

DATABASE MANAGEMENT SYSTEMS

LAB MANUAL

 DEPARTMENT OF INFORMATION TECHNOLOGY

II B.Tech.(IT) II SEM

 18ITL42

II Year B.Tech. IT II-Sem

Database Management Systems Lab

(Common to CSE, IT)

Pre-requisites:

Database Management Systems

Course Objectives: The students will learn the following:

1. Analyze the database languages.
2. Interpret the Knowledge on database design.
3. Determine the knowledge on key constraints and Normalization.
4. Determine the knowledge on procedures and functions.

Course Outcomes: After Completion of this Course, Students will be able to:

1. Implement DDL, DML, DCL Commands using SQL.
2. Design database by using ER Diagrams.
3. Apply key constrains to get a normalized database.
4. Implement procedures and functions using PL/SQL

Experiment 1: Working with ER Diagram and Normalization

Example: ER Diagram for Sailors Database
Entities:

1. Sailor
2. Boat

Relationship: Reserves
Primary Key Atributes:

1. SID (Sailor Entity)
2. BID (Boat Entity)

Experiment 2: Working with DDL, DML, DCL and Key Constraints
Creation, Altering and Dropping of Tables and Inserting Rows into a Table (Use
Constraints While Creating Tables) Examples Using Select Command.

Experiment 3: Working with Queries and Nested QUERIES
Queries (along with sub Queries) using ANY, ALL, IN, EXISTS, NOTEXISTS,
UNION, INTERSET, Constraints

Experiment 4: Working with Queries USING Aggregate Operators & views
Queries using Aggregate Functions (COUNT, SUM, AVG, MAX and MIN), GROUP
BY, HAVING and Creation and Dropping of Views

Experiment 5: Working with Conversion Functions & String Functions
Queries using Conversion Functions (TO_CHAR, TO_NUMBER AND TO_DATE),
String Functions (CONCATENATION, LPAD, RPAD, LTRIM, RTRIM, LOWER,
UPPER, INITCAP, LENGTH, SUBSTR AND INSTR), Date Functions (SYSDATE,

NEXT_DAY, ADD_MONTHS, LAST_DAY, MONTHS_BETWEEN), LEAST,
GREATEST, TRUNC, ROUND, TO_CHAR, TO_DATE

Experiment 6: Working with Triggers using PL/SQL
Develop Programs using BEFORE and AFTER Triggers, Row and Statement
Triggers and INSTEAD OF Triggers.

Experiment 7: Working with PL/SQL Procedures
Programs Development using Creation of Procedures, Passing Parameters IN and
OUT of PROCEDURES

Experiment 8: Working with LOOPS using PL/SQL and Exception Handling
Program Development using WHILE LOOPS, Numeric FOR LOOPS.

Experiment 9: Working with Functions Using PL/SQL
Program Development using Creation of Stored Functions, Invoke Functions in
SQL Statements and Write Complex Functions.

Experiment 10: Working CURSORS
Develop Programs using Features Parameters in a CURSOR, FOR UPDATE
CURSOR, WHERE CURRENT of Clause and CURSOR Variables

Experiment11: Installation of SQL

Textbooks:

1. Oracle PL/SQL by Example, Benjamin Rosenzweig, Elena Silvestrova,

2. Oracle Database Logic PL/SQL Programming, Scott Urman, Tata Mc-Graw
Hill.

3. SQL and PL/SQL for Oracle 10g, Black Book, Dr .P.S. Deshpande.

Database Management Systems Lab

Data : Raw Facts existing in world. Consists of real world things like Numbers and Text
sometimes without any context.
Information : Data with Context. It is Processed Data along with Value Added to Data.
Sometimes information may come in Summarized, Organized and Analyzed manner.
Database : Database is a collection of data, typically describing the activities of one or more
related organization. Database is an organized way to store, retrieve and perform operations on a
set of interrelated data that its contents can easily be accessed, managed, and updated.
Database Management Systems (DBMS), is software designed to assist in maintaining and
utilizing large collection of data.
DBMS contains information about a particular enterprise

Collection of interrelated data
Set of programs to access the data
An environment that is both convenient and efficient to use.

Database System: This refers to the Database along with the DBMS and the programs/queries
that enable the application to function as a whole.
Database Applications:

Banking : all transactions
Airlines/Railway/Bus: reservations, schedules
Universities/Colleges: registration, grades, staff & student details, Account.
Sales : customers, products, purchases
Online retailers : order tracking, customized recommendations
Manufacturing : production, inventory, orders, supply chain
Human Resources : employee records, salaries, tax deduction.
Hospital : Patient Info, Doctors Details, Lab Reports.
Entertainment : Event Booking, Schedules.
Shopping Mall : Sales, Billing, Inventory, Stock.
etc.

Purpose of Database Systems : In the early days, database applications were built directly on
top of file systems. Drawbacks of using file systems to store data:

Data redundancy and inconsistency
Difficulty in accessing data
Data isolation
Integrity problems
Atomicity of updates
Concurrent access by multiple users
Security problems

Database systems offer solutions to all the above problems

Data Definition Language (DDL)

Specification notation for defining the database schema.
Data Definition Language (DDL) supports the creation, deletion, and modification of tables.

The DDL basically consists of CREATE TABLE, DROP TABLE and ALTER TABLE

command.

Also it allows users define new domains, analogous to type definition commands in a

programming language.

DDL compiler generates a set of tables stored in a data dictionary
Data dictionary contains metadata (i.e., data about data)

Database schema
Data storage & definition language : Specifies the storage structure and access methods used
Integrity constraints : Domain constraints, Referential integrity
Authorization

Data Manipulation Language (DML)

Language for accessing and manipulating the data organized by the appropriate data

model Two classes of languages

Procedural – user specifies what data is required and how to get those data
Declarative (nonprocedural) – user specifies what data is required without specifying how
to get those data

DML basically consist of INSERT, DELETE & UPDATE command.
SQL is the most widely used query language.
The main purpose of SQL is data access control; it helps us to retrieve the data from Database

according to our requirements.

