

DIGITAL COMMUNICATIONS AND VHDL

(EC-452) Lab Manual

Prepared by

Y.Sri Chakrapani, M.Tech
(Lecturer)

&
D.Swetha, M.Tech

(Lecturer)

DEPARTMENT OF ECE

BAPATLA ENGINEERING COLLEGE
BAPATLA

LIST OF EXPERIMENTS

Experiments Based on Hardware

1. Generation and Detection of PCM.

2. Generation and Detection of ASK.

3. Generation and Detection of FSK.

4. Generation and Detection of PSK&QPSK.

5. Generation and Detection of TDM

6. Generation and Detection of DPSK

7. Delta Modulation and Demodulation.

VHDL Modeling and Synthesis of the Following Experiments

8. Logic Gates.

9. Multiplexers/De-Multiplexers.

10. Design of ALU.

11. 4 bit Magnitude Comparator.

12. JK, D & T Flip-Flops

13. Synchronous Counters

14. Asynchronous Counters

1. Generation and Detection of PCM

Aim: To study the Pulse Code Modulation and Demodulation using PCM trainer kit

Apparatus: PCM kit, CRO and connecting probes

Theory:

Pulse code modulation is a process of converting a analog signal into digital. The
voice or any data input is first sampled using a sampler (which is a simple switch) and
then quantized. Quantization is the process of converting a given signal amplitude to an
equivalent binary number with fixed number of bits. This quantization can be either mid-
tread or mid-raise and it can be uniform or non-uniform based on the requirements. For
example in speech signals, the higher amplitudes will be less frequent than the low
amplitudes. So higher amplitudes are given less step size than the lower amplitudes and
thus quantization is performed non-uniformly. After quantization the signal is digital and
the bits are passed through a parallel to serial converter and then launched into the
channel serially.

At the demodulator the received bits are first converted into parallel frames and
each frame is de-quantized to an equivalent analog value. This analog value is thus
equivalent to a sampler output. This is the demodulated signal.

In the kit this is implemented differently. The analog signal is passed trough a
ADC (Analog to Digital Converter) and then the digital codeword is passed through a
parallel to serial converter block. This is modulated PCM. This is taken by the Serial to
Parallel converter and then through a DAC to get the demodulated signal. The clock is
given to all these blocks for synchronization. The input signal can be either DC or AC
according to the kit. The waveforms can be observed on a CRO for DC without problem.
AC also can be observed but with poor resolution.

Procedure:
 The kit is self-explanatory. Identify the blocks according to the theory mentioned
and generate a PCM modulated signal and demodulate to check if the same signal is
obtained or not. The steps are also given below in a detailed fashion:

1. Power on the Future Tech PCM kit.
2. Measure the frequency of sampling clock.
3. Apply the DC voltage as modulating signal.
4. Connect the DC input to the ADC and measure the voltage.
5. Connect the clock to the timing and control circuit.
6. Note the binary work from LED display. The serial data through the channel can

be observed in the CRO.
7. Also observe the binary word at the receiver end.
8. Now apply the AC modulating signal at the input.
9. Observe the waveform at the output of DAC.
10. Note the amplitude of the input voltage and the codeword. Also note the value of

the output voltage. Show the codeword graphically for a DC input.

Kit diagram:

Fig 2: Block diagram of PCM

Model waveforms:

2. Generation and Detection of ASK

Aim: To study the operation of Amplitude Shift Keying modulation and demodulation
with the help of circuit connections.

Apparatus:

1. Resistors 1.2KΩ 3

2. Transistor BC 107 2

3. CRO 30MHz 1

4. Function generator 0-1MHz 1

5. Regulated Power Supply 0-30V, 1A 1

6. CRO Probes --- 1

Theory:
The binary ASK system was one of the earliest form of digital modulation used in
wireless telegraphy. In an binary ASK system binary symbol 1 is represented by
transmitting a sinusoidal carrier wave of fixed amplitude Ac and fixed frequency fc for the
bit duration Tb where as binary symbol 0 is represented by switching of the carrier for Tb

