

IV/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

November, 2019 Electronics & Electrical Engineering

Seventh Semester JAVA Programming (14EE706/CS02)

Time: Three Hours Maximum : 60 Marks

SCHEME OF EVALUATION

______________________________ __________________________________

 Prepared By : J.KUMARARAJA

 Assistant Professor,

 Dept. of CSE,

 BEC, BAPATLA.

 (Signature)

 (Signature)

 Head of the Dept,

 Dept. of CSE,

BEC, BAPATLA.

SCHEME OF EVALUATION

Allocation of Marks

UNIT – I

2. a) Define constructor. Explain about constructor overloading.

Explanation – 3Marks

Program – 3Marks

2. b) What is the use of super keyword? Explain with an example.

Explanation – 3Marks

Program – 3Marks

(or)

3. a) What is the importance of static keyword? Explain with examples.

Explanation – 3Marks

Program – 3Marks

3. b) What is a Package? Explain the procedure for creating and accessing packages in java.

Explanation – 3Marks

Program – 3Marks

UNIT – II

4. a) Explain the usage of try, catch and finally keywords with an example.

Explanation – 3Marks

Program – 3Marks

4. b) Define Thread. Explain the life cycle of thread with a neat sketch.

Diagram – 3Marks

Explanation – 3Marks

 (or)

5. a) Explain about Graphics class in applets with examples.

Explanation – 3Marks

Program – 3Marks

5. b) Explain how we can pass parameters to applets using an example.

Explanation – 3Marks

Program – 3Marks

UNIT – III

6. a) List different layout managers that AWT supports? Write a Java program for one

 layout manager.

Explanation – 3Marks

Program – 3Marks

6. b) Explain about mouse events with example.

Explanation – 3Marks

Program – 3Marks

(or)

7. a) Explain about the delegation event model.

Diagram – 3Marks

Explanation – 3Marks

7. b) What is an adapter class? Explain its purpose and functionality.

Explanation – 3Marks

Program – 3Marks

UNIT – IV

8. a) Write a Java program to demonstrate check boxes in swing.

 Program – 6Marks

8. b) Differentiate between AWT and Swing.

Explanation – 6Marks

(or)

9. a) Write the steps involved in JDBC connectivity process with example.

Explanation – 2Marks

Program – 4Marks

9. b) Discuss about JDBC drivers.

 Listing the names – 2Marks

 Explanation – 4Marks

- - - - -

IV/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

November, 2019 Electronics & Electrical Engineering

Seventh Semester JAVA Programming (14EE706/CS02)

Time: Three Hours Maximum : 60 Marks

SCHEME OF EVALUATION - ANSWERS

____________________________________ ____________________________

Answer Questions No. 1 compulsorily (1 X 12 = 12 Marks)

Answer ONE question from each unit. (4 X 12 = 48 Marks)

_____________________________________ ___________________________

1. Answer all questions (1 X 12 = 12 Marks)

a) Define scope and lifetime.

Scope of a variable refers to in which areas or sections of a program can the variable be

accessed and lifetime of a variable refers to how long the variable stays alive in memory.

General convention for a variable’s scope is, it is accessible only within the block in

which it is declared.

b) Give the syntax for StringBuffer.

Java StringBuffer class is used to create mutable (modifiable) string. The StringBuffer

class in java is same as String class except it is mutable i.e. it can be changed.

c) What is method overriding?

If subclass (child class) has the same method as declared in the parent class, it is known

as method overriding in Java.

In other words, If a subclass provides the specific implementation of the method that has

been declared by one of its parent class, it is known as method overriding.

Usage of Java Method Overriding

 Method overriding is used to provide the specific implementation of a method which

is already provided by its superclass.

 Method overriding is used for runtime polymorphism.

d) What are the types of exceptions?

There are mainly two types of exceptions: checked and unchecked. Here, an error is

considered as the unchecked exception. According to Oracle, there are three types of

exceptions:

1. Checked Exception

2. Unchecked Exception 3. Error

e) Specify need of synchronization of threads.

Synchronization in java is the capability to control the access of multiple threads to any

shared resource.

Java Synchronization is better option where we want to allow only one thread to access

the shared resource.

Why use Synchronization

The synchronization is mainly used to

1. To prevent thread interference.

2. To prevent consistency problem.

f) State the different methods of applet life cycle.