Entity Relationship (E R) Model

The Entity Relationship (ER) model is one of several high-level, or semantic, data models used

in database design. The goal is to create a simple description of the data that closely matches

how users and developers think of the data

A database can be modeled as : a collection of entities, relationship among entities.
An Entity is real-world object that exists and is distinguishable from other objects.
A relationship is an association among several (Two or more) entities.
Entities are represented by means of their properties, called attributes.
An entity set is a set of entities of the same type that share the same properties.
Each entity set has a Key.
Each Attribute has a Domain.
Types of Attributes
Simple attribute − Simple attributes are atomic values, which cannot be divided further.
For example, a Customer's ID number is an atomic value of 6 digits.
Composite attribute − Composite attributes are made of more than one simple attribute.
For example, a customer's complete name may have first-name, middle-initial and last-name.
Single-value attribute − Single-value attributes contain single value.
For example − Customer_ID, Social_Security_Number.
Multi-value attribute − Multi-value attributes may contain more than one values.
For example, a person can have more than one phone number, email_address, etc.
Derived attribute − Derived attributes are the attributes that do not exist in the physical

database, but their values are derived from other attributes present in the database. For example,

age can be derived from date_of_birth.

E-R diagrams constructs (Symbols used in E-R Diagrams)

Symbol Shape Name Symbol Description

 Entities

 An entity is represented by a
 Entity rectangle which contains the
 entity’s name.

 An entity that cannot be
 uniquely identified by its
 attributes alone. The
 existence of a weak entity is
 Weak dependent upon another
 Entity entity called the owner entity.
 The weak entity’s i
 a combination of the identifier
 of the owner entity and the
 partial key of the weak entity.
 Attributes

 Relationships In the ER notation, each

Attribute
 attribute is represented by an

 A relationship where entity is
 oval containing attribute

 existence-independent of other
 name

 Strong entities and PK of Child do
 relationship contain PK component of Parent
 Entity. A strong relationship is
 represented by a single rhombus
 An attribute that uniquely
 Key identifies a particular entity.
 attribute A relationship where Child entity is
 The name of a key attribute
 - dependent on par ent and

 Weak existenceunderli ed.
 PK of Child Entity contains PK (identifying)
 component of Parent Entity. This relationship
 relationship is represented by a

 An attribute that can have
 double rhombus.
 many values (there are many
 Multivalued distinct values entered for it
 attribute in the same column of the
 table). Multivalued attribute is
 depicted by a dual oval.

 An attribute whose value is
 calculated (derived) from
 other attributes. The derived
 Derived attribute may or may not be
 attribute physically stored in the
 database. In the ER notation,

this attribute is represented
by dashed oval.

 Attributes

 In the ER notation, each
 Attribute attribute is represented by an
 oval containing attribute’

 name

 An attribute that uniquely
 Key identifies a particular entity.
 attribute The name of a key attribute is
 underlined.

 An attribute that can have
 many values (there are many
 Multivalued distinct values entered for it
 attribute in the same column of the
 table). Multivalued attribute is
 depicted by a dual oval.

 An attribute whose value is
 calculated (derived) from
 other attributes. The derived
 Derived attribute may or may not be
 attribute physically stored in the
 database. In the ER notation,
 this attribute is represented
 by dashed oval.

 Composite An attribute that can have
 attribute many sub attributes

Relational Model

The relational model is very simple and elegant: A Database is a collection of one or more
relations, where each relation is a table with rows and columns.
The main construct for representing data in the relational model is a relation.
The relational model is by far the dominant data model and the foundation for the leading
DBMS products, including FoxBase, Paradox, Oracle, IBM's DB2 family, Informix, Sybase,
Microsoft's Access, SQL Server, MYSQL, SQLite, Hadoop, SKYSQL, etc. A Relation consists
of a relation schema and a relation instance.
Relation Schema of a relation consists of

Relation's name
Each attribute definition consist of

Name of each field (or Column or Attribute)
Type/Domain

Integrity Constraints
The Relation Instance is a table, and the relation schema describes the column heads for the
table.
An instance of a relation is a set of tuples, also called records, in which each tuple has the same
number of fields as the relation schema.
A relation instance can be thought of as a table in which each tuple is a row, and all rows have
the same number of fields.
The Degree, also called Arity, of a relation is the number of fields.
The Cardinality of a relation instance is the number of tuples in it.

Experiment 1

Experiment 1: Working with ER Diagram and Normalization
Example: ER Diagram for Sailors Database

Entities:
1. Sailor
2. Boat

Relationship: Reserves

Primary Key Attributes:
1. SID (Sailor Entity)
2. BID (Boat Entity)

Following Tables (Relations) are considered for the lab purpose.

SAILORS (SID:INTEGER, SNAME:STRING, RATING:INTEGER, AGE:REAL)
BOATS (BID:INTEGER, BNAME:STRING, COLOR:STRING)
RESERVES (SID:INTEGER, BID:INTEGER, DAY:DATE)

ER DIAGRAM
Entities:

1. SAILORS:
 SNAME RATING

SID SID AGE

SNAME
RATING
AGE

SAILORS

2. BOATS

BNAME

 COLOR
BID

BID
BNAME
COLOR

BOATS

RELATIONSHIP: RESERVES SID BID DAY
SID
BID
DAY

RESERVES

Primary Key Attributes
1. SID (SAILORS ENTITY)
2. BID (BOATS ENTITY)
3. SID, BID, DAY (RESERVES RELATIONSHIP)

SID SNAME BID BNAME

 RESERV
SAILORS ES BOATS

RATING AGE DAY
 COLOR

Experiment 2

Experiment 2: Working with DDL, DML, DCL and Key Constraints

Creation, Altering and Dropping of Tables and Inserting Rows into a Table (Use Constraints While
Creating Tables). Examples Using Select Command.

Data Types :- Oracle supports following types of data types.

CHAR (SIZE) :- The CHAR data type stores fixed-length character strings. When you create a

table with a CHAR column, you must specify a string length (in bytes or characters) between 1

and 2000 bytes for the CHAR column width. The default is 1 byte.

VARCHAR2 (SIZE) :- The VARCHAR2 data type stores variable-length character strings.

When you create a table with a VARCHAR2 column, you specify a maximum string length (in

bytes or characters) between 1 and 4000 bytes for the VARCHAR2 column.

VARCHAR (SIZE) :- The VARCHAR data type is synonymous with the VARCHAR2 data

type.

NUMBER (L) :- The NUMBER datatype stores fixed and floating-point numbers. Numbers of

virtually any magnitude can be stored and are guaranteed portable among different systems

operating Oracle Database, up to 38 digits of precision.

NUMBER (L, D) :- Numeric data with total number of digits L and number of digits D after

decimal point.

DATE :- The DATE datatype stores point-in-time values (dates and times) in a table. The

DATE datatype stores the year (including the century), the month, the day, the hours, the

minutes, and the seconds (after midnight).