seconds. This signal can be generated simply by turning the carrier of a sinusoidal
oscillator ON and OFF for the prescribed periods indicated by the modulating pulse train.
For this reason the scheme is also known as on-off shift testing. Let the sinusoidal carrier
can be represented by Ec (t) =Ac cos (2Πfct) then the binary ASK signal can be
represented by a wave s(t) given by S(t) = Accos(2Πfct), symbol 1 ASK signal can be
generated by applying the incoming binary data and the sinusoidal carrier to the two
inputs of a product modulator. The resulting output is the ASK wave. The ASK signal
which is basically product of the binary sequence and carrier signal has a same as that of
base band signal but shifted in the frequency domain by ±fc. The band width of ASK
signal is infinite but practically it is 3/Tb.

Procedure:
1. Connect the circuit as per the circuit diagram.
2. Switch on the supply.
3. Apply the sinusoidal carrier signal from the function generator to the collector

terminal of the transistor with 10v (p-p) amplitude and10KHz frequency.
4. Apply the Binary signal from the pulse generator to the Base terminal of the transistor

with 5v (p-p) amplitude and 2 KHz frequency.
5. Observe the output of ON/OFF keying from ASK modulator circuit using CRO.
6. Now vary the Amplitude and frequency of the binary signal and observe the output

changes of ASK modulated Wave & compare it with the modulating data signal
applied to the modulator input.

7. The output of the low pass filter is a demodulated binary signal.

Precautions:
1. Keep the connections tight.
2. Do not lift the IC pins. Check if the ICs of the kit are in tact.

Circuit diagram:

Fig: 1 Amplitude Shift Keying and demodulation Circuit

Model waveforms:

 (a)

 Amplitude: 4v (p-p)

 Frequency: 2KHz

 Amplitude: 4V (p-p)

 Frequency: 2KHz

 (b)

Fig: 2 Waveforms of (a) Carrier signal (b) Data signal & ASK wave

3. Generation and Detection of FSK

Aim: To study the operation of Frequency Shift Keying modulation and demodulation
with the help of kit.

Apparatus: FSK kit, CRO and connecting probes

Theory:
 Frequency Shift Keying is the process generating a modulated signal from a
digital data input. If the incoming bit is 1, a signal with frequency f1 is sent for the
duration of the bit. If the bit is 0, a signal with frequency f2 is sent for the duration of this
bit. This is the basic principle behind FSK modulation.
 Basically a 555 timer is used as an Astable multivibrator, which generates a clock
pulse of frequency determined by the values of R and C in this circuit. This is divided by
2, 4, 8 and 16 using 74163 IC, and two of these outputs are used in a NAND logic gates
circuit, to generate a FSK modulated wave. To this NAND gates’ circuit a binary data
sequence is also supplied. The circuit operation causes a frequency f1 for bit 1, and f2 for
bit 0.
 In the demodulator circuit, the FSK modulated signal is applied to a high Q tuned
filter. This filter is tuned to the frequency of either 0 or 1. This filter passes the selected
frequency and rejects the other. The output is then passed through a FWR (Full Wave
Rectifier) circuit and the output is now above zero volts only. It is then passed through a
comparator; if the input to the comparator is greater than threshold value, the output is 1,
else it is 0. This digital output of the comparator is the demodulated FSK output.

Procedure:

1. Power on the kit. Apply one binary sequence as input message to the FSK
modulator. This sequence is taken from decade counter outputs.

2. Give the modulated FSK signal to the demodulator input. Observe the output
of the demodulator on the CRO along with the original data sequence. Adjust
the tuning controls (of filter and comparator) so that input and demodulated
outputs are the same. Do not touch the tuning controls after the adjustment is
done.

3. Apply another data sequence input from the decade counter as input message
and observe the demodulated output message. Both will be identical. Note the
FSK modulated and demodulated waveforms. Sketch them with proper
indications.

Precautions:

3. Keep the connections tight.
4. Do not lift the IC pins. Check if the ICs of the kit are in tact.

Kit diagram:

Model waveforms:

4. Generation and Detection of PSK

Aim: To study the operation of Phase Shift Keying modulation and demodulation with
the help of kit.

