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Electromagnetic waves and transmission lines-14EC504
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a) | Transmission Coefficient: Ratio of amplitudes of the transmitted and incident waves.
E¢
T = 3
b) | Brewester’s angle: the angle of incidence for which the reflection coefficient is zero.
C) | Snell’s law for reflection:
H;
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d) | Applications of transmission line:
1. Low frequency radio wave transmission.
2. Antenna matching to the source.
3. Transmission of analog and digital information.
e) | Input Impedance: the impedance at the input of the transmission line is known as input
impedance.
Zi, =Z(Datl=0
f) | Standing Wave Ratio: ratio between the maximum and minimum voltage is called standing wave
ratio.
g) | The load impedance is not equal to line characteristic impedance is known as impedance
mismatch.
h) 1. Reflection coefficient.
2. Line impedance.
3. Standing Wave Ration.
4. Maximum and minimum voltage locations
i) | The pulse whose width is far less than the propagation time is known as short pulse and the pulse
whose width is far greater than the propagation time is known as long pulse.
j) | Possible modes for TM in circular waveguide are TMy1, TM,1, TM,,
K) | In circular waveguide the frequency difference between the lowest frequency on the dominant
mode and next mode is smaller than in a rectangular waveguide.
I) | Transverse Electro Magnetic waves are those in which the electric and magnetic fields are

transverse to the wave propagation that is E, = H, = 0 for wave propagating in Z-direction.




UNIT-1

a)
H.
f material (2) material (2)
- perfect perfect
’ﬁi (e conductor ronductor
E; [ x
$_. y(L—J
H; A
H, €1,141,01=0| o=o £1,11,01=0| O=c0
Plane of incidence Perpendicular polarization Parallel Polarization
Plane of Incidence: the plane described by the direction of propagation of the incident wave and
normal to the surface of interface.
Perpendicular Polarization: for an incident EM wave if electric field is perpendicular to the plane of
incidence is known as perpendicular polarization.
Parallel Polarization: for an incident EM wave if electric field is parallel to the plane of incidence is
known as parallel polarization.
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Electric and field components in materiall are
El = f[Eioe_jﬁOZ + Eroejﬁoz]

I-I1 = %[Eioe_jﬁoz — ETOejBOZ]

Electric and field components in material2 are
E, = /x\[E;'e_(“Z"'jﬁz)Z + Ez—e(a'z+jﬁ2)z]

H, = %[E;e—(azﬂﬁz)z — By e(@+if2)7]

Electric and field components in material3 are
E3 = ’JZ[EgLe_jﬁOZ]
Hy =2 [Efe 807
- - - - 7’0
Total reflection coefficient is

ry = B0 710 — ni]tan(ps —joo)d
E; 2nonz +7 [ + n3] tan(B; — jar)d

Total transmission coefficient is

B e
Ein  2nonz cos(Bz — joz)d +f [ + n%] sin(By — jer)d




When an EM wave propagating in a dielectric medium incident on interference normal is known

as normal incidence. The propagation of EM wave is in normal to the interference.
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Ei = QEile_YIZ
The reflected electric field in material 1 is
Er = 'fErle'H’lZ

Incident electric field is

Total electric field is medium 1 is
El = ?Eile_ylz + QErle-H/lZ
Total magnetic field in medium 1 is

H, = y@e—hz - yﬂeﬂqz
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Total electric and magnetic field in medium 2 is
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b)

Brewester’s angle: the angle of incidence for which the reflection coefficient is zero.
__ n2c0s6; — n; cos B, __ n2cos6; — 1 cosb;
n2 cosB; + ny cosb,’ n2 cos 6, + ny cos 6;
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Brewester’s angle for parallel polarization:

6, — sin~" &2 (u281 — 11£2)
nr (g3 —&3)
. _ €2 =1 &2 . _
sin @ = P or @ =sin [ Py if g1 = U2
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a) | i) Standing Wave ratio: ratio between the maximum and minimum voltage is called standing
wave ratio.
i) Loss-less terminated transmission line:
* R=0and G=0 we leads to a=0.
» Line is made of pure conductor.
» Practically not existing only approximated line exist.
» The field components propagate along line with speed dictated by L and C.
y=jB=jwyLC[rad/m]
L
Z,=.—[Q
= |
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A=—T[m]
w+/LC
vV, = L [m/s]
" JLC
iii) Loss-less resistively loaded transmission line:
+ R=0.
» These lines are made of pure conductors.
* The conducting nature of the line guides the wave but all the propagation parameters
are effected by dielectric alone.
» These equations can holds for any line therefore by knowing one parameters remaining
can be measured. G
y=JWyVLC [1+——
jwC
jwL
z,= |-
G+ jwC
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LC = ug,— =—
H C ¢
b) | Given
[ =100m
L =28uH
C = 20nF
f=100M Hz
. . 1 6
Propagation velocity v, = Nl 1.33x10° m/s

Phase constant 8 = wVLC = 470 rad/s
Characteristic impedance Z, = f% = 37.41Q




forward propagating wave

= Z
backward propagating wave t

positive | I=d

positive z

z=0

Vi)=Vte”+ Ve ”| and |I(z)=I"e”+1"e

The characteristic impedance of the line is:

The load impedance of the line is:
V) Vr+vV-  Vr4V- Vt4V-

Z; = = = = Zg————
L=T0) S A Ve —V1Z AT -
Backward propagating wave amplitude is:
Zr —
e
Z1 + Zy
Load reflection coefficient in terms of characteristic impedance:
V- Z1-2
FL = - = —
V+ Zr+ 2y
b) | Given
Propagation velocity v, = 25m/us
C =30 pF/m
f =100M Hz
ZL = 50.0.

Inductance L = 1 2~ = 53uH
(v

0)

Characteristic impedance Z, = \E = 1.3KQ

rad

Phase constant § = wVLC = 25 —

Reflection coefficient ' = 2.2 — _0.925
Z,+Z,




Quarter wavelength transformer matching:
ra— A —era— i —-

@ Z zi.-z,i_zi..

Stub matching, in effect, is capable of removing a mismarch for any load (except a
purely reactive load), but it is not an impedance mransformer., If different lines must
be matched, a ansmission ling transformer can be used, as in Figure 15.27.

From Eq. (14.94), the line impedance Z;, of 2 lossless mransmission line of char-
acteristic impedance £y, at a distance =g, from the load may be viewed s the input
impedance of the line section between z; and the load:

[Zs cos Bzo + 20 sin Bz
[Zo cos fizg +jZ; sin fz]

MNow, suppose we chose a transmission line section, with characteristic impedance
Z,, cur it so it is 174 long, and connect it to a load impedance 7. Setting =0 = A4
and Bzg = A4 = (2a)(4) = mf2 and replacing Z; by % and Zy by Z; in Eq.

(15.16), we get for the input impedance of the 4./4 section

o [ficos §+jZisin 5] 77
zd—z“{mm‘ﬂ—z; (15.16)

Beferring now to Figure 15.27, where £ is the line impedance at a distance
d from the load, we get the conditon for marching using the quarter-wavelength
transformer shown:

& = dat; (15.17)

Thus, twe different transmission lines or any two impedances may be matched,
provided a transformer of proper characteristic impedance £; can be found. The
quarter-wavelength ransformer is normally connected at a point of maxdmum or
minimum valtage since the line impedance is real ar chat point. The line impedance
at a point of minimum voltage is

Z

2= {15.18)

where & is the characreristic impedance of the line, and the standing wave rado on

the line is given as
1+ |1

= 15.1
1|7 (519

The location of the minimum veltage on the line for a general load is at a distance
(see Section 14.7.3)

tin = o= (61 + ) + 7 (15.20)

from the load, where = is any integer, including zero. For a resistively loaded line,
the location of minimum voltage is either at the load (if By < Zy) or at a distance
ad4 (if Ry = Zg). Thus, the transformer can be located at any of the points in Eq.
(15.20). If the characteristic line impedance is Zy, the characteristic impedance of 2
transformer located at a point of minimum voltage must be

III 1
L= SWR (15.21}

Similarly, if the transformer is located at 2 point of maximum voltage (by moving
it a quarter-wavelength in either direcdon of any of the points in Eq. (15.20)), the
characteristic impedance of the transformer for marching is

B, SRS,

Zo=2y (15.15)

SWR

Z, = Zv'SWR {15.22)

b)

Smith chart:

I

G- ZVZ _ RYZo-D+iXi/Ze _ (=D +jx

T (ZL+ 2020 RUZo+D)+jXi/Ze  (r+1)+ix

=Fr+jn




(r=1) +jir

Ir il = (r+1)+jx 134
Cross-multiplying gives

(r+ )l — Lix +ji(r + 1) +jxl = (r — 1) +jx (15.5)
Separating the real and imaginary parts and rearranging terms, we get two equations:

(G=-Dr+Tx=—-(T,+1) (15.6)

Lir+ (I, - )x=-T; (15.7)

We now write two equations: one for 7 and one for x, by first eliminating x and then,
separately, ». First, we eliminate x by substituting from Eq. (15.7) into Eq. (15.5).

After rearranging terms, this gives
FXr+1)-2Lr+ P+ )=1—7 (15.8)
Dividing by the common term (r + 1),
2lr -7
- ——_4r:=
S R ee)
Adding 7%/(r + 1)? to both sides of the equation and rearranging terms, we get

2
T Ny
(F” (r+1)) +1i T (r+1) (15.10)

Repeating the process starting with Eqs. (15.6) and (15.5) and eliminating  from
both equations, we get an equation in terms of x alone:

r,—17>+ (r,-ui-)z = (-1-)2 (15.11)

(15.9)




The pulse whose width is far less than the propagation time is known as short pulse and the
pulse whose width is far greater than the propagation time is known as long pulse.
Discontinuities:
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To understand how the waves behave, we will follow the propagation of waves in
Figure 16.24a and draw the reflection diagram as we go along. For simplicity, we
assume that the generator is matched (Z, = Zp). Therefore, the forward-propagating
wave launched by the generator at time ¢ = 0 is

VeZo V,
+_ & = £ .
Ve = Zo 4 Zo 5 (16.36)
This wave propagates on line 1 at a speed of propagation v,;. After a time Az} =
d\/v,1, the wave reaches the discontinuity. Part of the wave is reflected and part
of it is transmitted with the reflection and transmission coefficients I';; and T3,
respectively:

i —2Zy 2z
Iy = z——-, le—m

The reflection coefficient I, is the reflection coefficient at the interface between
line 1 and line 2 and the transmission coefficient indicates the transmission from
line 1 to line 2. These two coefficients are shown in Figure 16.25, where the arrows
indicate the direction of the waves being reflected and transmitted. The reflected
and transmitted voltage waves at d; are

Vl_ = VJ—PH, Vl+ = V0+T12 (16.38)

The reflected wave V|~ propagates back to the generator and reaches the generator
after a time At;. Since the reflection coefficient at the generator is zero, no additional
reflections occur at this point. The wave transmitted across the discontinuity, V;
propagates toward the load at a speed of propagation 7,2, and reaches the load after
an additional time Az, = d,/vp;. At the load, the wave is partly reflected and partly
transmitted into the load (where it is dissipated or, in the case of an antenna, radiated).
The reflection and transmission coefficients at the load are

_ZL—2Z T, — 27
T ZL+Zy tTZi+ z
Thus, the reflected and transmitted waves are

Vz_ = V1+FL = V;"lef}_, Vi'i = VJT]zTL (16.40)

(16.37)

I (16.39)




=ZO—ZI T = 27
o+ Zy A=717

The transmitted wave (from line 2 into line 1) and the reflected wave (into line 2)
are

V3+ =V, In= V{;"lef}_rzl, Vy = VJ_THFLFH (16.42)

I (16.41)

Now, these two waves propagate in opposite directions. V3" propagates toward the
load while V;~ propagates toward the generator. The sequence repeats itself indef-
initely. A few reflections are shown in Figure 16.25, together with the definitions
of reflection and transmission coefficients at the various locations.

All other aspects of propagation remain as discussed in Section 16.4. Note, in
particular, the times at which the waves reach various locations on the line. The main
difficulty in treating discontinuities is in keeping track of the increasing number
of reflections and transmissions and the associated times. We note also that the
reflection and transmission coefficients at the discontinuity depend on the direction
of propagation. The following relations hold:

Iy = —In, Ty=1-In (16.43)

b)

Propagation of Narrow pulse on finite distortion less transmission line:
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where 2’ is the distance from generator to point P’ in Figure 16.7a. At the load, the
forward-propagating wave is

Vi=Vte™ (16.13)
The reflected wave is

Vi =IVte™ (16.14)
At the load, the total voltage is the sum of this and the reflected voltage. This gives

Vi=V*re“(1+17) (16.15)




However, this sum only exists for a time equal to the pulse width Az. The reflected
wave in Eq. (16.14) propagates back and is attenuated. The expression for the
reflected wave anywhere on the line between load and generator is

V(@) =T V*te e (16.16)

This reflected wave reaches the generator and is reflected at the generator unless
the generator is matched. At the generator, the first reflection is

Vi=d)y=V*te 2y (16.17)

Taking into account the generator reflection coefficient Iy, the total voltage at the
generator is

Vg = Ve 4 (1 + 1) (16.18)

This sum also exists for a period At. The new forward-propagating wave after the
first reflection at the generator is

V@) =V+te eI, (16.19)

We know the phase constant of a waveguide is

21
B = /wzue —wipe = ——
g
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= fPre — flue
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b)

Given a=6cm, b=4cm
Dominant mode is TE;,

Cutoff frequency f. = 2\/1#_6 f(%)z + (%)2 = 2.5G Hz

Wavelength A = 17’”/f =0.12m
c

Intrinsic impedance n = \/’:E = 3770
0




TM Propagation in Parallel Plate Waveguide:
Maxwell equations
JE
VxH= €0—
at
V x E oH
X L= —[o 5
V-E=0
V.-H=0
Expanding the curl equations

Helmholtz equation

By substituting H,=0

m
SIIES

H, = 22

S

By substituting boundary conditions

E (xz)= LT [Ae'”f‘ +Be' ]
e

E:(x!z) = ée-Jﬂ: [—Ae-jﬂ;r +Be+;‘ﬂ'11
wE
H (x,z)=H e " cos f.x

Vi

E (x,z)="%H e ' cos B x
e

JB.

s

E (x,z)= H e ' sin B x




b)

Rectangular waveguide:
Maxwell equations
oE
VxH= €0—
ot
—— oH
X B =—MUo 5
V:-E=0
V-H=0
Expanding the curl equations

dH;

dy
oH, .

—VH; — —— =juweE,

oH, 8H, _.
E_ar_}maEz

ly = jweE,

Helmholtz equation

By substituting H,=0

TM mode of propagation:
By substituting boundary conditions

E.(x,y,2) = Eg sin (me) sin (-—y)
7

Eu(x,y,2) = y2+ E (”‘”) in(” )e—yz
Blwyz) = y2+k2E°b in (=) cos () e
Pt = B () s (82
=g on () ()




TE mode of propagation:
By substituting boundary conditions

H,(x,y,2) = Hycos ( %

b
Ey(x,y,2) = %Ho ? cos (m;rx) sin (%r-y—) e
Ey(;r, ¥,2) = ]w,:z Ho sm (?) cos (%-J—’) e
H.(x,y,2) = " _}; %) Hoﬂ sin (”—?) cos (”—?—) e
= g () ()
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