L		III/IV R	Tech Reg	ular /	unlementary DEGREE EXAMINATION	
November, 2019 Electronics and Communication Engineering						
Fiftl	n Se	emester			Digital Communications	
lime	: Th	ree Hours			Maximum: 60 Marks	
nsw	er Q	uestion No.1 compulse	orily.		(1X12 = 12 Marks)	
nsw	<u>er 0</u>	NE question from each	h unit.		(4X12=48 Marks)	
1.	An	swer all questions		N /	(1X12=12 Marks	
	a)	Define processing ga	in in DPC	VI.		
		$C = \sigma_M^2$				
		$G_p = \frac{1}{\sigma_E^2}$				
	b)	Calculate the Bandwi	idth need i	peeded	or transmission of 4 KHz signal using PCM with 128	
	0)	Quantization levels.		iccuce	or transmission of 4 KHz signal using I Civi with 120	
		Solution				
		Given	n	= 24		
		and	M	= 128		
		Therefore,	2 ^N	= 128		
		or	N	= log ₂	8 = 7	
		By putting $2f_m = 8$	000 Hz is l	.q. 8.8.	we get	
			BW	= [(24	/) + 1 8000 Hz	
		On the other hand	the approx	imate	line of RW as given by Eq. 8.8.4 is	
		On the other hand.	BW -	= 24 ×	× 8000 Hz	
				= 1.344	/Hz	
		Note: For comparison	, if the sam	e numb	r of channels are frequency division multiplexed by using an	
		SSB modulation, the	required ba	ndwidt	assuming 4 kHz per channel, will be	
			DW	- 24 0	- 90 KHZ	
	c)	For the binary sequer	nce 10110	l draw	he line code using ON-OFF Signalling	
	•,	i or the ornary sequer		i uiu (ie me coue using or corr signaming.	
	d)	Draw the constellation	n diagram	for co	erent BPSK.	
			Decision boundary			
		Region			egion	
		Z ₂		<i>(</i>	<i>z</i> ₁	
		$-\sqrt{E_b}$		Mese	ϕ_1	
		Wiessage		noi		

e) Give the expression for Average Probability of Symbol Error for Non Coherent Binary FSK.

		The average probability of error for noncoherent binary FSK is given by	
		$P_e = \frac{1}{2} \exp\left(-\frac{E_b}{2N_0}\right)$	
	f)	What is Euclidean distance?	
	,	The distance between received signal point and message point.	
		$\ \mathbf{x} - \mathbf{s}_k\ $	
	g)	Define Information Rate	
		Information Rate : $R = rH$. Here R is the information rate. H is the Entropy or	
		average information. And r is the rate at which messages are generated. Information rate R is	
	b)	represented in average number of bits of information per second.	
	II)		
		The information capacity theorem states that ideally these two parameters are related	
		$C = B \log_2(1 + SNR) b/s$	
		where C is the information capacity of the channel. The information capacity is defined as the maximum rate at which information can be transmitted across the channel without	
		error: it is measured in <i>bits per second</i> (b/s).	
	i)	Give the expression for average information of a Discrete Memory less source generating K	
		symbols.	
		average information rate of the source is $H(\mathcal{G})/T$, bits per second.	
	i)	What do you mean by constraint length in Convolution codes?	
	J)	Constraint length is defined as the number of shifts over which a single message bit influence the	
		encoder output.	
	k)	Define cyclic codes.	
		An (n, k) linear code C is called a cyclic code if every cyclic shift of a code vector in C is also a	
		code vector in C.	
	l)	Define Hamming weight. The Hamming weight $w(c)$ of a code vector c is defined as the number of nonzero	
		elements in the code vector.	
		UNIT I	•
2.	a)	Explain in detail the transmitter and decoder of PCM with a neat sketch. Also list the merits of PCM	
		in comparison to analog modulation techniques.	8M
		Three steps involved in conversion of analog signal to digital signal	
		Sampling	
		Quantization	
		Binary encoding	