Apparatus: PSK kit, CRO and connecting probes

Theory:

Phase Shift Keying is a digital modulation Technique. A cosinusoidal carrier of a
fixed amplitude and frequency is taken. The digital data of 1’s and 0’s is converted to

)2cos()(

)2cos()(

ππ
π

+=
=

tfAts

tfAts

cC

cC respectively. In the kit, phase shift keying is obtained using an

OP-AMP circuitry and a switch. If incoming bit is 0, the output is same as the carrier; if it
is zero, the output is 900 phase shifted version of the carrier signal. For demodulation a
coherent detector is used. It has 3 parts, a multiplier, and integrator and decision device.
The operation can be analyzed from the circuit.

Procedure:

1. Power on the kit. Apply carrier signal to the input of the modulator.
2. Apply the modulating data signal from one of the decade counter’s outputs.

Observe the modulated signal in the CRO.
3. Apply the PSK modulator output to the input of demodulator. Also apply the

carrier signal to the demodulator.
4. Observe the demodulator output on the CRO.
5. Compare the two signal amplitudes.

Precautions:

1. Keep the connections tight.
2. Do not lift the IC pins. Check if the ICs of the kit are in tact.

Kit diagram:

Model waveforms:

5. Generation and Detection of TDM

Aim: To study the operation of Time Division Multiplexing and demultiplexing with the
help of kit.

Apparatus: TDM kit, CRO and connecting probes

Theory:

TDM is the multiplexing technique in time domain. If there are more users who
wish to communicate with another set of many users, they are provided a single channel
over which sequential communication can happen. Each user is provided a time slot and
the user sticks to his slot. The data of each user is sampled. In the channel, the first
sample of user 1, then user 2.., are sent for a pre-described set of users. Then again the
second sample of each user is sent in the same order. At the receiver synchronization of
timing circuits allows, each user’s information to be delivered to the correct destination.

In the kit four signals are analogous to 4 users. Each signal is given to the input of
the multiplexer. The transmission of signal on the channel is controlled using a switch
matrix controlled by a decoder circuit. The 2 by 4 decoder selection lines are driven by
divide by 5, divide by 10 outputs. The corresponding output is from 0 to 3. The switch of
the corresponding channel closes and the signal’s sample is passed on to the channel.
This can be seen from the kit diagram. At the receiver, the clock used for selection is
synchronous with the transmitter clock. This ensures that the outputs arrive at the correct
order. A duty cycle selector is there on the transmitter side of the circuit, which ensures
the mode of operation. The synchronization can be achieved either by direct method or
by using a PLL. Both are available on the kit.

Procedure:

1. Turn on the power to the kit. Check the clock signal from the transmitter
timing logic block. (64KHz)

2. Set the duty cycle selector switch to position 5.
3. Give the function generator outputs signals as input to the transmitter block.

Adjust their amplitudes to known values using a CRO before giving to
transmitter input.

4. Connect the Tx clock and Ch 0 reference of transmitter to the Rx clock and
Ch 0 reference of Receiver block. This ensures that Ch 0 at Tx is same as Tx 0
at Rx.

5. Check the outputs of the demultiplxer or receiver and note the amplitudes.
Compare the waveforms with those of sent waveforms. Both must be
identical.

6. Now change the duty cycle selector from 5 to 11, position. Use the PLL
circuit for synchronization. Connect the Tx clock to the PLL input and the Rx
clock also to PLL circuit in the specified position. The Rx clock will now be
synchronized to Tx clock. Repeat the steps 3 to 5 and collect the output
waveforms.

7. Compare the input and output signals in both the synchronization methods.

Precautions:
1. Keep the connections tight.
2. Do not lift the IC pins. Check if the ICs of the kit are in tact.

Kit diagram:

Model waveforms:

For Channel selection:

6. Generation and Detection of DPSK

Aim:
To study the various steps involved in generating the differential binary signal and
differential phase shift keyed signal at the modulator and recovering the binary signal
from the received DPSK signal.
Apparatus: Cathode ray oscilloscope, Probes, Patch chords

Theory:
Digital communication become important with the expansion of the use of computers and
data processing ,and have continued to develop into a major industry providing the
interconnection of the computer peripherals and transmission of data between distant
sites. Phase shift keying is a relatively new system, in which the carrier may be phase
shifted by =90 degrees for mark, and by -90 degrees for space. PSK has a number of
similarities to FSK in many aspects; frequency of the carrier is shifted in accordance with
the modulating square wave.