Java applet inherits features from the class Applet. Thus, whenever an applet is created, it

undergoes a series of changes from initialization to destruction. Various stages of

an applet life cycle are depicted in the figure below:

 init()

 start()

 paint()

 stop()

 destroy()

g) Differentiate frames and applets.

Frames on the other hand is a window which is decorated that is contains border,

title, the maximise minimise and close buttons.

Frame based applications come under the category of desktop Java applications

and run on their own without the need of web browser.

h) Write methods of Color class.

 static Color getColor(String nm) - Finds a color in the system properties.

 static setColor(Color name) - Sets a color in the system properties.

i) List out AWT components.

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based

applications in java.

Java AWT components are platform-dependent i.e. components are displayed according

to the view of operating system. AWT is heavyweight i.e. its components are using the

resources of OS.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea,

RadioButton, CheckBox, Choice, List etc.

j) Which class supports radio buttons?

The JRadioButton class is used to create a radio button. It is used to choose one option

from multiple options. It is widely used in exam systems or quiz.

It should be added in ButtonGroup to select one radio button only.

k) Define swing.

Java Swing tutorial is a part of Java Foundation Classes (JFC) that is used to create

window-based applications. It is built on the top of AWT (Abstract Windowing Toolkit)

API and entirely written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton,

JTextField, JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

l) List the types of JDBC drivers.

JDBC Driver is a software component that enables java application to interact with the

database. There are 4 types of JDBC drivers:

1. JDBC-ODBC bridge driver

2. Native-API driver (partially java driver)

3. Network Protocol driver (fully java driver)

4. Thin driver (fully java driver)

UNIT – I

2. a) Define constructor. Explain about constructor overloading.

A constructor looks more like a method but without return type. Moreover, the name

of the constructor and the class name should be the same.

The advantage of constructors over methods is that they are called

implicitly whenever an object is created. In case of methods, they must be called

explicitly. To create an object, the constructor must be called. Constructor gives

properties to an object at the time of creation itself (else, it takes some method calls

with extra code to do the same job). Programmer uses constructor for initializing

variables, instantiating objects.

Constructor Overloading

Just like method overloading, constructors also can be overloaded. Same constructor

declared with different parameters in the same class is known as constructor

overloading. Compiler differentiates which constructor is to be called depending upon

the number of parameters and their sequence of data types.

Ex. Prg:

 // Prg. to demonstrate constructor overloading

import java.lang.*;

class Perimeter

{

 public Perimeter()

 {

 System.out.println("From default");

 }

 public Perimeter(int x)

 {

 System.out.println("Circle perimeter: " + 2*Math.PI*x);

 }

 public Perimeter(int x, int y)

 {

 System.out.println("Rectangle perimeter: " +2*(x+y));

 }

 public static void main(String args[])

 {

 Perimeter p1 = new Perimeter();

 Perimeter p2 = new Perimeter(10);

 Perimeter p3 = new Perimeter(10, 20);

 }

}

2. b) What is the use of super keyword? Explain with an example.

The super keyword in Java is a reference variable which is used to refer immediate parent

class object.

Whenever you create the instance of subclass, an instance of parent class is created implicitly

which is referred by super reference variable.

Usage of Java super Keyword

1. super can be used to refer immediate parent class instance variable.

2. super can be used to invoke immediate parent class method.

3. super() can be used to invoke immediate parent class constructor.

Ex.Prg:

 // Prg. demonstrate the usage of super keyword

class Person

{

 public String name;

 Person(String s)

 {

 name = s;

 }

 public void display()

 {

 System.out.println("Name of Person = " + name);

 }

}

class Staff extends Person

{

 private int staffId;

 Staff(String name,int staffId)

 {

 super(name); // invoke Person class constructor

 this.staffId = staffId;

 }

 public void display()

 {

 super.display();

 System.out.println("Staff Name from child class is =

 " +super.name);

 System.out.println("Staff Id is = " + staffId);

 }

}

class TemporaryStaff extends Staff

{

 private int days;

 private int hoursWorked;

 TemporaryStaff(String sname,int id,int days,int hoursWorked)

 {

 super(sname,id); // invoke Staff class constructor

 this.days = days;

 this.hoursWorked = hoursWorked;

 }

 public int Salary()

 {

 int salary = days * hoursWorked * 50;

 return salary;

 }

 public void display()

 {

 super.display(); // invoke Staff class display()

 System.out.println("No. of Days = " + days);

 System.out.println("No. of Hours Worked = " +

 hoursWorked +" Hrs.");

 System.out.println("Total Salary (Rs./-)= " + Salary());

 }

}

class main

{

 public static void main(String args[])

 {

 TemporaryStaff ts = new TemporaryStaff("Kumar",999,10,20);

 ts.display();

 }

}

3. a) What is the importance of static keyword? Explain with examples.