The signal is sampled at regular intervals such that each sample is proportional to • amplitude of signal at that instant Analog signal is sampled every $T_s Secs$, called sampling interval. $f_s=1/T_s$ is called sampling rate or sampling frequency. • $f_s=2f_m$ is Min. sampling rate called Nyquist rate. Sampled spectrum (ω) is repeating periodically without overlapping. • Original spectrum is centered at ω =0 and having bandwidth of ω_m . Spectrum can be recovered by passing through low pass filter with cut-off ω_m . For $f_s < 2f_m$ sampled spectrum will overlap and cannot be recovered back. This is called aliasing. Advantages of pcm1-Onition transmission quality. (11) Compatibility. Af edifferent classes of (2) Traffic in the metwork. Integrated Digital network. (3) Low manufacturing cost (41 Good performance over very PDOT (5) Transmission paths Disadvantagest -13 Large Bandwidth requeire for transmission a Noise and crosstalk leaves low but, (2) gises attenuation. (more no of channels it increase attenuation & noise also increase) -Apple cations + Ð In compact olisk CLI Digital telephony (2) Digital audio application. 3 These to known as "PCA Scanned with

To find h(t) such that the output signal-to-noise ratio SNR_O is maximized.

$$x(t) = g(t) + w(t) \text{ for } 0 \le t < T$$

$$y(t) = [g(t) + w(t)]^* h(t)$$

$$= g(t)^* h(t) + w(t)^* h(t)$$

$$= g_o(t) + n(t)$$

$$SNR_o = \frac{|g_o(T)|^2}{E[n^2(T)]}$$

$$g_o(t) = \int_{-\infty}^{\infty} H(f)G(f)\exp(j2\pi ft)df$$

$$\Rightarrow |g_o(T)|^2 = \left|\int_{-\infty}^{\infty} H(f)G(f)\exp(j2\pi ft)df\right|^2$$

With w(t) being white with PSD $N_0/2$,

$$S_{N}(f) = S_{W}(f) |H(f)|^{2} = \frac{N_{0}}{2} |H(f)|^{2}$$

$$\Rightarrow E[n^{2}(T)] = \int_{-\infty}^{\infty} S_{N}(f) df = \frac{N_{0}}{2} \int_{-\infty}^{\infty} |H(f)|^{2} df$$

$$\Rightarrow \eta = \frac{\left| \int_{-\infty}^{\infty} G(f) H(f) \exp(j2\pi fT) df \right|^{2}}{\frac{N_{0}}{2} \int_{-\infty}^{\infty} |H(f)|^{2} df}$$

Cauchy-Schwarz inequality

$$\left|\int_{-\infty}^{\infty}\varphi_{1}(x)\varphi_{2}(x)dx\right|^{2} \leq \left(\int_{-\infty}^{\infty}|\varphi_{1}(x)|^{2} dx\right)\left(\int_{-\infty}^{\infty}|\varphi_{2}(x)|^{2} dx\right)$$

with equality holding if, and only if, $\varphi_{1}(x) = k \cdot \varphi_{2}^{*}(x)$ for some constant k

	By Cauchy-Schwarz inequality,	
	$\left \int_{-\infty}^{\infty} H(f)G(f) \exp(j2\pi f T) df \right ^2 \leq \int_{-\infty}^{\infty} H(f) ^2 df \cdot \int_{-\infty}^{\infty} G(f) \exp(j2\pi f T) ^2 df$	
	$\Rightarrow \eta \leq \frac{\int_{-\infty}^{\infty} H(f) ^2 df \cdot \int_{-\infty}^{\infty} G(f) ^2 df}{\frac{N_0}{2} \int_{-\infty}^{\infty} H(f) ^2 df} = \frac{2}{N_0} \int_{-\infty}^{\infty} G(f) ^2 df$	
	This is a constant bound, independent of the choice of $h(t)$. Hence, the optimal η is achieved by:	
	$H(f) = k \cdot G^{*}(f) \exp(-j2\pi fT)$ $h_{\text{opt}}(t) = \int_{-\infty}^{\infty} k \cdot G^{*}(f) \exp(-j2\pi fT) \exp(j2\pi ft) df$ $= k \left(\int_{-\infty}^{\infty} G(f) \exp(j2\pi f(T-t)) df \right)^{*}$ $= kg^{*}(T-t).$ Hence, under additive white noise, the <i>optimal received</i> <i>filter</i> matches the input signal in the sense that it is a time- inversed and delayed version of the complex-conjugated	
	input signal $g(t)$.	
b	 A binary data stream 001010010 is applied to the input of a Duo-Binary System 1) Construct the Duo-Binary coder output and corresponding receiver output without precode. 2) Suppose that owing to error during transmission, the level at the receiver input produced by second digit is reduced to zero construct the new receiver output. 	4M
	$\begin{array}{c} (1) \\$	

		UNIT II	
4.	a)	Discuss in detail the Gram-Schmidt orthogonalization procedure for a set of 'M' Real valued energy signals.	6M
		The principle of Gram-Schmidt Orthogonalization (GSO) states that, any set of M energy signals, $\{s_i(t)\}, 1 \le i \le M$ can be expressed as linear combinations of N orthonormal basis functions, where $N \le M$	
		If $s_1(t)$, $s_2(t)$,, $s_M(t)$ are real valued energy signals, each of duration 'T' sec,	
		$s_{i}(t) = \sum_{j=1}^{N} s_{ij} \Phi_{j}(t); \begin{cases} 0 \le t \le T \\ i = 1, 2, \dots, M \ge N \end{cases}$	
		where,	
		$s_{ij} = \int_{0}^{1} s_{i}(t)\varphi_{j}(t)dt ; \begin{cases} i = 1, 2, \dots, M \\ j = 1, 2, \dots, N \end{cases}$	
		The $\phi_i(t)$ -s are the basis functions and 's _{ij} '-s are scalar coefficients. We will consider real-valued basis functions $\phi_i(t)$ - s which are orthonormal to each other, i.e.,	
		$\int_{0}^{T} \varphi_{i}(t) \cdot \varphi_{j}(t) dt = \begin{cases} 1, \ if' \ i = j \\ 0, \ if' \ i \neq j \end{cases}$	
		Note that each basis function has unit energy over the symbol duration 'T'. Now, if the basis functions are known and the scalars are given, we can generate the energy signals G-S-O procedure	
		Part – I: We show that any given set of energy signals, $\{s_i(t)\}, 1 \le i \le M \text{ over } 0 \le t < T$, can be completely described by a subset of energy signals whose elements are linearly independent.	
		To start with, let us assume that all si(t) -s are not linearly independent. Then, there must exist a set of coefficients {ai}, $1 < i \le M$, not all of which are zero, such that,	
		$a_{1S1}(t) + a_{2S2}(t) + \dots + a_{MSM}(t) = 0, 0 \le t < T$	
		Verify that even if two coefficients are not zero, e.g. $a_1 \neq 0$ and $a_3 \neq 0$, then $s_1(t)$ and $s_3(t)$ are dependent signals.	
		Let us arbitrarily set, aM ≠ 0. Then,	

$$i_{M}(t) = -\frac{1}{a_{M}} \left[a_{S}^{2}(t) + a_{S}^{2}(t) + \dots + a_{M-3}^{2}s_{M-1}(t) \right]$$

$$= -\frac{1}{a_{N}} \left[a_{S}^{2} \left[a_{S}^{2}(t) \right]$$
Consider a reduced set with (M-1) signals (s(t)), i = 1,2,..., (M - 1).
This set may be either linearly independent or not. If not, there exists a set of (b), i = 1,2..., (M - 1), not all equal to zero such that,

$$\sum_{j=1}^{M-1} b_{j}^{2}(t) = 0, \ 0 \le t \le T$$
Arbitrarily assuming that but is 0, we may express so s(t) as
 $s_{M-1}(t) = -\frac{1}{b_{M-1}} \sum_{j=1}^{M-2} b_{j}^{2}(t)$
Now, following the above procedure for testing linear independence of the remaining signals, eventually we will end up with a subset of linearly independent signals. Let (s(t)), i = 1, 2, ..., N \le M
denote this subset.
Part - II: We now show that it is possible to construct a set of 'N orthonormal basis functions $\phi_{1}(t)$, $\phi_{2}(t)$, ..., $\phi_{1}(t)$ for $(\phi_{1}(t), i = 1, 2, ..., N. Let us choose the first basis function as,
first signal $s_{1}(t)$, i.e., $E_{1} = \int_{0}^{T} s_{1}^{2}(t)dt$:
 $\therefore s_{1}(t) = \sqrt{E_{1}} \phi_{1}(t)dt$