Fig-1 shows the circuit diagram of differential phase shift key modulation and de
modulation .In this IC 8038 is a basic wave form generator which generates sine, square,
triangle waveforms. The sine wave generated by 8038 IC is used as a carrier signal to the
system. The square wave generated by 8038IC is +/_ 12V level. so this is converted into
a +5V signal with the help of a transistor and diodes as shown in fig 1.this square wave is
used as a clock input to a decade counter which generates the modulating data outputs.

The differential signal to the modulating signal is generated using an Exclusive-
OR gate and a 1-bit delay circuit. CD 4051 is an analog multiplexer to which carrier is
applied with and with out 180 degrees phase shift(created by using an operational
amplifier connected in inverting mode)to the two inputs of the IC 741.Differential signal
generated by Ex-OR gate (IC 7486)is given to the multiplexers control signal input.
depending upon the level of the control signal, carrier signal applied with or with out
phase shift is steered to the output.1-bit delay generation of differential signal to the input
is created by using a D-flip flop(IC7474).During the demodulation ,the DPSK signal is
converted into a +5V square wave using a transistor and is applied to one input of the Ex-
OR gate. To the second input of the gate ,carrier signal is applied after conversion into a
+5V signal. So the Ex-OR gate output is equivalent to the differential signal of the
modulating data. This differential data is applied to the one input of the Ex-OR gate and
to the second input, after 1-bit delta the same signal is given. So the output of this Ex-OR
gate is modulating signal.

Procedure:
1. Switch on the experimental board.
2. Check the carrier signal and the data generator signals initially.
3. Apply the carrier signal to the carrier input of the DPSK modulator and give the data
generator to the data input of DPSK modulator and bit clock output to the input of DPSK
modulator and bit clock o/p to bit clock input of modulator.
4. Observe the DPSK modulating output with respect to the input data generated signal of
dual trace oscilloscope, and observe the DPSK signal with respect to differential data
also.

5. Give the output of the DPSK modulator signal to the input of the demodulator, give the
bit clock output to the bit clock input to the demodulator and also give the carrier output
to the carrier input of demodulator.
6. Observe the demodulator output with respect to data generator signal.

Kit Diagram:

Model Waveforms:

7. Generation and Detection of Delta Modulation

Aim: To study the operation of delta modulation and demodulation with the help of kit.

Apparatus: DM kit, CRO and connecting probes

Theory:
 Delta modulation is the DPCM technique of converting an analog message signal
to a digital sequence. The difference signal between two successive samples is encoded
into a single bit code. The block and kit diagrams show the circuitry details of the
modulation technique. A present sample of the analog signal m(t) is compared with a
previous sample and the difference output is level shifted, i.e. a positive level
(corresponding to bit 1) is given if difference is positive and negative level
(corresponding to bit 0) if it is negative. The comparison of samples is accomplished by
converting the digital to analog form and then comparing with the present sample. This is
done using an Up counter and DAC as shown in block diagram. The delta modulated
signal is given to up counter and then a DAC and the analog input is given to OPAMP
and a LPF to obtain the demodulated output.

Procedure:

1. Switch on the kit. Connect the clock signal and the modulating input signal to
the modulator block. Observe the modulated signal in the CRO.

2. Connect the DM output to the demodulator circuit. Observe the demodulator
output on the CRO.

3. Also observe the DAC output on the CRO.
4. Change the amplitude of the modulating signal and observe the DAC output.

Notice the slope overload distortion. Keep the tuning knob so that the
distortion is gone. Note this value of the amplitude. This is the minimum
required value of the amplitude to overcome slope overload distortion.

5. Calculate the sampling frequency required for no slope overload distortion.
Compare the calculated and measured values of the sampling frequency.

Precautions:
1. Keep the connections tight.
2. Do not lift the IC pins. Check if the ICs of the kit are in tact.