The static keyword in Java is used for memory management mainly. We can apply java

static keyword with variables, methods, blocks and nested class. The static keyword belongs

to the class than an instance of the class.

The static can be:

1. Variable (also known as a class variable)

2. Method (also known as a class method) 3. Block 4. Nested class

1) Java static variable

If you declare any variable as static, it is known as a static variable.

o The static variable can be used to refer to the common property of all objects (which

is not unique for each object), for example, the company name of employees, college

name of students, etc.

o The static variable gets memory only once in the class area at the time of class

loading.

Advantages of static variable

It makes your program memory efficient (i.e., it saves memory).

Understanding the problem without static variable

class Student

{

 int rollno;

String name;

String college="ITS";

}

Suppose there are 500 students in my college, now all instance data members will get

memory each time when the object is created. All students have its unique rollno and name,

so instance data member is good in such case. Here, "college" refers to the common property

of all objects. If we make it static, this field will get the memory only once.

Ex. Prg:

 // prg. to demonstrate the usage of static keyword

import java.lang.*;

class Student

{

 int rollno;

 String name;

 static String college = "CEC";

 Student(int r, String n)

 {

 rollno = r;

 name = n;

 }

 static void change()

 {

 college = "BEC";

 }

 static

 {

 System.out.println("\n<--Student BioData-->\n");

 System.out.println("\tRNo.\tName\tCollege");

 System.out.println("\t----\t----\t----");

 }

 void display ()

 {

 System.out.println("\t"+rollno+"\t"+name+"\t"+college);

 }

 public static void main(String args[])

 {

 Student s1 = new Student(111,"Karan");

 Student s2 = new Student(222,"Aryan");

 Student s3 = new Student(333,"Sonoo");

 Student.change();

 s1.display();

 s2.display();

 s3.display();

 }

}

3. b) What is a Package? Explain the procedure for creating and accessing packages in java.

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined

package.

There are many built-in packages such as java.lang, java.awt, javax.swing, java.net,

java.io, java.util, java.sql etc.

Advantages:

Java package is used to categorize the classes and interfaces so that they can be easily

maintained.

Java package provides access

protection.

Java package removes naming

collision.

Program 1:

Compile the above program as shown in below statement:

javac - d . Addition.java

Program 2:

// Prg. Creating a package pack with

Addition Class

package pack; //pack is the package name

public class Addition

{

 //instance vars

 private int n1,n2;

 public Addition(int a,int b)

 {

 n1=a;

 n2=b;

 }

 // method to find sum of two numbers

 public void sum()

 {

 System.out.println

 ("Sum :"+(n1+n2));

 }

}

 // Prg : To access the package pack

pack mypack;

import pack.*;

class Use

{

 public static void main(String args[])

 {

UNIT – II

4. a) Explain the usage of try, catch and finally keywords with an example.

Java try block

Java try block is used to enclose the code that might throw an exception. It must be

used within the method.

If an exception occurs at the particular statement of try block, the rest of the block

code will not execute. So, it is recommended not to keeping the code in try block that

will not throw an exception.

Java try block must be followed by either catch or finally block.

Syntax of Java try-catch

try

{

//code that may throw an exception

}

catch(Exception_class_Name ref)

{

//code that may handle exception

}

Syntax of try-finally block
try

{

//code that may throw an exception

}

finally

{

//code that may end the execution

}

Java finally block

Java finally block is a block that is used to execute important code such as

closing connection, stream etc.

Java finally block is always executed whether exception is handled or not.

Java finally block follows try or catch block.

Finally block in java can be used to put "cleanup" code such as closing a file,

closing connection etc.

