

3.a	What are binary codes? Mention the example for different binary codes. Generate the 4 bit reflected	
	code.	6M
3.b	Minimize the given expression and represent it in both Standard SOP and Standard POS forms using	
	Boolean theorems.	6M

$$F(a,b,c) = \sum m(2,3,4,6,7)$$

UNIT – II

Minimize the given Boolean Function using K- Maps. 4.a

$$F(a,b,c,d,e) = \sum m(0,1,5,6,9,13,14,17,21,22,25,29) + d(2,11,26,30)$$
 6M

4.b Simply the following Boolean function using Quine – McCluskey method.

$$Y(A, B, C, D) = \sum m(1, 2, 3, 5, 9, 12, 14, 15) + d(4, 8, 11)$$
^{6M}

(**OR**)

5.a	Design a Full Adder and also Implement it using Half Adders.	6M
5.b	Implement $F = (A + B')(CD + F)$ using Multi level NAND gates	6M

Implement F = (A + B')(CD + E) using Multi level NAND gates. 5.0

UNIT – III

6.a	Design a 4 bit Magnitude comparator.	6M
6.b	Implement the following Boolean expression using 16:1 Multiplexer.	
	$V = \overline{ABC} + \overline{ABCD} + \overline{AB} + \overline{ACD}$	6M

Y = ABC + ABCD + AB + ACD

14EC305

- 7.a Convert the JK Flip flop to SR, T & D Flip flops.
- 7.b Design a Sequential circuit using D flip flops for the given state diagram

$\mathbf{UNIT} - \mathbf{IV}$

- 8.a Design an asynchronous Decimal BCD counter using D flip flops.
- 8.b A 3 input and 4 output combinational circuit has the following output functions. Implement the circuit using a suitable PAL.

$$A(x, y, z) = \sum m(1, 2, 4, 6)$$

$$B(x, y, z) = \sum m(0, 1, 3, 6, 7)$$

$$C(x, y, z) = \sum m(1, 2, 4, 6, 7)$$

$$D(x, y, z) = \sum m(1, 2, 3, 5, 7)$$

6M

(**OR**)

- 9.a Design an Universal Shift register using D flip flops.
- 9.b Construct the NAND gate using Schottky TTL logic and explain its operation and working with neat sketch. 6M

6M

6M

6M