Kit diagram:

Block Diagram

Model Waveforms:

8.LOGIC GATES

8.1 AND GATE

Aim:

 To implement And Gate using VHDL.

Code:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity and1 is
 port(A,B : in std_logic;
 C : out std_logic);
end and1;

architecture archi of and1 is
begin
 C <= A and B;
end archi;

RTL SCHEMATIC:

Simulation Waveforms

8.2 OR GATE

Aim:

 To implement And Gate using VHDL.

Code:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity or1 is
 port(A,B : in std_logic;
 C : out std_logic);
end or1;

architecture archi of or1 is
begin
 C <= A or B;
end archi;

RTL Schematic:

Simulation Waveforms:

8.3 NAND GATE

Aim:

 To implement Nand Gate using VHDL.

Code:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity nand1 is
 port(A,B : in std_logic;
 C : out std_logic);
end nand1;

architecture archi of nand1 is
begin
 C <= A nand B;
end archi;

RTL Schematic:

Simulation Waveforms:

8.4 EX-OR GATE

Aim:

 To implement Nand Gate using VHDL.

Code:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity exor1 is
 port(A,B : in std_logic;
 C : out std_logic);
end exor1;

architecture archi of exor1 is
begin
 C <= A xor B;
end archi;

RTL Schematic:

Simulation Waveforms:

8.5 NOT GATE

Aim:

 To implement Not Gate using VHDL.

Code:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity exor1 is
 port(A : in std_logic;
 B : out std_logic);
end exor1;

architecture archi of exor1 is
begin
 B<= not A;
end archi;

RTL Schematic:

Simulation Waveforms:

8.6 HALF ADDER

Aim:

 To implement Half Adder using VHDL.

Code:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity halfadder is

port(a : in std_logic;
 b : in std_logic;
 s : out std_logic;
 cout : out std_logic);
end halfadder;

architecture Behavioral of halfadder is

begin
 s <= a xor b;
 cout<= a and b;

end Behavioral;

RTL Schematic:

Simulation Waveforms:

8.7 FULL ADDER

Aim:

 To implement Full Adder using VHDL.

Code:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY full_adder IS
 PORT(x: IN std_logic ;
 y: IN std_logic ;
 cin: IN std_logic ;
 cout: OUT std_logic ;
 sum: OUT std_logic
) ;
END full_adder ;

ARCHITECTURE equations OF full_adder IS
BEGIN
 sum <= x XOR y XOR cin ;
 cout <= (x AND y) OR (x AND cin) OR (y AND cin) ;
END ;

RTL Schematic:

Simulation waveforms:

9.MULTIPLEXERS/DEMULTIPLEXERS

Aim:

 To implement Multiplexer 8x1using VHDL.

Code:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mux8x1 is
 Port (
 i : in std_logic_vector(7 downto 0);
 s : in std_logic_vector (2 downto 0);
 y : out std_logic
);

end mux8x1;

architecture Behavioral of mux8x1 is

begin

 process (i,s)
 begin
 if (s = "000") then y <= i(0);
 elsif (s = "001") then y <= i(1);
 elsif (s = "010") then y <= i(2);
 elsif (s = "011") then y <= i(3);
 elsif (s = "100") then y <= i(4);
 elsif (s = "101") then y <= i(5);
 elsif (s = "110") then y <= i(6);
 else y <= i(7);
 end if;
 end process;

end Behavioral;

RTL Schematic:

Simulation Waveforms:

10.DESIGN OF ALU

Aim:

 To implement 4-Bit ALU using VHDL.

Code:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity LC2_ALU is
 port(A: in std_logic_vector (3 downto 0);
 B: in std_logic_vector (3 downto 0);
 S: in std_logic_vector (3 downto 0);
 Y: out std_logic_vector (3 downto 0));
end LC2_ALU;

architecture bhv of LC2_ALU is
begin
 process(A, B, S)
 begin

 case S is
 when "0000" => Y <= A or B;
 when "0001" => Y<= A and B;
 when "0010" => Y <= A;
 when "0011" => Y <= not A;
 when "0100" => Y <= A xor B;
 when "0101" => Y <= A nand B;
 when "0110" => Y <= A + B;
 when "0111" => Y <= A - B;
 when "1000" => Y <= A*B;
 when "1001" => Y <= A/B;
 when others => null;
 end case;

end process;
end bhv;

RTL Schematic:

Simulation Waveforms:

11. 4-BIT MAGNITUDE COMPARATOR

Aim:
 To implement 4-Bit Magnitude Comparator using
VHDL.