Ex. Prg:

// Prg. to demonstrate on Exception Handling

import java.lang.*;

import java.io.*;

class Ex2

{

 public static void main(String args[])

 {

 try

 {

 // Open the files

 System.out.println ("Open Files");

 // Do Some Processing

 int n=args.length;

 System.out.println ("No of Arguments:"+n);

 int a=45/n; //causes a exception if no args. passed

 System.out.println ("Value of a is:"+a);

 }

 catch(ArithmeticException ae)

 {

 // Display the Exception Details

 System.out.println (ae);

 // Display any message to the user

 System.out.println ("Please pass data while

running this program:");

 }

 finally

 {

 // Close files

 System.out.println ("Close files");

 }

 }

}

4. b) Define Thread. Explain the life cycle of thread with a neat sketch.

A thread can be in one of the five states. According to sun, there is only 4 states in thread

life cycle in java new, runnable, non-runnable and terminated. There is no running state.

But for better understanding the threads, we are explaining it in the 5 states.

The life cycle of the thread in java is controlled by JVM. The java thread states are as

follows:

1. New

2. Runnable

3. Running

4. Non-Runnable (Blocked or Waiting)

5. Terminated

New

The thread is in new state if you create an instance of Thread class but before the

invocation of start() method.

Runnable

The thread is in runnable state after invocation of start() method, but the thread

scheduler has not selected it to be the running thread.

Running

The thread is in running state if the thread scheduler has selected it.

Non-Runnable (Blocked or waiting)

This is the state when the thread is still alive, but is currently not eligible to run.

Terminated (Dead)

A thread is in terminated or dead state when its run() method exits.

5. a) Explain about Graphics class in applets with examples.

java.awt.Graphics class provides many methods for graphics programming.

Commonly used methods of Graphics class:

1. public abstract void drawString(String str, int x, int y): is used to draw the

specified string.

2. public void drawRect(int x, int y, int width, int height): draws a rectangle with the

specified width and height.

3. public abstract void fillRect(int x, int y, int width, int height): is used to fill

rectangle with the default color and specified width and height.

4. public abstract void drawOval(int x, int y, int width, int height): is used to draw

oval with the specified width and height.

5. public abstract void fillOval(int x, int y, int width, int height): is used to fill oval

with the default color and specified width and height.

6. public abstract void drawLine(int x1, int y1, int x2, int y2): is used to draw line

between the points(x1, y1) and (x2, y2).

7. public abstract boolean drawImage(Image img, int x, int y, ImageObserver

observer): is used draw the specified image.

8. public abstract void drawArc(int x, int y, int width, int height, int startAngle, int

arcAngle): is used draw a circular or elliptical arc.

9. public abstract void fillArc(int x, int y, int width, int height, int startAngle, int

arcAngle): is used to fill a circular or elliptical arc.

10. public abstract void setColor(Color c): is used to set the graphics current color to

the specified color.

11. public abstract void setFont(Font font): is used to set the graphics current font to

the specified font.

Example of Graphics in applet:

Ex.Prg:

 // Prg to demonstrate on Graphics class

import java.applet.Applet;

import java.awt.*;

/* <applet code="GraphicsDemo.class" width="300" height="300">

</applet> */

public class GraphicsDemo extends Applet

{

 public void paint(Graphics g)

 {

 g.setColor(Color.red);

 g.drawString("Welcome",50, 50);

 g.drawLine(20,30,20,300);

 g.drawRect(70,100,30,30);

 g.fillRect(170,100,30,30);

 g.drawOval(70,200,30,30);

 g.setColor(Color.pink);

 g.fillOval(170,200,30,30);

 g.drawArc(90,150,30,30,30,270);

 g.fillArc(270,150,30,30,0,180);

 }

}

5. b) Explain how we can pass parameters to applets using an example.

Passing parameters to applets using the param tag and retrieving the values of parameters

using getParameter method.

Parameters specify extra information that can be passed to an applet from the HTML page.

Parameters are specified using the HTML’s param tag.

 Param Tag

 The <param> tag is a sub tag of the <applet> tag. The <param> tag contains two

attributes: name and value which are used to specify the name of the parameter and the value

of the parameter respectively. For example, the param tags for passing name and age

parameters looks as shown below:

 <param name=”name” value=”Ramesh” /><param name=”age” value=”25″ />

 Now, these two parameters can be accessed in the applet program using

the getParameter() method of the Applet class.

 getParameter() Method

The getParameter() method of the Applet class can be used to retrieve the parameters passed

from the HTML page. The syntax of getParameter() method is as follows:

String getParameter(String param-name);

Let’s look at a sample program which demonstrates the <param> HTML tag and

the getParameter() method:

 Ex.Prg:

// Prg to demonstrate on Applets

import java.awt.*;

import java.applet.*;

/*

 <applet code="MyApplet" height="300" width="500">

 <param name="name" value="Ramesh" />

 <param name="age" value="25" />

 </applet>

*/

public class MyApplet extends Applet

{

 String n;

 String a;

 public void init()

 {

 n = getParameter("name");

 a = getParameter("age");

 }

 public void paint(Graphics g)

 {

 g.drawString("Name is: " + n, 20, 20);

 g.drawString("Age is: " + a, 20, 40);

 }

}

Output of the above program is as follows:

6. a) List different layout managers that AWT supports? Write a Java program for one

 layout manager.

The Layout Managers are used to arrange components in a particular manner.

LayoutManager is an interface that is implemented by all the classes of layout

managers.

 There are following classes that represents the layout managers:

Sr. No. LayoutManager & Description

1
BorderLayout

The borderlayout arranges the components to fit in the five regions: east,

west, north, south and center.

2
CardLayout

The CardLayout object treats each component in the container as a card.

Only one card is visible at a time.

3 FlowLayout

The FlowLayout is the default layout.It layouts the components in a

directional flow.

4 GridLayout

The GridLayout manages the components in form of a rectangular grid.

5 GridBagLayout

This is the most flexible layout manager class.The object of

GridBagLayout aligns the component vertically,horizontally or along

their baseline without requiring the components of same size.

Ex.Prg:

//Prg to demonstrate on creating GridLayout

https://www.tutorialspoint.com/awt/awt_borderlayout.htm
https://www.tutorialspoint.com/awt/awt_cardlayout.htm
https://www.tutorialspoint.com/awt/awt_flowlayout.htm
https://www.tutorialspoint.com/awt/awt_gridlayout.htm
https://www.tutorialspoint.com/awt/awt_gridbaglayout.htm

import java.awt.*;

import javax.swing.*;

public class MyGridLayout

{

 JFrame f;

 MyGridLayout()

 {

 f=new JFrame();

 JButton b1=new JButton("1");

 JButton b2=new JButton("2");

 JButton b3=new JButton("3");

 JButton b4=new JButton("4");

 JButton b5=new JButton("5");

 JButton b6=new JButton("6");

 JButton b7=new JButton("7");

 JButton b8=new JButton("8");

 JButton b9=new JButton("9");

 f.add(b1);f.add(b2);f.add(b3);

 f.add(b4);f.add(b5);f.add(b6);

 f.add(b7);f.add(b8);f.add(b9);

 f.setLayout(new GridLayout(3,3));

 //setting grid layout of 3 rows and 3 columns

 f.setSize(300,300);

 f.setVisible(true);

 }

 public static void main(String[] args)

 {

 new MyGridLayout();

 }

}

6. b) Explain about mouse events with example.

The Java MouseListener is notified whenever you change the state of mouse. It is

notified against MouseEvent. The MouseListener interface is found in java.awt.event

package. It has five methods.

Ex. Prg:

//Prg. to Demonstrate on handling MouseEvents by MouseListener

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

 <applet code="MouseEvents.class" width=300 height=100>

 </applet>

*/

public class MouseEvents extends Applet implements MouseListener,

MouseMotionListener

{

 String msg = " ";

 int mouseX = 0, mouseY = 0; // coordinates of mouse

 public void init()

 {

 setBackground(Color.pink);

 addMouseListener(this);

 addMouseMotionListener(this);

 }

 // Handle mouse clicked.

 public void mouseClicked(MouseEvent me)

 {

 setBackground(Color.blue);

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse clicked.";

 repaint();

 }

 // Handle mouse entered.

 public void mouseEntered(MouseEvent me)

 {

 setBackground(Color.cyan);

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse entered.";

 repaint();

 }

 // Handle mouse exited.

 public void mouseExited(MouseEvent me)

 {

 setBackground(Color.red);