LONG :- Character data of variable length which stores upto 2 Gigabytes of data. (A bigger

version the VARCHAR2 datatype).

INTEGER :- Integer type of Data. It is actually a synonym for NUMBER(38)
FLOAT :- FLOAT is a 32-bit, single-precision floating-point number datatype. Each FLOAT

value requires 5 bytes, including a length byte.

DOUBLE :- DOUBLE is a 64-bit, double-precision floating-point number datatype. Each

DOUBLE value requires 9 bytes, including a length byte.

Data Definition Language (DDL) Commands:-
Creating Tables :-
The CREATE TABLE command is used to create the table (relation) in SQL.

CREATE TABLE TABLENAME (ATT_NAME1 DATATYPE, ATT_NAME2
DATATYPE, ATT_NAME3 DATATYPE, …..);

CREATE TABLE SAILORS (SID NUMBER (5), SNAME VARCHAR2(30), RATING
NUMBER(5), AGE NUMBER(4,2));

Primary Key & Foreign Key :- Consider the Sailors relation and the constraint that no two sailors
have the same SID. This type of constraint can be defined using Primary Key, which gives
uniqueness for the value of attribute defined (Eg. SID).
Similarly, a sailor can‘t reserve a boat unless he/she is a valid sailor i.e. the SID of Reserves relation
must available in the Sailors relation. This type of constraint can be defined using Foreign Key,
which gives the existence of the value of attribute in one relation is depends on value in another
relation.
We can use Primary Key or/and Foreign Key constraint while creating table.

Creating tables with Primary Key Constraint
CREATE TABLE TABLENAME (ATT_NAME1 DATATYPE, ATT_NAME2 DATATYPE,
ATT_NAME3 DATATYPE ….., PRIMARY KEY(ATT_NAMES));
CREATE TABLE SAILORS (SID NUMBER(5), SNAME VARCHAR2(30), RATING
NUMBER(5), AGE NUMBER(4,2), , PRIMARY KEY(SID));

Creating tables with Foreign Key Constraint
CREATE TABLE TABLENAME (ATT_NAME1 DATATYPE, ATT_NAME2 DATATYPE,
ATT_NAME3 DATATYPE ….., FOREIGN KEY (ATT_NAME) REFERENCES
TABLENAME2));
CREATE TABLE RESERVES (SID NUMBER(5), BID NUMBER(5), DAY DATE, FOREIGN
KEY (SID) REFERENCES (SAILORS));

Creating table with Check Constraint :- Suppose we want to add rule for rating of the sailors -
―Rating should be between 1 to 10ǁ while creating table then we can use following command.
CREATE TABLE SAILORS (SID NUMBER(5), SNAME VARCHAR2(30), RATING
NUMBER(5), AGE NUMBER(4,2), , PRIMARY KEY(SID), CHECK (RATING >=1 AND
RATING <=10));

Here are the complete details for creating three tables using Create table command

CREATE TABLE SAILORS(SID NUMBER(3) PRIMARY KEY, SNAME
VARCHAR2(30), RATING NUMBER(3), AGE NUMBER(4,2), CHECK (RATING >=1
AND RATING <=10))

Output :

CREATE TABLE BOATS(BID NUMBER(3) PRIMARY KEY, BNAME
VARCHAR2(20), BCOLOR VARCHAR2(20))

Output :

CREATE TABLE RESERVES (SID NUMBER(3), BID NUMBER(3), DAY DATE,
PRIMARY KEY(SID,BID,DAY), FOREIGN KEY(SID) REFERENCES SAILORS,
FOREIGN KEY(BID) REFERENCES BOATS)

Output :

To see all tables present in your login

SELECT * FROM TAB;
Output :

To see schema of a particular table
DESC <TABLENAME>;

Show schema of Sailors
DESC SAILORS;

Output :

Show schema of Boats
DESC BOATS;

Output :

Show schema of Reserves
DESC RESERVES;

Output :

Deleting Table :- The table along with its definition & data can be deleted using following
command.
DROP TABLE <TABLENAME>;

DROP TABLE SAILORS;
Output :

Adding & Deleting the Attributes and Constraints to the Table :-
To add the attribute to an existing relation we can use ALTER TABLE Command.

ALTER TABLE <TABLENAME> ADD COLUMN ATT_NAME DATATYPE;
ALTER TABLE SAILORS ADD COLUMN SALARY NUMBER (7,2);
Output :

Display schema after modification
DESC SAILORS;
Output :

To remove the attribute from an existing relation we can use following Command.
ALTER TABLE <TABLENAME> DROP COLUMN ATT_NAME;
ALTER TABLE SAILORS DROP COLUMN SALARY;
Display schema after modification

DESC SAILORS;
Output :

To add the constraint to existing relation we can use ALTER TABLE Command.
ALTER TABLE <TABLENAME> ADD CONSTRAINT
<CON_NAME> <CON_DEFINITION>;
ALTER TABLE SAILORS ADD CONSTRAINT RATE CHECK (RATING >= 1 AND RATING
<=10);

Similarly we can add primary key or foreign key constraint.
To delete the constraint to existing relation we can use following Command.
DROP CONSTRAINT <CON_NAME>;
DROP CONSTRAINT RATE;
Similarly we can drop primary key or foreign key constraint.

Data Manipulation Language (DML) Commands :-
Adding data to the Table :- We can add data to table by using INSERT INTO command. While
adding the data to the table we must remember the order of attributes as well as their data types as
defined while creating table. The syntax is as follows.
INSERT INTO <TABLENAME> VALUES (VALUE1, VALUE2, VALUE3, …..);
INSERT INTO SAILORS VALUES (1, ‗Rajesh‘, 10, 30);

But sometimes while adding data we may not remember the exact order or sometimes we want
to insert few values then we can use following format to add data to a table.
INSERT INTO <TABLENAME> (ATT_NAME1, ATT_NAME2, ATT_NAME3, …..)
VALUES (VALUE1, VALUE2, VALUE3, …..);
INSERT INTO SAILORS (SNAME, SID, AGE, RATING) VALUES (‗Rajesh‘, 1, 30, 10);

By using one of these methods we can add records or data to Sailors, Boats as well as Reserves
Table.
Insert data in SAILORS Table

INSERT INTO SAILORS VALUES(1,'VIJAY', 9, 36);
INSERT INTO SAILORS VALUES(2,'RAJESH', 10, 25);
INSERT INTO SAILORS VALUES(3,'MOHAN', 8, 23);
INSERT INTO SAILORS VALUES(4,'KUMAR', 7, 28);
INSERT INTO SAILORS VALUES(5,'SAGAR', 9, 21);
INSERT INTO SAILORS VALUES(6,'MAHESH', 9, 36);

Insert data in BOATS Table

INSERT INTO BOATS VALUES(1,'GANGA', 'RED');
INSERT INTO BOATS VALUES(2,'JAMUNA', 'GREEN');
INSERT INTO BOATS VALUES(3,'KAVERI', 'PINK');
INSERT INTO BOATS VALUES(4,'GODAVARI', 'RED');
INSERT INTO BOATS VALUES(5,'KRISHNA', 'BLUE');

Insert data in RESERVES Table

INSERT INTO RESERVES VALUES(1,1,'12-FEB-2017');
INSERT INTO RESERVES VALUES(1,2, '12-FEB-2017');
INSERT INTO RESERVES VALUES(2,1,'13-FEB-2017‘);
INSERT INTO RESERVES VALUES(3,2, '14-FEB-2017');
INSERT INTO RESERVES VALUES(3,3,'14-FEB-2017');

To see the records :- To view all records present in the table.
SELECT * FROM <TABLENAME>

SELECT * FROM SAILORS;

To delete the record(s) :- To delete all records from table or a single/multiple records which
matches the given condition, we can use DELETE FROM command as follows.
DELETE FROM <TABLENAME> WHERE <CONDITION>;
DELETE FROM SAILORS WHERE SNAME = ‗Rajesh‘;
Output :

To delete all records from the table
DELETE FROM <TABLENAME>;
DELETE FROM SAILORS;

To change particular value :- We can modify the column values in an existing row using the
UPDATE command.
UPDATE <TABLENAME> SET ATT_NAME = NEW_VALUE WHERE CONDITION;
UPDATE SAILORS SET RATING = 9 WHERE SID = 1;
Output :

To update all records without any condition.
UPDATE SAILORS SET RATING = RATING +
1; Output :

Examples using SELECT Command
Complete Syntax of SQL Queries consist of six clauses as follows.

SELECT [DISTINCT] <attribute list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>]

Note – 1) Keywords (UPPERCASE) mentioned in [] are optional

2) Text in < > - data need to be provided.
The SELECT-clause lists the attributes or functions to be retrieved
The FROM-clause specifies all relations (or aliases) needed in the query.
The WHERE-clause specifies the conditions for selection and join of tuples from the relations
specified in the FROM-clause
GROUP BY specifies grouping attributes
HAVING specifies a condition for selection of groups
ORDER BY specifies an order (sorting) for displaying the result of a query
A query is evaluated by first applying the WHERE-clause, then GROUP BY and HAVING, and
finally the SELECT-clause

Examples Using Select Command :

Show all records of Sailors
SELECT * FROM SAILORS;

Output :

Show all records of Boats
SELECT * FROM BOATS;

Output :

Show all records of Reserves
SELECT * FROM RESERVES;

Output :

Find the names and ages of all sailors.
SELECT DISTINCT S.SNAME, S.AGE FROM SAILORS

S; Output :

Find all sailors with a rating above 8.
SELECT S.SID, S.SNAME, S.RATING, S.AGE FROM SAILORS S
WHERE S.RATING > 8;

Same query can be written as
SELECT * FROM SAILORS WHERE RATING > 8;

Output :

Find sailors name with a rating above 7 & age above 25.
SELECT SNAME FROM SAILORS S WHERE S.RATING > 7 AND S.AGE > 25;

Output :

Display all the names & colors of the boats.

SELECT BNAME, BCOLOR FROM BOATS;
Output :

Find all the boats with Red color.
SELECT * FROM BOATS WHERE BCOLOR=‘RED’;

Output :

Find the names of sailors who have reserved boat number 123.
SELECT S.SNAME FROM SAILORS S, RESERVES R
WHERE S.SID = R.SID AND R.BID = 123;

Output :

Find the names of sailors ' who have reserved Red boat.

SELECT S.SNAME FROM SAILORS S, RESERVES R, BOATS B WHERE
S.SID = R.SID AND R.BID = B.BID AND B.BCOLOR = 'RED' ;

Output :

Find the colors of boats reserved by Rajesh.

SELECT B.BCOLOR FROM SAILORS S, RESERVES R, BOATS B WHERE S.SID
= R.SID AND R.BID = B.BID AND S.SNAME = ‘RAJESH' ;

Output :

Find names of the sailors who have reserved at least one boat.
SELECT DISTINCT S.SNAME FROM SAILORS S, RESERVES R WHERE S.SID
= R.SID;

Output :

Find names of the sailors who have reserved two different boats.
SELECT DISTINCT S.SNAME FROM SAILORS S, RESERVES R1, RESERVES R2
WHERE S.SID = R1.SID AND S.SID = R2.SID AND R1.BID <> R2.BID

Output :

Data Control Language (DCL) Commands:
Data Control Language (DCL) is used to control privileges in Database. To perform any
operation in the database, such as for creating tables and views - a user needs privileges.
Privileges are of two types
System: This includes permissions for creating session, tables, etc and all types of other
system privileges.
Object: This includes permissions for any command or query to perform any operation on the
database tables.

DCL have two commands,
GRANT: Used to provide any user access privileges or other privileges for the database.
REVOKE: Used to take back permissions from any user.

Allow a User to create session : When we create a user in SQL, it is not even allowed to login
and create a session until and unless proper permissions/privileges are granted to the user.
Following command can be used to grant the session creating privileges.
GRANT CREATE SESSION TO username;

Allow a User to create table : To allow a user to create tables in the database, we can use the below
command,
GRANT CREATE TABLE TO username;

Grant permission to drop any table : If you want to allow user to drop any table from the database,
then grant this privilege to the user,
GRANT DROP ANY TABLE TO username

To take back Permissions : If you want to take back the privileges from any user, use
the REVOKE command.
REVOKE CREATE TABLE FROM username

Experiment 3

Experiment 3: Working with Queries and Nested QUERIES
Queries (along with sub Queries) using ANY, ALL, IN, EXISTS, NOTEXISTS, UNION,
INTERSET, MINUS.

DISTINCT Keyword :- The DISTINCT keyword eliminates the duplicate tuples from the result
records set.
Ex:- Find the Names and Ages of all sailors.
SELECT DISTINCT S.SNAME, S.AGE FROM SAILORS S;
Output :

The answer is a set of rows, each of which is a pair (sname, age). If two or more sailors have the
same name and age, the answer still contains just one pair with that name and age.

UNION, INTERSECT, EXCEPT (MINUS) :- SQL provides three set-manipulation constructs
that extend the basic query form. Since the answer to a query is a multiset of rows, it is natural to
consider the use of operations such as union, intersection, and difference.
SQL supports these operations under the names UNION, INTERSECT and MINUS.
Note : UNION, INTERSECT, and MINUS can be used on any two tables that are Union-
Compatible, that is, have the same number of columns and the columns, taken in order, have the
same data types.

UNION :- It is a set operator used as alternative to OR query.
Here is an example of Query using OR.
Ex:- Find the names of sailors who have reserved a red or a green boat.
SELECT S.SNAME FROM SAILORS S, RESERVES R, BOATS B WHERE S.SID = R.SID

AND R.BID = B.BID AND (B.COLOR = 'RED' OR B.COLOR = 'GREEN');
Output :

Same query can be written using UNION as follows.
SELECT S.SNAME FROM SAILORS S, RESERVES R, BOATS B WHERE S.SID = R.SID

AND R.BID = B.BID AND B.COLOR = 'RED'
UNION

SELECT S2.SNAME FROM SAILORS S2, BOATS B2, RESERVES R2
WHERE S2.SID = R2.SID AND R2.BID = B2.BID AND B2.COLOR =

'GREEN';
This query says that we want the union of the set of sailors who have reserved red boats and the set
of sailors who have reserved green boats.
Output :

Find all sids of sailors who have a rating of 10 or reserved boat number 1.

SELECT S.SID FROM SAILORS S WHERE S.RATING = 10
UNION

SELECT R.SID FROM RESERVES R WHERE R.BID = 1;
Output :

INTERSECT :- It is a set operator used as alternative to AND query. Here is an example of Query
using AND.
Ex:- Find the names of sailor's who have reserved both a red and a green boat.

SELECT S.SNAME FROM SAILORS S, RESERVES R1, BOATS B1,
RESERVES R2, BOATS B2 WHERE S.SID = R1.SID AND R1.BID =

B1.BID AND S.SID = R2.SID AND R2.BID = B2.BID AND
B1.COLOR='RED' AND B2.COLOR = 'GREEN';

Output :

Same query can be written using INTERSECT as follows.
SELECT S.SNAME FROM SAILORS S, RESERVES R, BOATS B WHERE S.SID = R.SID

AND R.BID = B.BID AND B.COLOR = ‘RED’
INTERSECT

SELECT S2.SNAME FROM SAILORS S2, BOATS B2, RESERVES R2 WHERE S2.SID =
R2.SID AND R2.BID = B2.BID AND B2.COLOR = 'GREEN';

Output :

EXCEPT (MINUS) :- It is a set operator used as set-difference. Our next query illustrates the set-
difference operation.
Ex:- Find the SID of all sailors who have reserved red boats but not green boats.

SELECT R1.SID FROM BOATS B1, RESERVES R1 WHERE R1.BID = B1.BID AND
B1.COLOR = 'RED'

MINUS
SELECT R2.SID FROM BOATS B2, RESERVES R2 WHERE R2.BID = B2.BID AND

B2.COLOR = ‘GREEN’;
Output :

NESTED QUERIES:-
For retrieving data from the tables we have seen the simple & basic queries. These queries extract
the data from one or more tables. Here we are going to see some complex & powerful queries that
enables us to retrieve the data in desired manner. One of the most powerful features of SQL is
nested queries. A nested query is a query that has another query embedded within it; the embedded
query is called a subquery.

IN Operator :- The IN operator allows us to test whether a value is in a given set of elements; an
SQL query is used to generate the set to be tested.
Ex:- Find the names of sailors who have reserved boat 103 using IN Operator.

SELECT S.SNAME FROM SAILORS S WHERE S.SID
IN (SELECT R.SID FROM RESERVES R WHERE R.BID = 103);

Output :

NOT IN Operator :- The NOT IN is used in a opposite manner to IN.
Ex:- Find the names of sailors who have not reserved boat 103 using NOT IN Operator.

SELECT S.SNAME FROM SAILORS S WHERE S.SID
NOT IN (SELECT R.SID FROM RESERVES R WHERE R.BID = 103);

Output :

EXISTS Operator :- This is a Correlated Nested Queries operator. The EXISTS operator is another
set comparison operator, such as IN. It allows us to test whether a set is nonempty, an implicit
comparison with the empty set.
Ex:- Find the names of sailors who have reserved boat number 103 using EXISTS Operator.

SELECT S.SNAME FROM SAILORS S WHERE
EXISTS (SELECT * FROM RESERVES R WHERE R.BID = 103 AND R.SID = S.SID);

Output :

NOT EXISTS Operator :- The NOT EXISTS is used in a opposite manner to EXISTS. Ex:- Find
the names of sailors who have not reserved boat number 103 using NOT EXISTS Operator.

SELECT S.SNAME FROM SAILORS S WHERE NOT EXISTS
(SELECT * FROM RESERVES R WHERE R.BID = 103 AND R.SID =

S.SID); Output :

Set-Comparison Operators:- We have already seen the set-comparison operators EXISTS, IN
along with their negated versions. SQL also supports op ANY and op ALL, where op is one of the
arithmetic comparison operators {<, <=, =, <>, >=, >}. Following are the example which illustrates
the use of these Set-Comparison Operators.

op ANY Operator :- It is a comparison operator. It is used to compare a value with any of element
in a given set.
Ex:- Find sailors whose rating is better than some sailor called Rajesh using ANY Operator.

SELECT S.SID FROM SAILORS S WHERE S.RATING > ANY (SELECT S2.RATING
FROM SAILORS S2 WHERE S2.SNAME = ' RAJESH ');

Note that IN and NOT IN are equivalent to = ANY and <> ALL, respectively.
Output :

op ALL Operator :- It is a comparison operator. It is used to compare a value with all the elements
in a given set.
Ex:- Find the sailor's with the highest rating using ALL Operator.

SELECT S.SID FROM SAILORS S WHERE S.RATING >= ALL (SELECT S2.RATING
FROM SAILORS S2)

Output :

Experiment 4

Experiment 4: Working with Queries USING Aggregate Operators & views
Queries using Aggregate Functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY,
HAVING and Creation and Dropping of Views

AGGREGATE Functions :- In addition to simply retrieving data, we often want to perform some
computation or summarization. We now consider a powerful class of constructs for computing
aggregate values such as MIN and SUM. These features represent a significant extension of
relational algebra. SQL supports five aggregate operations, which can be applied on any column,
say A, of a relation:

1. COUNT (A) :- The number of values in the A column.
Or COUNT (DISTINCT A): The number of unique values in the A column.
Ex:- 1) To count number SIDs of sailors in Sailors table SELECT
COUNT (SID) FROM SAILORS; Output :

2) To count numbers of boats booked in Reserves table.
SELECT COUNT (DISTINCT BID) FROM
RESERVES; Output :

3) To count number of Boats in Boats table.
SELECT COUNT (*) FROM BOATS;
Output :

2. SUM (A) :- The sum of all values in the A column.
Or SUM (DISTINCT A): The sum of all unique values in the A column.
Ex:- 1) To find sum of rating from Sailors SELECT SUM (RATING)
FROM SAILORS; Output :

2) To find sum of distinct age of Sailors (Duplicate ages are eliminated).
SELECT SUM (DISTINCT AGE) FROM
SAILORS; Output :

3. AVG (A) :- The average of all values in the A column.
Or AVG (DISTINCT A): The average of all unique values in the A
column. Ex:- 1) To display average age of Sailors. SELECT AVG (AGE)
FROM SAILORS; Output :

2) To find average of distinct age of Sailors (Duplicate ages are eliminated).
SELECT AVG (DISTINCT AGE) FROM
SAILORS; Output :

4. MAX (A) :- The maximum value in the A column.
Ex:- To find age of Oldest Sailor.
SELECT MAX (AGE) FROM
SAILORS; Output :

5. MIN (A) :- The minimum value in the A column.
Ex:- To find age of Youngest Sailor.
SELECT MIN (AGE) FROM
SAILORS; Output :

Note that it does not make sense to specify DISTINCT in conjunction with MIN or MAX
(although SQL does not preclude this).

Write the following queries using Aggregate Functions.
1) Find the average age of sailors with a rating of 10.
Query :

Output :

2) Count the number of different sailor names.
Query :

Output :

3) Find the name and age of the oldest sailor.
Query :

Output :

4) Count the number of Sailors.
Query :

Output :

5) Find the names of sailors who are older than the oldest sailor with a rating of 10.
Query :

Output :

ORDER BY Clause :- The ORDER BY keyword is used to sort the result-set by a specified
column. The ORDER BY keyword sorts the records in ascending order by default (we can even use
ASC keyword). If we want to sort the records in a descending order, we can use the DESC keyword.
The general syntax is
SELECT ATT_LIST FROM TABLE_LIST ORDER BY ATT_NAMES [ASC | DESC];

Ex:- 1) Display all the sailors according to their ages.
SELECT * FROM SAILORS ORDER BY AGE;
Output :

2) Display all the sailors according to their ratings (topper first).
SELECT * FROM SAILORS ORDER BY RATING DESC;
Output :

3) Displays all the sailors according to rating, if rating is same then sort according to age.
SELECT * FROM SAILORS ORDER BY RATING, AGE;
Output :

Write the query
1) To display names of sailors according to alphabetical order.
Query :

Output :

2) Displays all the sailors according to rating (Topper First), if rating is same then sort according to

age (Older First).
Query :

Output :

3) Displays all the sailors according to rating (Topper First), if rating is same then sort according to

age (Younger First).
Query :

Output :

4) Displays all the sailors according to rating (Lower Rating First), if rating is same then sort

according to age (Younger First).
Query :

Output :

GROUP BY and HAVING Clauses :- Thus far, we have applied aggregate operations to all
(qualifying) rows in a relation. Often we want to apply aggregate operations to each of a number of
groups of rows in a relation, where the number of groups depends on the relation instance. For this
purpose we can use Group by clause.

GROUP BY:- Group by is used to make each a number of groups of rows in a relation, where the
number of groups depends on the relation instances. The general syntax is
SELECT [DISTINCT] ATT_LIST FROM TABLE_LIST WHERE CONDITION GROUP
BY GROUPING_LIST;

Ex:- Find the age of the youngest sailor for each rating level.
SELECT S.RATING, MIN (S.AGE) FROM SAILORS S GROUP BY
S.RATING; Output :

HAVING :- The extension of GROUP BY is HAVING clause which can be used to specify the
qualification over group. The general syntax is
SELECT [DISTINCT] ATT_LIST FROM TABLE_LIST WHERE CONDITION GROUP
BY GROUPING_LIST HAVING GROUP_CONDITIION;

Ex :- Find the age of youngest sailor with age >= 18 for each rating with at least 2 such sailors.
SELECT S.RATING, MIN (S.AGE) AS MINAGE FROM SAILORS
S WHERE S.AGE >= 18
GROUP BY S.RATING HAVING COUNT (*) > 1;
Output :

Write following queries in SQL.
1) For each red boat; find the number of reservations for this boat.
Query :

Output :

2) Find the average age of sailors for each rating level that has at least two sailors.
Query :

Output :

3) Find those ratings for which the average age of sailors is the minimum overall ratings.
Query :

Output :

VIEWS :- A view is a table whose rows are not explicitly stored in the database but are computed
as needed from a view definition. The views are created using CREATE VIEW command. Ex :-
Create a view for Expert Sailors (A sailor is an Expert Sailor if his rating is more than 8).
CREATE VIEW EXPERTSAILOR AS SELECT SID, SNAME, RATING FROM SAILORS
WHERE RATING > 9;

Now on this view we can use normal SQL statements as we are using on Base tables.
Eg:- Find average age of Expert sailors.

SELECT AVG (AGE) FROM
EXPERTSAILOR; Output :

Write the following queries on Expert Sailor View.

Find the Sailors with age > 25 and rating equal to 10.
Query :

Output :

Find the total number of Sailors in Expert Sailor view.
Query :

Output :

Find the number of Sailors at each rating level (8, 9, 10).
Query :

Output :

Find the sum of rating of Sailors.
Query :

Output :

Find the age of Oldest as well as Youngest Expert Sailor.
Query :

Output :

If we decide that we no longer need a view and want to destroy it (i.e. removing the definition of
view) we can drop the view. A view can be dropped using the DROP VIEW command. To drop
the ExpertSailor view.
DROP VIEW EXPERTSAILOR;

Experiment 5

Experiment 5: Working with Conversion Functions & String
Functions Queries using

Conversion Functions (TO_CHAR, TO_NUMBER AND TO_DATE),
String Functions (CONCAT, LPAD, RPAD, LTRIM, RTRIM, LOWER, UPPER, INITCAP,
LENGTH, SUBSTR AND INSTR),
Date Functions (SYSDATE, NEXT_DAY, ADD_MONTHS, LAST_DAY,
MONTHS_BETWEEN)
LEAST, GREATEST, TRUNC, ROUND

Conversion Functions :- These functions are used to convert the value from one type to another
type.
1) TO_CHAR (N [,FMT]) :- Converts ‗N‘ of numeric data type to Varchar2 datatype using
optional number format FMT.

TO_CHAR (N [,FMT])
Example 1) Convert 12345 to string.
SELECT TO_CHAR (12345) FROM DUAL;
Output :

2) Display system date after converting to varchar2 data type.
SELECT TO_CHAR (SYSDATE) FROM
DUAL; Output :

3) Display system date in ‗MON-DD-YYYY‘ format after converting to varchar2 data type.
SELECT TO_CHAR (SYSDATE, ‘MON-DD-YYYY’) FROM
DUAL; Output :

2) TO_NUMBER (CHAR) :- This conversion function is used to convert string to number data
type.
Ex :- Convert string ‗123.45‘ to number data type.
SELECT TO_NUMBER (‘123.45’) FROM DUAL;
Output :

3) TO_DATE :- Converts character data type data to date type data.
Ex:- Display ‘09-02-2010‘ converted to DDD-MM-YY format using to_char & to_date functions.
SELECT TO_CHAR (TO_DATE (’09-02-2010’, ‘DD-MM-YYYY’),(‘DDD-MM-YY’) FROM
DUAL;
Output :

Formats we can use for Date :- Following formats can be used with any function related to dates.

Y


 Last digit in the year.
YY  Last two digits in the year.
YYYY  Year in four digits.
YEAR  Year in characters.
MM  Month in digits.
MONTH Month in characters.
MON  Month in formatted with three characters.
D  Day of Week.
DD  Day of the Month.
DDD Day of the Year.
DAY Day name.
HH or HH12 or HH24


 Hours in 12 Hrs or 24 Hrs format.

MI Minutes.

SS


 Seconds.
To display today‘s date using all formats

SELECT TO_CHAR (SYSDATE,'D-DD-DDD-DAY-MM-MON-MONTH-Y-YY-YYYY-
YEAR-HH-HH24-MI-SS') FROM DUAL;

Output :

To display 27-02-2018 date using all formats

SELECT TO_CHAR (TO_DATE('27-02-2018', 'DD-MM-YYYY'),'D-DD-DDD-DAY-MM-
MON-MONTH-Y-YY-YYYY-YEAR-HH-HH24-MI-SS') FROM DUAL;

Output :

String Functions :-
1) Concatenation :- Concatenates two stings from a given list.

CANCAT (CHAR1, CHAR2)
EX 1) Concate the string ‗Rajesh‘ with ‗Raghu‘
SELECT CONCAT (‘Rajesh’, ‘Raghu’) FROM DUAL;
Output :

2) Concat bid & bname of Boats & display along with color.
SELECT CONCAT (BID, BNAME), COLOR FROM BOATS;
Output :

2) LPAD (CHAR1, N, CHAR2) :- Returns CHAR1 left padded to length ‗N‘ with sequence of
characters in CHAR2. The default value of CHAR2 is a single blank space.
Ex 1) Lpad the string ‗Rajesh‘ to length 30 with the set of characters in string ‗-*-‘
SELECT LPAD (‘Rajesh’, 30, ‘-*-’) FROM DUAL;
Output :

2) Lpad the string bname to length 20 with ‗-*‘ set of characters and string color by ‗/‘.
Query :

Output :

3) RPAD (CHAR1, N, CHAR2) :- Returns CHAR1 right padded to length ‗N‘ with sequence of
characters in CHAR2. The default value of CHAR2 is a single blank space.
Ex 1) Rpad the string ‗Rajesh‘ to length 30 with the set of characters in string ‗*#‘
SELECT RPAD (‘Rajesh’, 30, ‘*#’) FROM DUAL;
Output :

2) Rpad the string sname to length 25 with ‗-*‘ set of characters and remaining attributes in normal
way.
Query :

Output :

3) Rpad the string bname to length 20 with ‗-*‘ set of characters and lpad the same to make it length
30 with ‗#‘ and remaining attributes in normal way.
Query :

Output :

4) LTRIM (CHAR, SET) :- Returns characters from the left of CHAR by deleting all leftmost
characters that appear in set.
Ex:- 1) Display all sailors information by removing characters of sname if starts with ‗R‘.
SELECT SID, LTRIM (SNAME,’R’) FROM
SAILORS; Output :

2) Display all sailors information by removing characters of boat name if starts with ‗T‘
Query :

Output :

5) RTRIM (CHAR, SET) :- Returns characters from the right of CHAR by deleting all rightmost
characters that appear in set.
Ex:- 1) Display all sailors information by removing characters of sname if ends with ‗i‘.
SELECT SID, RTRIM (SNAME,’i’) FROM SAILORS;
Output :

2) Display all Boats information by removing characters of color if ends with ‗d‘.
Query :

Output :

6) LOWER(CHAR) :- Converts all characters to lowercase characters in a sting CHAR.
Ex:- 1) Display all Boats information by showing their names in lower case.
SELECT BID, LOWER (BNAME), COLOR FROM BOATS;
Output :

2) Display all Sailors information by showing their names in lower case.
Query :

Output :

7) UPPER(CHAR) :- Converts all characters to uppercase characters in a sting CHAR.
Ex:- 1) Display all Sailors information by showing their names in Upper case.
SELECT SID, UPPER (SNAME), AGE, RATING FROM
SAILORS; Output :

2) Display all Boats information by showing their color in Upper case.
Query :

Output :

8) INITCAP(CHAR) :- Converts first character of each word in a sting CHAR to uppercase.
Ex:-1) Display all Sailors information by showing their names in Capitalizing first char.
SELECT SID, INITCAP (SNAME), AGE, RATING FROM SAILORS;
Output :

2) Capatilize first letter of each word in ‗rajesh raghu‘
SELECT INITCAP (‘rajesh raghu’) FROM
DUAL; Output :

9) LENGTH (CHAR) :- Returns the length of the string CHAR i.e. number of characters present in
the given string.
Ex:-1) Find the number of characters in the string ‗Information Technology‘
SELECT LENGTH (‘Information Technology’) FROM
DUAL; Output :

2) Display length of string SID, SNAME from Sailors along with their values.
SELECT SID, LENGTH (SID), SNAME, LENGTH (SNAME) FROM
SAILORS; Output :