Code:

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY compare IS

PORT (A, B : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
AeqB, AgtB, AltB : OUT STD_LOGIC) ;

END compare ;

ARCHITECTURE Behavior OF compare IS
BEGIN

AeqB <= '1' WHEN A = B ELSE '0' ;
AgtB <= '1' WHEN A > B ELSE '0' ;
AltB <= '1' WHEN A < B ELSE '0' ;

END Behavior ;

RTL Schematic:

Simulation Waveforms:

12. JK, D & T Flip-Flops

12.1 J-K Flip-Flop

Aim:

 To implement J-K Flip-Flop using VHDL.

Code:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity jkflip is
 Port (CLK, J , K : in std_logic ;
 Q : out std_logic) ;

end jkflip;

architecture Behavioral of jkflip is
 signal QSIG : std_logic;
begin

 process(CLK,J,K)
 begin
 if (CLK'event and CLK = '1') then
 if (J = '0' and K = '0') then
 QSIG <= QSIG;
 elsif (J = '1' and K = '0') then
 QSIG <= '1';
 elsif (J = '0' and K = '1') then
 QSIG <= '0';
 elsif (J = '1' and K = '1') then
 QSIG <= not(QSIG);
 end if;
 end if;
 Q<=QSIG;
 end process;

end Behavioral;

RTL Schematic:

Behavioral Simulation:

12.2 D Flip-Flop

Aim:

 To implement D Flip-flop Gate using VHDL.

Code:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dflip is

 port(C, D : in std_logic;
 Q : out std_logic);
end dflip;

architecture Behavioral of dflip is

begin
 process (C)
 begin
 if (C'event and C='1') then
 Q <= D;
 end if;
 end process;
end Behavioral;

RTL Synthesis:

Behavioral Simulation:

12.3 T Flip-Flop

Aim:

 To implement T Flip-Flop using VHDL.

Code:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity tff is
 port (
 t :in std_logic;
 clk :in std_logic;
 q :out std_logic

);
end tff;

architecture rtl of tff is
begin
 process (clk)
 begin
 if (clk'event and clk='1') then
 q <= not t;
 end if;
 end process;

end architecture;

RTL Synthesis:

Behavioral simulation:

13. Synchronous counter

Aim:

 To implement Synchronous counter using VHDL.

Code:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity sync_counter is
 port(C, CLR, UP_DOWN : in std_logic;
 Q : out std_logic_vector(3 downto 0));
end sync_counter;

architecture archi of sync_counter is
 signal tmp: std_logic_vector(3 downto 0);
begin
 process (C, CLR)
 begin
 if (C'event and C='1') then
 if (CLR='1') then
 tmp <= "0000";
 else
 if (UP_DOWN='1') then
 tmp <= tmp + 1;
 else
 tmp <= tmp - 1;
 end if;
 end if;
 end if;
 end process;
Q <= tmp;
end archi;

RTL Schematic:

Behavioral Simulation:

14. Asynchronous counter

Aim:

 To implement Asynchronous counter using VHDL.

Code:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity async_counter is
 port(C, CLR, UP_DOWN : in std_logic;
 Q : out std_logic_vector(3 downto 0));
end async_counter;

architecture archi of async_counter is
 signal tmp: std_logic_vector(3 downto 0);
begin
 process (C, CLR)
 begin
 if (CLR='1') then
 tmp <= "0000";
 elsif (C'event and C='1') then
 if (UP_DOWN='1') then
 tmp <= tmp + 1;
 else
 tmp <= tmp - 1;
 end if;
 end if;
 end process;
Q <= tmp;
end archi;

RTL Schematic:

Behavorial Simulation:

