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Answer all of the following questions

1. 12x1=12M

(a) . In digital imaging, a pixel, pel or picture element is a physical point in a raster image, or
the smallest addressable element in an all points addressable display devices; so it is the
smallest controllable element of a picture represented on the screen.

(b). The “dynamic range” is the difference between the darkest and lightest tones in an image, generally
pure black and pure white. It’s more often used to talk about the maximum dynamic range of a image.

(c). Image enhancement is the process of adjusting digital images so that the results are more
suitable for display or further image analysis.

(d) . Animage histogram is a type of histogram that acts as a graphical representation of the
tonal distribution in a digital image. It plots the number of pixels for each tonal value. By
looking at the histogram for a specific image a viewer will be able to judge the entire tonal
distribution at a glance.

(e) . Images are often degraded during the data acquisition process. The degradation may
involve blurring, information loss due to sampling, quantization effects, and various sources of
noise. The purpose of image restoration is to estimate the original image from the degraded
data.

(f). Subjective fidelity (Viewed by Human):

* By absolute rating

* By means of side-by-side comparison of and f (x,y) and } (x,y)

Objective fidelity:

Level of information loss can be expressed as a function of the original and the compressed
and subsequently decompressed image.

MSE : one of many ways to quantify the difference between values implied by an estimator and
the true values of the quantity being estimated

PSNR : The phrase peak signal-to-noise ratio, often abbreviated PSNR, is an engineering term
for the ratio between the maximum possible power of a signal and the power of corrupting
noise that affects the fidelity of its representation.



. n,
C R = —
: : M-
(g8) . Compression ratio:
n1 is numer of bits of original image

nz is the number of bits of compressed image

(h). A simple approach to image segmentation is to start from some pixels (seeds) representing distinct
image regions and to grow them, until they cover the entire image .For region growing we need a
rule describing a growth mechanism and a rule checking the homogeneity of the regions after
each growth step.

(i) . Advantage of chain code:

a compressed contour representation
Disadvantages of chain code:
¢ chain code depends on the starting point £ can be solved: treat the chain code as a circular
sequence and redefining the starting point so that the resulting sequence of numbers is the
smallest possible integer
e Operations such as scaling and rotation result in different contours that in practice cannot be
normalized (due to a finite grid) and hence in different chain codes. £ this problem cannot be
completely solved but its effect can be reduced by resampling to a coarser grid before chain
coding and by a proper orientation of the resampling grid
(j) . The length of a boundary is one of the simple boundary descriptor. The length of the
boundary is approximately given by the number of pixels along that boundary.

k) .
Noise Models and Their PDF
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(D) . In image processing, it is often desirable to emphasize high frequency components
representing the image details without eliminating low frequency components (such as
sharpening). The high-boost filter can be used to enhance high frequency component.

The high-boost filtering technique can be implemented using the masks given below for

A=1

0 -1 0 -1 -1 -1

0 0 0] 0 -1 0] 0 -1 0
I"th'ghbﬂﬂ-sr = AI"FEH;:ESS + I"Fhigh*pﬂss =A[0 1 0f+(-1 4 -1]=]-1 A+4 -1
0 0 0l LO -1 0Ol 0 -1 0
0 0 0] [O -1 0] 0 -1 0
I"th'ghbﬂ-ﬂ-sr = AI"FEH;:IESS + I"Fhigh*pﬂss =A[0 1 0f+([-1 8 -1]=]-1 A+8 -1
0 0 0l 0 -1 0. 0 -1 0




UNIT-I

2. (a)
Sampling of digital image 3M
Quantization 3M

To create a digital image, we need to convert the continuous sensed data into digital form . This
involves two processes: sampling and quantization.An image may be continuous with respect
to the x- and y-coordinates , and also in amplitude. To convert it to digital form, we have to
sample the function in both coordinates and in amplitude.

Digitizing the coordinate values is called sampling.

Digitizing the amplitude values is called quantization.
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FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image,
used to illustrate the concepts of sampling and quantization. {¢) Sampling and quantization. {d) Digital scan line.




The result of sampling and quantization is a matrix of real numbers . Assume that an image f(x, y) is
sampled so that the resulting digital image has M rows and N columns . The values of the coordinates (x,
y) now become discrete quantities. For notational clarity and convenience , we shall use integer values
for these discrete coordinates. Thus, the values of the coordinates at the origin are (x, y)=(0, 0).
The next coordinate values along the first row of the image are represented as (x, y)=(0, 1). It is
important to keep in mind that the notation (0, 1) is used to signify the second sample along the first
row. It does not mean that these are the actual values of physical coordinates when the image was
sampled. Sampling is the principal factor determining the spatial resolution of an image
subsampling the 1024*1024 image. The subsampling was accomplished by deleting the appropriate
number of rows and columns from the original image.For example, the 512*512 image was obtained by
deleting every other row and column from the 1024*1024 image. The 256*256 image was generated by
deleting every other row and column in the 512*512 image, and so on. The number of allowed gray
levels was kept at 256.
This effect, caused by the use of an insufficient number of gray levels in smooth areas of a digital image,
is called false contouring.
An adaptive sampling scheme can improve the appearance of an image, where the sampling would
consider the characteristics of the image.

— i.e. fine sampling in the neighborhood of sharp gray-level transitions (e.g. boundaries)

— Coarse sampling in relatively smooth regions

* Considerations: boundary detection, detail content

2.(b).RGB to HSI Color Models aM

Primary color of pigments
Color that subtracts or absorbs a primary color of light and reflects or transmits the other two
Color of light: R G B
Color of pigments:  absorb R absorb G  absorb B
Cyan Magenta Yellow

Application of additive nature of light colors is TV.

Color RGEB

monitor




CIE XYZ model

* RGB-> CIE XYZ model

X 0431 0.342 0.178|| R
Y |=10.222 0.707 0.071|| G
Z 0.020 0.130 0.939| B
Normalized tristimulus values

o X y = Y S Z
X+Y+Z X+Y+Z X+Y+Z

=> x+y+z=1. Thus, X, y (chromaticity coordinate) is enough to describe all colors
HSI color model

*  Will you describe a color using its R, G, B components?

* Human describe a color by its hue, saturation, and brightness
— Hue : color attribute
— Saturation: purity of color (white->0, primary color->1)
— Brightness: achromatic notion of intensity

* RGB -> HSI model

Colors on this triangle
Have the same hue

Intensity White
line

saturation

Cyan Yellow Cyan Yellow

Blue Red Blue Red

Black



Green Yellow
- « :

Blue Magenta

Green Yellow Green Yellow

Green

Blue Magenta Red

B]e Maenta B]ue Mngenm
(OR)
3.(a).
Application of Digital Image Processing 4Mm

Today, there is almost no area of technical endeavor that is not impacted in some way by digital
image processing.One of the simplest ways to develop a basic understanding of the extent of
image processing applications is to categorize images according to their source (e.g., visual, X-
ray, and so on).The principal energy source for images in use today is the electromagnetic
energy spectrum. Other important sources of energy include acoustic, ultrasonic, and electronic
(in the form of electron beams used in electron microscopy). Synthetic images, used for
modelling and visualization, are generated by computer Images based on radiation from the EM
spectrum are the most familiar, especially images in the X-ray and visual bands of the spectrum.
Electromagnetic waves can be conceptualized as propagating sinusoidal waves of varying
wavelengths, or they can be thought of as a stream of massless particles, each traveling in a
wavelike pattern and moving at the speed of light. Each massless particle contains a certain
amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral bands are
grouped according to energy per photon, we obtain the spectrum shown in Fig. 1.5, ranging
from gamma rays (highest energy) at one end to radio waves (lowest energy) at the other.

Major uses of imaging based on gamma rays include nuclear medicine and astronomical
observations. In nuclear medicine, the approach is to inject a patient with a radioactive isotope




that emits gamma rays as it decays. Images are produced from the emissions collected by
gamma ray detectors.

X-rays are among the oldest sources of EM radiation used for imaging.

The best known use of X-rays is medical diagnostics, but they also are used extensively
in industry and other areas, like astronomy. X-rays for medical and industrial imaging are
generated using an X-ray tube, which is a vacuum tube with a cathode and anode.

In digital radiography, digital images are obtained by one of two methods: (1) by
digitizing X-ray films; or (2) by having the X-rays that pass through the patient fall directly onto
devices (such as a phosphor screen) that convert X-rays to light . The light signal in turn is
captured by a light-sensitive digitizing system.

Applications of ultraviolet “light” are varied. They include lithography, industrial
inspection, microscopy, lasers, biological imaging, and astronomical observations. We illustrate
imaging in this band with examples from microscopy and astronomy.

The infrared band often is used in conjunction with visual imaging, so we have grouped
the visible and infrared bands in this section for the purpose of illustration. We consider in the
following discussion applications in light microscopy, astronomy, remote sensing, industry, and
law enforcement.

Another major area of visual processing is remote sensing, which usually includes
several bands in the visual and infrared regions of the spectrum.

3. (b).Types of connectivity between the pixels 6M

Distance Measures 2M

— f(x,y): digital image
— Pixels: p,q
— Subset of pixels of f(x,y): S
— A pixel p at (x,y) has 2 horizontal and 2 vertical neighbors:
= (x+Ly), (x-1,y), (x,y+1), (x,y-1)
— This set of pixels is called the 4-neighbors of p: Na(p)
* Each pixel is a unit distance from (x, y), and some of the neighbours of p lie outside the
digital image if (x, y) is on the border of the image.
* The 4 diagonal neighbors of p are: (Np(p))
—  (x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1)
— Na(p) + Npo(p) = Ns(p): the 8-neighbors of p




continuity
Two pixels are connected if:

— They are neighbors (i.e. adjacent in some sense -- e.g. Na(p), Ns(p), ...)

— Their gray levels satisfy a specified criterion of similarity (e.g. equality, ...)
V is the set of gray-level values used to define adjacency (e.g. V={1} for adjacency of
pixels of value 1).
Adjacency
We consider three types of adjacency:

— 4-adjacency: two pixels p and g with values from V are 4-adjacent if q is in the

set Na(p)
— 8-adjacency : p & g are 8- adjacent if q is in the set Ng(p)
— m-adjacency: p & g with values from V are m-adjacent if
* qisin Na(p)or
* gisin Np(p) and the set Na(p)Na(qg) has no pixels with values from V

Mixed adjacency is a modification of 8-adjacency and is used to eliminate the multiple
path connections that often arise when 8-adjacency is used.
Path
A path (curve) from pixel p with coordinates (x,y) to pixel g with coordinates (s,t) is a
sequence of distinct pixels:

—  (xo,y0), (X3,y1), --e; (Xn,yn)

— where (xo,Y0)=(x,y), (Xn,yn)=(s,t), and

— (x;,yi) is adjacent to (xi.1,yi-1), for 1<i <n ; nis the length of the path.
If (x0, yo) = (xn, yn): a closed path
4-, 8-, m-paths can be defined depending on the type of adjacency specified.
If p,g TS, then q is connected to p in S if there is a path from p to q consisting entirely of
pixelsin S.

Boundary:

Let R be a subset of pixels in an image . We call R a region of the image if R is a
connected set . The boundary (also called border or contour) of a region R
is the set of pixels in the region that have one or more neighbours that are not in R.
If R happens to be an entire image (which we recall is a rectangular set of pixels), then
its boundary is defined as the set of pixels in the first and last rows and columns of the
image .
Distance Measures
For pixels p,q,z with coordinates (x,y), (s,t), (u,v), D is a distance function or metric if:

— D(p,a)20  (D(p,q)=0if p=q)

— D(p,q) =D(q,p) and

— D(p,z) < D(p,q) + D(q,2).



* Euclidean distance:
— De(p,q) = [(x-5)? + (y-t)?]*/2
— Points (pixels) having a distance less than or equal to r from (x,y) are contained in
a disk of radius r centered at (x,y).
* D4 distance (city-block distance):
— Da(p,q) = [x-s| + |y-t]
— forms a diamond centered at (x,y)
— e.g. pixels with D452 from p

2
1
0
1
2
* Dgdistance (chessboard distance):

D, = 1 are the 4-neighbors of p

N
N PN
N PN

N

— Ds(p,q) = max(|x-s|, |y-t])
— Forms a square centered at p
— e.g. pixels with Dg<2 from p

2 2 2 2 2
2 1 1 1 2 Dg =1 are the 8-neighbors of p
2 1 @) 1 2
2 1 1 1 2
2 2 2 2 2
Ex:
* assume P1, P2, Pa=1; p1, p3 =can have eitherOor 1

p3 p4
P P2
P

If only connectivity of pixels valued 1 is allowed, and p1 and ps are 0, the m-distance between p
and psis 2.

If either p1 or p3is 1, the distance is 3.

If both p1 and ps are 1, the distance is 4 (pplp2p3p4)



UNIT-lI

4.(a).Histogram equalization solution 8M

Histogram equalization: discrete solution

Probability (normalized histogram) of gray level r¢

p(ri)=ny/n, k=0,1,2,..., L-1

Original Image

Gray level(ry) 0 1 2 3 4 5 6 7
No.Of Pixels(nk) | 8 10 10 |2 12 16 4 2
Probability(P(r«) | 0.13 | 0.16 | 0.16 | 0.03 0.18 0.25 0.06 0.03
Cumulative 0.13/0.29 | 0.45|0.48 0.66 0.91 0.97 1.0
probability

CP*20 26 |58 |9 9.6 13.2 18.2 19.4 20.0
Floor Rounding | 2 5 9 9 13 18 19 20

Total number of pixels=64
We want to change the intensity to 1-20. Let us multiply cumulative probability by 20.

Round of decimal values to lower integer values.

So finally,

Original Image 0 1 2 3 4 5 6 7
Histogram 2 5 9 9 13 18 19 20
equalized

output

We can see that the intensity range of the pixels have been increased and hence the

Histogram of the image will look more spread. This in turn is called Histogram
equalization.




4.(b).Local enhancement aMm

Contrast enhancement is between the imaging device output and the display voltages. In order
to see the dark areas, the light looks over exposed. Contrast Enhancement:
Two General Strategies

Optimize information transmission via intensity mappings
» Histogram as probability
» Information theoretic argument leads to uniform probability distribution, so histogram
flattening
Optimize contrast at spatial scales where most important information on object lies

» Smaller scales are where object boundary info is dominant; at yet smaller scales noise is

dominant
Global vs. Local
* Global

o Intensity mappings
=|ntensity Windowing
=Histogram Equalization
e Achieving other histograms
o Optimize contrast at boundary
=Scale decomposition and then magnification of components at appropriate
scales (e.g., MUSICA)
=Unsharp Masking
* Locally adaptive
o Intensity mapping
= Adaptive Histogram Equalization
o Optimize contrast at boundary
=Geometry-limited diffusion
Intensity Windowing

* Dedicate the range of display intensities to a limited window of recorded intensities.
* Moves perceived object boundaries.
Unsharp Masking
* lpew=a- (Gsmall*l - Gbig*l) + Gbig>'<I
* Adds detail to a background image.
*  Amplifies Mach bands.
MUSICA — Multiple level-of-detail images, combination of which forms result.

Adaptive Histogram Equalization

Intensities are mapped to their rank in the contextual region (window).
Enhances noise in smooth regions

Correction: limit the slope of the intensity mapping.




(OR)

5. (a). Smoothing 3M

shaping techniques 3M

Smoothing in the Frequency Domain

G(u,v) = H(u,v) F(u,v)
* Ideal low pass filter
* Butterworth (parameter: filter order)
* Gaussian

A 2-D ideal low-pass filter:

{1 if D(u,v)<D,
H(u,v) =

where Dy is a spe idfd P(‘.(Hn\é)gﬁtwre qguantity and D(u,v) is the distance from point (u,v) to the
center of the frequency rectangle.

*  Center of frequency rectangle: (u,v)=(M/2,N/2)

* Distance from any point to the center (origin) of the FT:

D(u,v) = (u* +v?)"?
Ideal Filter (Lowpass)

* Ideal:
— all frequencies inside a circle of radius Do are passed with no attenuation
— all frequencies outside this circle are completely attenuated.
* Cutoff-frequency: the point of transition between H(u,v)=1 and H(u,v)=0 (Do)
» To establish cutoff frequency loci, we typically compute circles that enclose specified
amounts of total image power PT.
Butterworth Filter (Lowpass)
* To define a cutoff frequency locus: at points for which H(u,v) is down to a certain
fraction of its maximum value.
*  When D(u,v) = Dg, H(u,v) = 0.5
— i.e. down 50% from its maximum value of 1.

Gaussian Lowpass Filter

H (u,v) _ e—DZ(u,v)/za2

*  D(u,v): distance from the origin of FT
* Parameter: 6=DO0 (cutoff frequency)
* Theinverse FT of the Gaussian filter is also a Gaussian




Sharpening Spatial Filters

The principal objective of sharpening is to highlight fine detail in an image or to enhance
detail that has been blurred, either in error or as a natural effect of a particular method
of image acquisition.
Uses of image sharpening vary and include applications ranging from electronic printing
and medical imaging to industrial inspection and autonomous guidance in military
systems.
Since averaging is analogous to integration, it is logical to conclude that sharpening
could be accomplished by spatial differentiation .

* we arrive at the following conclusions.
(1) First-order derivatives generally produce thicker edges in an image.
(2) Second-order derivatives have a stronger response to fine detail, such as thin lines
and isolated points.
(3) First order derivatives generally have a stronger response to a gray-level step.
(4) Second- order derivatives produce a double response at step changes in gray level.
We also note of second-order derivatives that, for similar changes in gray-level
values in an image, their response is stronger to a line than to a step, and to a
point than to a line. In most applications, the second derivative is better suited than the
first derivative for image enhancement because of the ability of the former to enhance
fine detail. For this, and for reasons of simpler implementation and extensions, we will
focus attention initially on uses of the second derivative for enhancement.

5.(b).Histogram specification 6M

» Histogram equalization does not allow interactive image enhancement and generates
only one result: an approximation to a uniform histogram. Sometimes though, we need
to be able to specify particular histogram shapes capable of highlighting certain gray-
level ranges. The procedure for histogram-specification based enhancement is:

* Equalize the levels of the original image using:

k nj
S =T(rk) ZZ_
j=0 N

nj: number of pixels with gray level rj,

n: total number of pixels,

L: number of discrete gray levels
Specify the desired density function and obtain the transformation function G(z):

v=6(2) =Y p,w=Y

i-o N




p.: specified desirable PDF for output

Apply the inverse transformation function ; z=G(s) to the levels obtained in step 1.

The new, processed version of the original image consists of gray levels characterized by the
specified density p,(z).

2=G(s)> z=G'[T(r)]

Either a particular probability density function (such as a Gaussian density) is specified and then
a histogram is formed by digitizing the given function Or a histogram shape is specified on a
graphic device and then is fed into the processor executing the histogram specification
algorithm

UNIT-1II

‘ 6.(a).Minimum Mean Square Error(Wiener) filtering for image restoration ‘ 6M

Here we discuss an approach that mcorporates both the degradation
function and statistical characteristics of noise mto the restoration

PIOCESS.

Considering 1mages and noise as random variables, the objective

1s to find an estimate / of the uncorrupted image f such that the
mean square error between them 1s minimuzed.

The error measure 1s given by
¢ =B{(f - I} (5.8-1)

where E{} is the expected value of the argument.



By assuming that
1. the noise and the 1mage are uncorrelated;
2. one or the other has zero mean:

3. the intensity levels in the estimate are a linear function of
the levels in the degraded image.

Then, the munimum of the error function in (5.8-1) 1s given in the
frequency domain by the expression

- H (u, v)S:(u.v) .
Flu.v) = - - — - 1 G(u,v)
Se(u.v)| H(u.v)|” + Sp(u,v)
- H" (u.v) .
= | - — - | Glu, v) _
| |H|{U- a']|‘ + Sp(u.v)/ Se(u.v) (5.8-2)
L | H (w.v)|

= | — — _ -G(u_ )
| H(uw. v) | H(u,v)|” + Sp(u.v)/Ss(u.v) |

The terms in (5.8-2) are as follows:
F(u.v) isthe frequency domain estimate
G(u.v) 1s the transform of the degraded 1mage
H(u,v) 1s the transform of the degradation function
H'(u.v) is complex conjugate of H(u.v)

5

|H(u,v)|” = H (u,v)H(u,v)
S, (uv) = |N(u.v)] = power spectrum of the noise

Si(u.v) =|F(u.v)]” = power spectrum of the undegraded image

This result 1s known as the Wiener filter, which also 1s commonly
referred to as the minimum mean square error filter or the least
square error filter.



The Wiener filter does not have the same problem as the inverse
filter with zeros in the degradation function, unless the entire
denominator 1s zero for the same value(s) of « and v.

If the noise 1s zero, then the Wiener filter reduces to the mverse
filter.

One of the most important measures 1s the signal-to-noise ratio.
approximated using frequency domain quantities such as

SNR = L=221=C
w1 L (5.8-3)

The mean square error given in statistical form in (5.8-1) can be
approximated also in terms a sumumation involving the original
and restored 1mages:

M-1N-1

MSE = J—\;Z er z.y) — flz.y)[ (5.8-4)

If one considers the restored 1mage to be signal and the difference
between this image and the original to be noise, we can define a
signal-to-noise ratio in the spatial domain as

M-1N-1
> > flzy)
SNR = sr=ry )
) Z ([ f(a.y) — fa.y)] (5:8-5)
2=0 y=0

The closer f and f are, the larger this ratio will be.



If we are dealing with white noise, the spectrum

- 2.
N(u.v)]” is a

constant, which simplifies things considerably. However,

P .
| F(u,v)[" is usually unknown.

An approach is used frequently when these quantities are not

known or cannot be estimated:

9

. 1 H(u.v)|” .

Flu.v) = _. | H( : _}} -1 Glu.v)
H(u,v)|H(u,v)|” + K

(5.8-6)

where A 1s a specified constant that i1s added to all terms of

| H(u, a'}|2 _

Note: White noise 1s a random signal (or process) with a flat power spectral
density. In other words. the signal contains equal power within a fixed

bandwidth at any center frequency.

6.(b).Transform based image compression system block diagram

2M

Explanation of each block

4M

Transform Coding:

All the predictive coding techniques operate directly on the pixels of an image and thus are
spatial domain methods. In this coding, we consider compression techniques that are based on

modifying the transform of an image. In transform coding, a reversible, linear transform (such as
the Fourier transform) is used to map the image into a set of transform coefficients, which are

then quantized and coded. For most natural images, a significant number of the coefficients have
small magnitudes and can be coarsely quantized (or discarded entirely) with little 1mage
distortion. A variety of transformations, including the discrete Fourier transform (DFT), can be

used to transform the image data.




Input Construct

: > ) W . Sv ) 0SS

o et B l{;)x;:fglr:; Quantizer fﬁfgz(: ks C()li,;lx),C%Cd
(NXN) subimages et 0de age

= Merge
WESSE S' ™ ISe e 0 QR0
(ompg ed )mlol. Inverse sz Decompressed
image decoder transform s , image
subimages | S

o™

Fig. 10 A transform coding system: (a) encoder; (b) decoder.

Figure 10 shows a typical transform coding system. The decoder implements the inverse
sequence of steps (with the exception of the quantization function) of the encoder, which
performs four relatively straightforward operations: subimage decomposition, transformation,
quantization, and coding. An N X N input image first is subdivided into subimages of size n X n,
which are then transformed to generate (N/n) > subimage transform arrays, each of size n X n.
The goal of the transformation process is to decorrelate the pixels of each subimage, or to pack
as much information as possible into the smallest number of transform coefficients. The
quantization stage then selectively eliminates or more coarsely quantizes the coefficients that
carry the least information. These coefficients have the smallest impact on reconstructed
subimage quality. The encoding process terminates by coding (normally using a variable-length
code) the quantized coefficients. Any or all of the transform encoding steps can be adapted to

local image content, called adaptive transform coding, or fixed for all subimages, called
nonadaptive transform coding.



(OR)

7. (a).Airthematic coding 3M

Example 3M

Example 4.3.1:

Consider a three-letter alphabet 4 = {a,, a,, a;} with P(a,) =0.7, P(a,) =0.1, and P(a;) =
0.2. Using the mapping of Equation (4.1), F(1) =0.7. F4(2) = 0.8, and F,(3) = 1. This
partitions the unit interval as shown in Figure 4.1.

0.0 »  0.00 0.490 0.5460
a,
0.7
0.8~ @
; ; a;
1.0 0.70 0.560 0.5600

FIGURE 4.1 Restricting the interval containing the tag for the input sequence
{a;.a3.a,, ...}




The partition in which the tag resides depends on the first symbol of the sequence being
encoded, For example, if the first symbol is a,, the tag lies in the interval [0.0,0.7); if the
first symbol is a,, the tag lies in the interval [0.7,0.8); and if the first symbol is a,, the
tag lies in the interval [0.8, 1.0). Once the interval containing the tag has been determined,
the rest of the unit interval is discarded, and this restricted interval is again divided in the
same proportions as the original interval. Suppose the first symbol was a,. The tag would be
contained in the subinterval [0.0, 0.7). This subinterval is then subdivided in exactly the same
proportions as the original interval, yielding the subintervals [0.0,0.49), [0.49,0.56), and
[0.56,0.7). The first partition as before corresponds to the symbol a,, the second partition
corresponds to the symbol a,, and the third partition [0.56,0.7) corresponds to the symbol
a,. Suppose the second symbol in the sequence is a,. The tag value is then restricted to
lie in the interval [0.49,0.56). We now partition this interval in the same proportion as
the original interval to obtain the subintervals [0.49, 0.539) corresponding to the symbol
a,, [0.539,0.546) corresponding to the symbol a,, and [0.546, 0.56) corresponding to the
symbol a. If the third symbol is a, the tag will be restricted to the interval [0.546, 0.56),
which can then be subdivided further. This process is described graphically in Figure 4.1.

Notice that the appearance of each new symbol restricts the tag to a subinterval that is
disjoint from any other subinterval that may have been generated using this process. For

the sequence beginning with {a;, a,,,, ...}, by the time the third symbol a; is received,
the tag has been restricted to the subinterval [0.546, 0.56). If the third symbol had been a,
instead of a5, the tag would have resided in the subinterval [0.49, 0.539), which is disjoint
from the subinterval [0.546,0.56). Even if the two sequences are identical from this point
on (one starting with a,, a,, a; and the other beginning with a,, a,, a,), the tag interval for
the two sequences will always be disjoint, ¢



7.(b).

7.(b).Median filter 2M
Max and min filters 2M
Alpha trimmed mean filter 2M

Order statistic al filter:

These are spatial filters whose response is based on ordering (ranking)the pixels contained in
the image area encompassed by the filter . The response of the filter at any point is determined
by the ranking result.

Median filter :

The best known order statistic filter is the median filter which as its name implies, replaces the
value of a pixel by the median of the gray levels in the neighbourhood of that pixel

f (x,y)=median{g(s,t)}

(s,t)&S Xy

The original value of the pixel is included in the computation of the median .Median filters are
quite popular because ,for certain types of random noise, they provide excellent noise
reduction capabilities , with considerably less blurring than linear smoothing filters of same
size. Median filter are particularly effective in the presence of both bipolar and unipolar
impulse noise.

Max and min filters :

Although the median filter is by far the order statistic filter most used in image processing .It is
no means the only one. The median represents the 50" percentile of a ranked set of
numbers(ranking lends itself to many other possibilities . For example using 100" percentile
results in the so called max filter given by




Max filter: f(-’li, y) = max{g(s, t)}(s.t)eszy
Useful for finding the brightest points in an image

Pepper noise has very low values ,so max filter removes this noise also.

The 0% percentile filter is the min filter

Min filter: f(:x:, y) = min{g(s, t}}{,ﬂesw

This filter is useful for finding the darkest points in the image .Also it reduces salt noise as a
result of the min operation.

Mid point filter:

The mid point filter simply computes the mid point between the maximum and minimum
values in the area encompassed by the filter.

A

cy | ;
Midpoint filter fz,y) = 5 max{g(s,t)}(s’t)esw +m1n{g(s,t)}(,'t)es“

NB: combines order statistics and averaging.
Works best for randomly distributed noise such as Gaussian or uniform

Alpha-tnmmed mean filter A 1
flz.9) = Y. alst)

=@ (o 5)eS.,
Where g, represents the image g in which the d/2 lowest and d/2 highest
intensity values in the neighbourhood 5, were deleted
NB: d = 0 => arithimetic mean filter, d = mn-1 => median filter
For other values of d, useful when multiple types of noise {(e.g. combination
of salt-and-pepper and Gaussian Noise)

If we choose (mn—1) the filter becomes a median filter.

2
For other values of d ,the alpha trimmed filter is useful in situations involving multiple types of
noise ,such as combination of salt and pepper and Gaussian noise.



UNIT-IV

| 8.(a).Region growing 6M

Region Growing:

As its name implies, region growing is a procedure that groups pixels or subregions into larger
regions based on predefined criteria. The basic approach is to start with a set of "seed" points and
from these grow regions by appending to each seed those neighboring pixels that have properties
similar to the seed (such as specific ranges of gray level or color). When a priori information is
not available, the procedure is to compute at every pixel the same set of properties that ultimately
will be used to assign pixels to regions during the growing process. If the result of these
computations shows clusters of values, the pixels whose properties place them near the centroid
of these clusters can be used as seeds.

The selection of similarity criteria depends not only on the problem under consideration, but also
on the type of image data available. For example, the analysis of land-use satellite imagery
depends heavily on the use of color. This problem would be significantly more difficult, or even
impossible, to handle without the inherent information available in color images. When the
1mages are monochrome, region analysis must be carried out with a set of descriptors based on
gray levels and spatial properties (such as moments or texture).

Basically, growing a region should stop when no more pixels satisfy the criteria for inclusion in
that region. Criteria such as gray level, texture, and color, are local in nature and do not take into
account the "history" of region growth. Additional criteria that increase the power of a region-
growing algorithm utilize the concept of size, likeness between a candidate pixel and the pixels
grown so far (such as a comparison of the gray level of a candidate and the average gray level of



the grown region), and the shape of the region being grown. The use of these types of descriptors
is based on the assumption that a model of expected results is at least partially available.

Figure 7.1 (a) shows an X-ray image of a weld (the horizontal dark region) containing several
cracks and porosities (the bright, white streaks running horizontally through the middle of the
image). We wish to use region growing to segment the regions of the weld failures. These
segmented features could be used for inspection, for inclusion in a database of historical studies,
for controlling an automated welding system, and for other numerous applications.
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FIGURE 10.40

(a) Image
showing defective
welds (b) Seed
points. (¢) Result
of region growing. |
(d) Boundaries of [
segmented
defective welds
(in black).
(Original imape
courtesy ol
X-TEK Systems,
Ltd.).
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The first order of business is to determine the initial seed points. In this application, it is known
that pixels of defective welds tend to have the maximum allowable digital value B35 in this
case). Based on this information, we selected as starting points all pixels having values of 255.
The points thus extracted from the original image are shown in Fig. 10.40(b). Note that many of
the points are clustered into seed regions.

The next step is to choose criteria for region growing. In this particular
example we chose two criteria for a pixel to be annexed to a region: (1) The absolute gray-level
difference between any pixel and the seed had to be less than 65. This number 1s based on the
histogram shown in Fig. 7.2 and represents the difference between 255 and the location of the
first major valley to the left, which is representative of the highest gray level value in the dark
weld region. (2) To be included in one of the regions, the pixel had to be 8-connected to at least
one pixel in that region.

If a pixel was found to be connected to more than one region, the
regions were merged. Figure 7.1 (c) shows the regions that resulted by starting with the seeds in
Fig. 7.2 (b) and utilizing the criteria defined in the previous paragraph. Superimposing the
boundaries of these regions on the original image [Fig. 7.1(d)] reveals that the region-growing
procedure did indeed segment the defective welds with an acceptable degree of accuracy. It 1s of
interest to note that it was not necessary to specify any stopping rules in this case because the
criteria for region growing were sufficient to isolate the features of interest.

(OR)

| 9.(a).Line detection techniques 6M

3 basic types of gray-level discontinuities:
Points
Lines
Edges
*  Common method of detection: run a mask through the image.

FIGURE 10.1 A
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Point Detection
This procedure involves computing the sum of products of the coefficients with the gray levels

contained in the region encompassed by the mask
* R:The response of the mask at any point in the image is given by
* T:nonnegative threshold:

9
R=wz +W,Z, +...+WyZ, = E W, Z,

i=1

—=q —1 —:)

—1 = —1

= R =7

I =
Line Detection

-1 1 —1 1 1 2 —1 2 2 1 1
2 2 2 1 2 1 1 2 1 2 1
—1 -1 1 2 1 1 —1 2 1 1 1

Horizontal + 45° Vertical 45°

* If at a certain point |Ri|>|R;|, this point is more likely associated with a line in the
direction of mask i.

Edge Detection

* edge vs. boundary

* An edge is a set of connected pixels that lie on the boundary between two
regions.

* An edge is a “local” concept where as a region boundary ,owing to the way it is
defined ,is more global idea.

* Assumption:

* the regions are sufficiently homogeneous, so that the transition between two

regions can be determined on the basis of gray-level discontinuities alone.

Model of an ideal digital edge Model of a ramp digital edge a b

: FIGURE 10.5

E (a) Maodel of an

: ideal digital edge.
(b) Model of a

‘ ramp edge. The

slope of the ramp
is proportional to
the degree of
blurring in the
edge.

Gray-level profile Gray-level profile
of a horizontal line of a horizontal line
through the image through the image



9.(b).Local thresholding techniques for segmentation 3M

global thresholding techniques for segmentation 3M

= Local processing:
= One of the simplest approaches for linking edge points is to analyze the characteristics
of pixels in a small neighbourhood (say, 3x3 or 5x5).
e All points that are similar according to a set of predefined criteria are linked.
e The two principal properties used for establishing similarity of edge pixels in this kind of
analysis are
(1) the strength of the response of the gradient operator used to produce the edge pixel;
and
(2) the direction(angle) of the gradient vector.
Thus an edge pixel with coordinates (xoy0) in @ magnitude to the pixel at ( x , y) if
where E is a non negative threshold
e An edge pixel at (xo,y0) in the predefined neighbourhood of (x,y) has an angle similar to the
pixel at (x,y) if

(. v)—arlxg. v | < 4

Global Processing via the Hough Transform:

In this process, points are linked by determining first if they lie on a curve of specified shape. We
now consider global relationships between pixels. Given n points in an image, suppose that we
want to find subsets of these points that lie on straight lines. One possible solution is to first find
all lines determined by every pair of points and then find all subsets of points that are close to
particular lines. The problem with this procedure is that it involves finding n(n - 1)/2 ~ n” lines

and then performing (n)(n(n - 1))/2 ~ n° comparisons of every point to all lines. This approach is
computationally prohibitive in all but the most trivial applications.
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Hough [1962] proposed an alternative approach, commonly referred to as the Hough transform.
Consider a point (x;, y;) and the general equation of a straight line i slope-intercept form,
y; = ax; + b. Infinitely many lines pass through (x;, y;) but they all satisfy the equation
yi = a.x; + b for varying values of a and b. However, writing this equation as b = -a.x;+ y;, and
considering the ab-plane (also called parameter space) yields the equation of a single line for a
fixed pair (X;, y;). Furthermore, a second point (Xj, y;) also has a line in parameter space
associated with it, and this line intersects the line associated with (x;, y;) at (a', b'), where a' is the
slope and b' the intercept of the line containing both (x;, y;) and (x;, y;) in the xy-plane. In fact, all
points contained on this line have lines in parameter space that intersect at (a', b"). Figure 3.1
illustrates these concepts.

The computational attractiveness of the Hough transform arises from subdividing the parameter
space into so-called accumulator cells, as illustrated in Fig. 3.2, where (amax , amn) and
(Dmax » bmin), are the expected ranges of slope and intercept values. The cell at coordmates (3, j),

with accumulator value A(i, j), corresponds to the square associated with parameter space
coordinates (a; , by).

FIGURE 10.18 b 0 b
Subdivision of the @min b
parameter plane .

for use in the »

Hough transform.
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Initially, these cells are set to zero. Then, for every point (g, yx) in the image plane, we let the
parameter a equal each of the allowed subdivision values on the fl-axis and solve for the
corresponding b using the equation b = - xi a + yj .The resulting b’s are then rounded off to the
nearest allowed value in the b-axis. If a choice of a, results in solution by, we let A (p, @) = A (p,
q) + 1. At the end of this procedure, a value of Q in A (1, j) corresponds to Q points in the xy-
plane lying on the line y = a; x + b;. The number of subdivisions in the ab-plane determines the
accuracy of the co linearity of these points. Note that subdividing the a axis into K increments
gives, for every point (X, Yi), K values of b corresponding to the K possible values of a. With n
image points, this method involves nK computations. Thus the procedure just discussed is linear
in n, and the product nK does not approach the number of computations discussed at the
beginning unless K approaches or exceeds n.

A problem with using the equation y = ax + b to represent a line is that the slope
approaches infinity as the line approaches the vertical. One way around this difficulty is to use
the normal representation of a line:

xcosBersiﬁuB:p