$$g_{2}(t) = s_{2}(t) - s_{21}\phi_{1}(t); \ 0 \le t < T$$

$$\int_{0}^{T} g_{2}(t)\phi_{1}(t)dt = \int_{0}^{T} s_{2}(t)\phi_{1}(t)dt - s_{21}\int_{0}^{T} \phi_{1}(t)\phi_{1}(t)dt$$

$$= s_{21} - s_{21} = 0 \rightarrow g_{2}(t)$$
Orthogonal to $\phi_{1}(t); S_{0}$, we verified that the function g_{2}(t) is orthogonal to the first basis function. This gives us a clue to determine the second basis function.$

$$\begin{aligned} &= \int_{0}^{T} \left[s_{2}(t) - s_{21}\varphi_{1}(t) \right]^{2} dt \\ &= \int_{0}^{T} s_{2}^{-1}(t) dt - 2 \cdot s_{21} \int_{0}^{T} s_{2}(t) \varphi_{1}(t) dt + s_{21}^{-1} \int_{0}^{T} \varphi_{1}^{-1}(t) t \\ &= E_{2} - 2 \cdot s_{21} \cdot s_{21} + s_{21}^{-2} = E_{2} - s_{21}^{-2} \\ &= \int_{0}^{T} \int_{0}^{T} \int_{0}^{T} \frac{s_{2}(t)}{g_{2}^{-1}(t) dt} \\ &\text{So, we now set,} \\ &\varphi_{2}(t) = \frac{g_{2}(t)}{\sqrt{\int_{0}^{T}} g_{2}^{-1}(t) dt} = \frac{s_{2}(t) - s_{21}\varphi_{1}(t)}{\sqrt{E_{2} - s_{21}^{-2}}} \\ &\text{and} \qquad E_{2} - \int_{0}^{T} \frac{s_{2}(t) dt}{g_{2}^{-1}(t) dt} = \text{Intergy of } s_{2}(t) \\ &\text{Verify that:} \\ &\int_{0}^{T} \varphi_{1}^{-1}(t) \varphi_{2}(t) dt = 1, \quad \text{i.e. } \varphi_{2}(t) \text{ is a time limited energy signal of unit energy.} \\ &\text{and} \qquad \int_{0}^{T} \frac{s_{1}(t) - \varphi_{1}(t) dt = 0, \text{ i.e. } \varphi_{1}(t) \text{ and } \varphi_{2}(t) \text{ are orthonormal to each other.} \\ \\ &\text{Proceeding in a similar manner, we can determine the third basis function, $\varphi_{2}(t).$ For i=3, $g_{1}(t) - g_{2}(t) dt = 0, \text{ i.e. } \varphi_{1}(t) \text{ and } \varphi_{2}(t) = 0 \le t < T \\ &= s_{2}(t) - \left[\int s_{21}\varphi_{1}(t) (t) + s_{2}\varphi_{2}(t) \right] \\ &\text{where,} \\ &s_{11} = \int_{0}^{T} \int_{0}^{T} (s_{1}(t)) (t) \text{ and } s_{12} = \int_{0}^{T} s_{2}(t) \phi_{2}(t) dt \\ &\varphi_{3}(t) = \frac{g_{3}(t)}{\sqrt{\int_{0}^{T}} g_{3}^{-1}(t) dt} \\ \\ &\text{Indeed, in general,} \\ &\varphi_{1}(t) = \frac{g_{1}(t)}{\sqrt{\int_{0}^{T}} g_{1}^{-1}(t) dt} = \frac{g_{1}(t)}{\sqrt{E_{2}} f_{2}} \\ &\text{for i = 1, 2, ..., N, where} \\ &g_{1}(t) = s_{1}(t) - \int_{t-1}^{t-1} s_{0} \varphi_{1}(t) \\ \end{aligned}$$$

		 and s_{ij} = ∫₀^T s_i(t).φ_j(t)dt for i = 1, 2,, N and j = 1, 2,, M Gram-Schmidt Orthogonalization procedure: If the signal set {s_i(t)} is known for j = 1, 2,, M, 0 ≤ t <t,< li=""> Derive a subset of linearly independent energy signals, {s_i(t)}, i = 1, 2,, N ≤ M. Find the energy of s_i(t) as this energy helps in determining the first basis function φ_i(t), which is a normalized form of the first signal. Note that the choice of this 'first' signal is arbitrary. Find the scalar 's₂₁', energy of the second signal (E 2), a special function 'g₂(t)' which is orthogonal to the first basis function and then finally the second orthonormal basis function φ₂(t) Follow the same procedure as that of finding the second basis function to obtain the other basis functions. </t,<>	
	b)	An FSK system transmits binary data at a rate of 2.5 X 10 ⁶ bits per second. During the course of transmission, White Gaussian noise of zero mean and power spectral density10-20 W/Hz is added to the signal. In the absence of noise, the amplitude of the received sinusoidal wave for digit 1 or 0 is 1 mV. Determine the average probability of symbol error for the following configurations: 1) Coherent Binary FSK 2)Non coherent Binary FSK $T_b = 1/2.5 \times 10^6 = 0.4 \mu s$ $E_b = \frac{1}{2} A_c^2 T_b = \frac{1}{2} (10^{-3})^2 0.4 \times 10^{-6} = 2 \times 10^{-13} \text{ J}$ $P_e = \frac{1}{2} \operatorname{erfc} \left(\sqrt{E_b / 2N_o} \right) = \frac{1}{2} \operatorname{erfc} \left(\sqrt{2 \times 10^{-13} / 2 \times 10^{-20}} \right) = \dots = 0.85 \times 10^{-3}$	6M
5		(OR)	6M
Э.	a)	Explain DESK Modulation Scheme with a neat sketch.	OIVI

DIFFERENTIAL PHASE SHIFT KEYING (DPSK):

In DPSK (Differential Phase Shift Keying) the phase of the modulated signal is shifted relative to the previous signal element. No reference signal is considered here. The signal phase follows the high or low state of the previous element. This DPSK technique doesn't need a reference oscillator.

The following figure represents the model waveform of DPSK.

It is seen from the above figure that, if the data bit is LOW i.e., 0, then the phase of the signal is not reversed, but is continued as it was. If the data is HIGH i.e., 1, then the phase of the signal is reversed, as with NRZI, invert on 1 (a form of differential encoding).

If we observe the above waveform, we can say that the HIGH state represents an \mathbf{M} in the modulating signal and the LOW state represents a \mathbf{W} in the modulating signal.

The word binary represents two-bits. **M** simply represents a digit that corresponds to the number of conditions, levels, or combinations possible for a given number of binary variables.

This is the type of digital modulation technique used for data transmission in which instead of onebit, two or **more bits are transmitted at a time**. As a single signal is used for multiple bit transmission, the channel bandwidth is reduced.

DBPSK TRANSMITTER .:

Figure 2-37a shows a simplified block diagram of a *differential binary phase-shift keying* (DBPSK) transmitter. An incoming information bit is XNORed with the preceding bit prior to entering the BPSK modulator (balanced modulator).

For the first data bit, there is no preceding bit with which to compare it. Therefore, an initial reference bit is assumed. Figure 2-37b shows the relationship between the input data, the XNOR output data, and the phase at the output of the balanced modulator. If the initial reference bit is assumed a logic 1, the output from the XNOR circuit is simply the complement of that shown.

In Figure 2-37b, the first data bit is XNORed with the reference bit. If they are the same, the XNOR output is a logic 1; if they are different, the XNOR output is a logic 0. The balanced modulator operates the same as a conventional BPSK modulator; a logic I produces $+\sin \omega_c t$ at the output, and A logic 0 produces $-\sin \omega_c t$ at the output.

In a binary FSK system, symbols 1 and 0 are distinguished from each other by transmitting one of two sinusoidal waves that differ in frequency by a fixed amount. A typical pair of sinusoidal waves is described by

$$s_i(t) = \begin{cases} \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_i t) & 0 \le t \le T_b \\ 0 & \text{elsewhere} \end{cases}$$

where i = 1, 2, and E_b is the transmitted signal energy per bit, and the transmitted frequency equals

$$f_i = \frac{n_c + i}{T_b}$$
 for some fixed integer n_c and

Thus symbol 1 is represented by $s_1(t)$, and symbol 0 by $s_2(t)$.

From Eq 4.9 we observe directly that the signals $s_1(t)$ and $s_2(t)$ are orthogonal, but not normalized to have unit energy. We therefore deduce that the moss useful form for the set of orthonormal basis

functions is

$$\phi_i(t) = \begin{cases} \sqrt{\frac{2}{T_b}} \cos(2\pi f_i t) & 0 \le t \le T_b \\ 0 & \text{elsewhere} \end{cases}$$

where i = 1, 2. Correspondingly, the coefficient s_{ij} for i = 1, 2, and j = 1, 2. is definers by

	Channel Coding Theorem (Shannon's Second Theorem)	
	We have seen that the information is transmitted through the channel with rate 'R' called information rate. Shannon's theorem says that it is possible to transmit information with an arbitrarily small probability of error provided that information rate 'R' is less than or equal to a rate 'C', called channel capacity. Thus <i>channel capacity</i> is the maximum information rate with which the error probability is within the tolerable limits.	
	Statement of the theorem :	
	Given a source of M equally likely messages, with $M >> 1$, which is generating information at a rate R. Given channel with channel capacity C. Then if,	
	$R \leq C$,	
	there exists a coding technique such that the output of the source may be transmitted over the channel with a probability of error in the received message which may be made arbitrarily small.	
	Explanation :	
	This theorem says that if $R \le C$, it is possible to transmit information without any error even if noise is present. Coding techniques are used to detect and correct the errors.	
b)	Consider the discrete memory lass source the source elabelete $S_{1}(z_{1},z_{2},z_{3})$ with gradelities	
0)	P = {0.25, 0.25, 0.5} respectively. Find the entropy of the 1st order source and the 2nd order extension source.	6M
	The entropy of the source becomes –	
	$H(\xi) = p_0 \log_2(\frac{1}{p_0}) + p_1 \log_2(\frac{1}{p_1}) + p_2 \log_2(\frac{1}{p_2})$	
	$=\frac{1}{4}\log_2(4) + \frac{1}{4}\log_2(4) + \frac{1}{2}\log_2(2)$	
	$=\frac{3}{2}$	
	For the second order extension of the source with	
	the original source consisting 3 symbols the	
	extended second order source will consists of 9	
	symbols as given by	
	$\sigma_0 = s_0 s_0; \sigma_1 = s_0 s_1; \sigma_2 = s_0 s_2; \sigma_3 = s_1 s_0; \sigma_4 = s_1 s_1; \sigma_5 = s_1 s_2;$	
	$\sigma_6 = s_2 s_0; \sigma_7 = s_2 s_1; \sigma_8 = s_2 s_2;$	
	with their probabilities given as	
	$\sigma_0 = \frac{1}{16}; \sigma_1 = \frac{1}{16}; \sigma_2 = \frac{1}{8}; \sigma_3 = \frac{1}{16}; \sigma_4 = \frac{1}{16}$	
	$\sigma_5 = \frac{1}{8}; \sigma_6 = \frac{1}{8}; \sigma_7 = \frac{1}{8}; \sigma_8 = \frac{1}{4}$	

		So the entropy of the extended source is	
		$H(z^2) = \sum_{i=1}^{8} p(\sigma_i) \log_2 \frac{1}{1-1}$	
		$\prod_{i=0}^{r} (\sigma_i) \sum_{i=0}^{r} p(\sigma_i)$	
		$=\frac{1}{16}\log_2(16) + \frac{1}{16}\log_2(16) + \frac{1}{8}\log_2(8) + \frac{1}{16}\log_2(16) + \frac{1}{16}\log_2$	
		$\frac{1}{8}\log_2(8) + \frac{1}{8}\log_2(8) + \frac{1}{8}\log_2(8) + \frac{1}{4}\log_2(4)$	
		= 3	
		<i>so</i> ,	
		$H(\xi^2) = 2H(\xi).$	
		(OR)	
7.	a)	What is Entropy? State and prove the properties of Entropy.	6M
		The <i>amount of potential information contained is a signal is termed the entropy,</i> usually denoted by H, which is defined as follows:	
		$H(X) = -\sum_{Y} P(X) \log P(X)$	
		We can essentially think of this as a weighted average of $\log 1/P(X)$. The quantity $1/P(X)$ expresses the amount of "surprise" in an event $X - i.e.$, if the probability is low, then there is a lot of surprise, and consequently a lot of information is conveyed by telling you that X happened.	
		It's a measure of the <i>average information content per source symbol</i> .	
		The reason we are taking the log of the surprise is so that the total amount of surprise from independent events is additive. Logs convert multiplication to addition, so	
		$\log \frac{1}{P(X_1 X_2)} = \log \frac{1}{P(X_1)} + \log \frac{1}{P(X_2)}.$	
		Thus, entropy essentially measures the "average surprise" or "average uncertainty" of a random variable.	
		If the distribution P(X) is highly peaked around one value, then we will rarely be surprised by this variable, hence it would be incapable of conveying much information.	
		If on the other hand P(X) is uniformly distributed, then we will be most surprised on average by this variable, hence it could potentially convey a lot of information.	

$$h(Y \mid X) = \int_{-\infty}^{\infty} f_X(x) dx \int_{-\infty}^{\infty} f_Y(y \mid x) \log_2 \left[\frac{1}{f_Y(y \mid x)} \right] dy$$
(1)

The variable Y is related to X as

Y = X + N

Hence, the conditional probability density function $f_Y f_y | x$) is identical to that of N except for a translation of x, the given value of X. Let $f_N(n)$ denote the probability density function of N. Then

$$\mathbf{f}_{\mathbf{Y}}(\mathbf{y} \mid \mathbf{x}) = \mathbf{f}_{\mathbf{N}}(\mathbf{y} - \mathbf{x})$$

Correspondingly, we may write

$$\int_{-\infty}^{\infty} f_{Y}(y \mid \mathbf{x}) \log_{2} \left[\frac{1}{f_{Y}(y \mid \mathbf{x})} \right] dy = \int_{-\infty}^{\infty} f_{N}(y - \mathbf{x}) \log_{2} \left[\frac{1}{f_{N}(y - \mathbf{x})} \right] dy$$

$$= \int_{-\infty}^{\infty} f_{N}(n) \log_{2} \left[\frac{1}{f_{N}(n)} \right] dn$$

$$= h(N)$$
(2)

6M

8. a) Explain the decoding procedure of convolution codes using an example.

Given that the generator polynomial for a (7,3) cyclic code is

$$g(p) = p^4 + p^3 + p^2 + 1$$

The output code words are given by

$$c(p) = M(p)g(p)$$

Tabulating the results

Input	M(p)	c(p) = M(p)g(p)	Code word	Weight of code word
000	0	0	0000000	0
001	1	$p^4 + p^3 + p^2 + 1$	0011101	4
010	p	$p^5 + p^4 + p^3 + p$	0111010	4
011	p + 1	$p^5 + p^2 + p + 1$	0100111	4
100	p^2	$p^6 + p^5 + p^4 + p^3$	1111000	4
101	$p^2 + 1$	$p^6 + p^5 + p^3 + 1$	1101001	4
110	$p^2 + p$	$p^6 + p^3 + p^2 + p$	1001110	4
111	$p^2 + p + 1$	$p^6 + p^4 + p + 1$	1010011	4

Note: XOR addition is used here, e.g.

$$\begin{array}{rcl} (p^2+1)(p^4+p^3+p^2+1) &=& p^6+p^5+p^4+p^2+p^4+p^3+p^2+1\\ &=& p^6+p^5+(1+1)p^4+p^3+(1+1)p^2+1\\ &=& p^6+p^5+(0)p^4+p^3+(0)p^2+1\\ &=& p^6+p^5+p^3+1 \end{array}$$

The systematic form of the block code is,

$$X = (k \text{ message bits} : (n-k) \text{ check bits})$$

= $(m_{k-1} m_{k-2} \dots m_1 m_0 : c_{q-1} c_{q-2} \dots c_1 c_0)$

Here the check bits form a polynomial as,

$$C(p) = c_{q-1} \frac{p^{q-1}}{p^{q-1}} + c_{q-2} \frac{p^{q-2}}{p^{q-2}} + \dots + c_1 \frac{p}{p} + c_0$$

The check bit polynomial is obtained by,

$$C(p) = rem\left[\frac{p^{q} M(p)}{G(p)}\right]$$

		(OR)	
9.	a)	Explain about PN Sequences and their characteristics.	6M

a)	Define processing gain in DPCM.
Ans	