(1X12 = 12 Marks)

(4X12=48 Marks)

(1X12=12 Marks)

Hall Ticket Number:

III/IV B.Tech (Supplementary) DEGREE EXAMINATION

April, 2018 Fifth Semester

Common to CSE/IT

Automata Theory And Formal Languages Maximum : 60 Marks

Time: Three Hours

Answer Question No.1 compulsorily.

Answer ONE question from each unit.

- 1. Answer all questions
 - a) What is meant by concatenation of strings?
 - b) Write the basic limitation of an FSM.
 - c) Define deterministic Finite Automata.
 - d) Define regular set.
 - e) Write the language for the given regular expression $r = a^*b^*b$.
 - f) What is meant by ambiguity of a grammar?
 - g) State pumping lemma.
 - h) Define Parse tree.
 - i) Define PDA.
 - j) Give an example on context free languages.
 - k) Define Turing machine.
 - 1) What is meant by post's correspondence problem?

UNIT I

a) Give DFA accepting the set of all strings containing 1101 as a substring over the alphabet {0, 1}.
b) Define NFA .Explain the process of converting an NFA to DFA
6M

(**OR**)

- 3. a) Define Finite Automata .Why is an FA with ε transition called NFA? What is the necessity of an NFA with ε transition?
 - b) Find an equivalent NFA without ε transitions for the FA with ε transitions shown below Give also the transition table.

UNIT II

- 4. a) Show that $L = \{a^p/p \text{ is a prime}\}$ is not regular using pumping lemma. 6M
 - b) Construct the Finite Automata equivalent to the regular expression r = ab (aa+bb)(a+b)*b 6M (OR)

6M

6M

- 5. a) If L and M are languages prove that $L \cap M$ is regular
 - b) Reduce the following DFA

UNIT	Ш

6.	a)	Explain context free grammars. Describe derivation trees with examples.	6M
	b)	Prove that the following grammar is ambiguous.	
		S→a/abSb/aAb	
		A→bS/aAAb	6M
		(OR)	
7.	a)	Design a PDA which accepts an odd palindrome.	6M
	b)	Construct a PDA equivalent to the following grammar.	
		S→aAA	
		A→aS/bS/a	6M
		UNIT IV	
8.	a)	Show that CFL's are not closed under intersection.	6M
	b)	What are move and instantaneous description of a Turing machine?	6M
		(OR)	
9.	a)	Prove that if L is a recursive language so is \overline{L}	6M
	b)	Explain about the programming techniques for Turing machine.	6M