 // save coordinates

 mouseX = 0;

 mouseY = 10;

 msg = "Mouse exited.";

 repaint();

 }

 // Handle button pressed.

 public void mousePressed(MouseEvent me)

 {

 setBackground(Color.orange);

 // save coordinates

 mouseX = me.getX();

 mouseY = me.getY();

 msg = "Mouse Pressed";

 repaint();

 }

 // Handle button released.

 public void mouseReleased(MouseEvent me)

 {

 setBackground(Color.green);

 // save coordinates

 mouseX = me.getX();

 mouseY = me.getY();

 msg = "Mouse Released";

 repaint();

 }

 // Handle mouse dragged.

 public void mouseDragged(MouseEvent me)

 {

 // save coordinates

 mouseX = me.getX();

 mouseY = me.getY();

 msg = "Mouse Dragging";

 showStatus("Dragging mouse at " + mouseX + ", " + mouseY);

 repaint();

 }

 // Handle mouse moved.

 public void mouseMoved(MouseEvent me)

 {

 // show status

showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

 }

 // Display msg in applet window at current X,Y location.

 public void paint(Graphics g)

 {

 g.drawString(msg, mouseX, mouseY);

 }

}

7. a) Explain about the delegation event model.

The modern approach to handling events is based on the delegation event model. In

this model, an event is sent to component form which it originated. The component

registers a listener object with the program. The listener processes the event and then

returns.

For e.g.: When you click a button, the action to be performed is handled by an object

registered to handle the button click event. The following diagram illustrates the

delegation event model

Every event has a corresponding listener interface that specifies the methods that are

required to handle the event. Event object are sent to registered listeners. To enable a

component to handle events, you must register an appropriate listener for it.

7. b) What is an adapter class? Explain its purpose and functionality.

Java adapter classes provide the default implementation of listener interfaces. If you

inherit the adapter class, you will not be forced to provide the implementation of all

the methods of listener interfaces. So it saves code.The adapter classes are found

in java.awt.event, java.awt.dnd and javax.swing.event packages.

 The Adapter classes with their corresponding listener interfaces are given below.

Adapter class Listener interface

WindowAdapter WindowListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

FocusAdapter FocusListener

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

HierarchyBoundsAdapter HierarchyBoundsListener

Ex. Prg:

// Prg. To create a Frame and then close it using Window Adapter

Class

import java.awt.*;

import java.awt.event.*;

class MyFrame4 extends Frame

{

 public static void main(String args[])

 {

 // create a Frame with title

 MyFrame4 f=new MyFrame4();

 // set title to Frame

 f.setTitle("My AWT Frame");

 // set the size of the Frame

 f.setSize(300,250);

 // Dispaly the Frame

 f.setVisible(true);

 // Close the Frame

 f.addWindowListener(new Myclass());

 }

}

class Myclass extends WindowAdapter

{

 public void windowClosing(WindowEvent e)

 {

 System.exit(0);

 }

}

UNIT – IV

8. a) Write a Java program to demonstrate check boxes in swing.

JCheckBox

The JCheckBox class is used to create a checkbox. It is used to turn an option on

(true) or off (false). Clicking on a CheckBox changes its state from "on" to "off" or

from "off" to "on ".It inherits JToggleButton class.

JCheckBox class declaration

Let's see the declaration for javax.swing.JCheckBox class.

Ex.Prg:

 // Prg. To creating check box and text area box.

import javax.swing.*;

import java.awt.*; // Container class

import java.awt.event.*;

class Check extends JFrame implements ActionListener

{

 // vars

 JCheckBox cb1,cb2;

 JTextArea ta;

 String msg=" ";

 Check()

 {

 //create the content pane

 Container c=getContentPane();

 // set flow layout to content pane

 c.setLayout(new FlowLayout());

 //create a text area with 10 rows and 20 chars per row

 ta=new JTextArea(10,20);

 ta.setBackground(Color.red);

 //create two checkboxes

 cb1=new JCheckBox("C++",true);

 cb2=new JCheckBox("JAVA");

 // add the checkboxes,textarea to the cotainer

 c.add(cb1);

 c.add(cb2);

 c.add(ta);

https://www.javatpoint.com/java-jtogglebutton

// add action listeners. we need not add listener to text area

 //since the user clicks on the checkboxes only

 cb1.addActionListener(this);

 cb2.addActionListener(this);

// close the frame upon clicking

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

public void actionPerformed(ActionEvent ae)

{

 // know which components are selected by user

 if(cb1.getModel().isSelected())

 msg+="\nC++";

 if(cb2.getModel().isSelected())

 msg+="\nJAVA";

 // display the selected message message in text area

 ta.setText(msg);

 // reset the message to empty string

 msg=" ";

 }

 public static void main(String args[])

 {

 // create the frame

 Check cr =new Check();

 // set title for the frame

 cr.setTitle("My checkboxes and Radio buttons");

 // Set the size 300 X 300 px

 cr.setSize(500, 400);

 cr.setVisible(true);

 }

}

8. b) Differentiate between AWT and Swing.

No. Java AWT Java Swing

1) AWT components are platform-

dependent.

Java swing components

are platform-independent.

2) AWT components are heavyweight. Swing components

are lightweight.

3) AWT doesn't support pluggable look

and feel.

Swing supports pluggable

look and feel.

4) AWT provides less components than

Swing.

Swing provides more

powerful components such

as tables, lists, scrollpanes,

colorchooser, tabbedpane etc.

5) AWT doesn't follows MVC(Model View

Controller) where model represents

data, view represents presentation and

controller acts as an interface between

model and view.

Swing follows MVC.

9. a) Write the steps involved in JDBC connectivity process with example.

JDBC stands for Java Database Connectivity, which is a standard Java API for database-

independent connectivity between the Java programming language and a wide range of

databases, especially data stored in a Relational Database.

JDBC works with Java on a variety of platforms, such as Windows, Mac OS, and the

various versions of UNIX.

Methods/Stages used to access database:

There are 5 steps/stages to connect any java application with the database in java using

JDBC. They are as follows:

o Register the driver

o Creating connection/Connecting to database

o Creating statement/Preparing SQL statement in java

o Executing queries/Retrieving the results

o Closing connection

Register the driver

We should first declare a driver which is going to be used for communication which is

going to be used for communication with the database server in java program.

Create the connection

In this stage, we establish a connection with a specific dadabase through the driver which

is already registered in the previous step.

Create the connection/Preparing SQL statement in java

We should create an SQL statement in our java program using any of the interfaces like

Statement, PreapredStatement etc., which are available in java.sql package.

Execute Queries/Retrieving the results

The results obtained by executing the SQL statements can be stored in an object with the

help of interfaces like ResultSet,ResultSetMetaData etc.,

Closing the Connection

We should close the connection between java program and the database by using close()

metod of Connection class.

9. b) Discuss about JDBC drivers.

DriverManager.registerDriver(new sun.jdbc.odbc.jdbcodbcDriver());

Connection con=DriverManager.getConnection

("jdbc:oracle:oradsn","system","password");

Statement stmt =con.CreateStatement();

ResultSet rs=stmt.executeQuery(“select *from employee”);

Connection.close();

JDBC stands for Java Database Connectivity, which is a standard Java API for database-

independent connectivity between the Java programming language and a wide range of

databases, especially data stored in a Relational Database.

JDBC works with Java on a variety of platforms, such as Windows, Mac OS, and the

various versions of UNIX.

JDBC Driver is a software component that enables java application to interact with the

database. There are 4 types of JDBC drivers:

5. JDBC-ODBC bridge driver

6. Native-API driver (partially java driver)

7. Network Protocol driver (fully java driver)

8. Thin driver (fully java driver)

JDBC-ODBC bridge driver

The JDBC-ODBC bridge driver uses ODBC driver to connect to the database. The JDBC-

ODBC bridge driver converts JDBC method calls into the ODBC function calls. This is

now discouraged because of thin driver.

Native-API driver

The Native API driver uses the client-side libraries of the database. The driver converts

JDBC method calls into native calls of the database API. It is not written entirely in java.

Network Protocol driver

Network Protocol driver

The Network Protocol driver uses middleware (application server) that converts JDBC

calls directly or indirectly into the vendor-specific database protocol. It is fully written in

java.

Thin driver

The thin driver converts JDBC calls directly into the vendor-specific database protocol.

That is why it is known as thin driver. It is fully written in Java language.

- - - - -