10) SUBSTR (CHAR, M, N) :- It returns substring from CHAR string starting with index M &
gives N characters.
Ex : Display boats information by starting their names with 3rd character & show only 4 characters.
SELECT BID, SUBSTR (BNAME, 3, 4), COLOR FROM
BOATS; Output :

11) INSTR (CHAR1, CHAR2, M, N) :- It searches CHAR1 beginning with Mth character for Nth
occurrence of CHAR2 and returns the position after character in CHAR1.
If N is negative value, then it searches backwards from the end of
CHAR1. The default value of M & N is 1.
Ex : Display the index of string ‗AB‘ after 2nd character & 3rd occurrence in the given string
‗ABCDABCDABABAB‘.
SELECT INSTR (‘ABCDABCDABABAB’,’AB’, 2, 3) FROM DUAL;
Output :

12) TRANSLATE (CHAR, FROM, TO) :- It returns characters with all occurrences of each
character in FROM replaced by its corresponding character in TO.
Ex :1) Replace ‗A‘ with ‗D‘ in the given string ‗ABCDABCDABABAB‘.
SELECT TRANSLATE (‘ABCDABCDABABAB’,’A’,’B’) FROM
DUAL; Output :

2) Display Sailors information by replacing ‗A‘ with ‗I‘ from SNAME, if any.
SELECT SID, TRANSLATE (SNAME,’A’,’I’) FROM SAILORS;
Output :

13) REPLACE (CHAR, S, R) :- It returns characters with every occurrences of S replaced with R.
If R is not given or NULL, all occurrences of S are removed or deleted.

Ex :1) Display BNAME by replacing ‗DA‘ with ‗MA‘.
SELECT REPLACE (BNAME, ‘DA’, ‘MA’) FROM BOATS;
Output :

Date Functions :-
1) SYSDATE :- Displays the system date for a system.
SELECT SYSDATE FROM
DUAL; Output :

SELECT TO_CHAR (SYSDATE, 'DD-MON-YYYY HH:MI:SS') FROM dual;
Output :

2) NEXT_DAY (D, DAY) :- Displays next date on DAY after date D.
Ex: Display date on Thu after 20th Feb, 2018.
SELECT NEXT_DAY (’20-FEB-2018’, ‘THU’) FROM DUAL;
Output :

3) ADD_MONTHS (D, N) :- Returns a date after adding a specified day D with specified number
of months N.
Ex: Display SID, Day of Reservation by adding 20 months to given day.
SELECT SID, DAY, ADD_MONTHS (DAY, 20) FROM RESERVES;
Output :

4) LAST_DAY(D) :- Returns the date corresponding to last day of the month.
Ex: Display Sname, Day of Reservation and date corresponding to last date of the month.
SELECT S.SNAME, DAY, LAST_DAY (DAY) FROM SAILORS S, RESERVES R WHERE
S.SID = R.SID;
Output :

5) MONTHS_BETWEEN (D1, D2) :- Returns number of months between given two dates D1 &
D2.
Ex: Display SID, Day of Reservation and months between System Date & day of reservation.
SELECT SID, DAY, MONTHS_BETWEEN (SYSDATE, DAY) FROM RESERVES;
Output :

6) LEAST (EXPR1 [, EXPR2, ... EXPR_N]) :- Returns the smallest value in a list of expressions.
Ex : 1) Find least value in 12, 53, 17, 2.
SELECT LEAST (12, 53, 17, 2) FROM
DUAL; Output :

2) Find least value in '12', '53', '17', '2'
Select LEAST ('12', '53', '17', '2') from dual;
Output :

3) Find least value in 'APPLES', 'ORANGES', and ‗BANANAS‘
SELECT LEAST ('APPLES', 'ORANGES', 'BANANAS') FROM DUAL;
Output :

7) GREATEST (EXPR1 [, EXPR2, ... EXPR_N]) :- Returns the largest value in a list of
expressions
Ex : 1) Find least value in 12, 13, 17, 2.
SELECT GREATEST (12, 13, 17, 2) FROM
DUAL; Output :

2) Find least value in '12', '13', '17', '2'
SELECT GREATEST ('12', '13', '17', '2') FROM DUAL;
Output :

3) Find least value in 'APPLES', 'ORANGES', 'BANANAS'
SELECT GREATEST ('APPLES', 'ORANGES', 'BANANAS') FROM DUAL;
Output :

8) TRUNC (NUMBER [, DECIMAL_PLACES]) :- returns a number truncated to a certain
number of decimal places.
Ex :- Truncate the 5632.98345 number to 0, 1, 2 decimal places.
SELECT TRUNC (5632.98345) FROM DUAL;
or
SELECT TRUNC (5632.98345, 0) FROM DUAL;
Output :

SELECT TRUNC (5632.98345, 1) FROM DUAL;
Output :

SELECT TRUNC (5632.98345, 2) FROM DUAL;
Output :

9) ROUND (NUMBER [, DECIMAL_PLACES]) :- Returns a number rounded to a certain
number of decimal places.
Ex :- Round off the 5632.98345 number to 0, 1, 2 decimal places.
SELECT ROUND (5632.98345) FROM DUAL;
or
SELECT ROUND (5632.98345, 0) FROM DUAL;
Output :

SELECT ROUND (5632.98345, 1) FROM DUAL;
Output :

SELECT ROUND (5632.98345, 2) FROM DUAL;
Output :

Experiment 6

Experiment 6 : Working with Triggers using PL/SQL
Develop Programs using BEFORE and AFTER Triggers, Row and Statement Triggers and
INSTEAD OF Triggers

Trigger :- A trigger is a procedure that is automatically invoked by the DBMS in response
to specified changes to the database, and is typically specified by the DBA..
A database that has a set of associated triggers is called an Active Database.

A trigger description contains three parts:

Event : A change to the database that activates the trigger.
Condition : A query or test that is run when the trigger is activated.
Action : A procedure that is executed when the trigger is activated and its condition is true.

An insert, delete, or update statement could activate a trigger, regardless of which user or
application invoked the activating statement; users may not even be aware that a trigger was
executed as a side effect of their program.

Trigger Examples :-
1) Trigger to convert SNAME field lowercase to uppercase - executes BEFORE INSERT.
CREATE OR REPLACE TRIGGER UPPERNAME
BEFORE INSERT ON SAILORS FOR EACH ROW
BEGIN
:NEW.SNAME := UPPER(:NEW.SNAME);
END;
/
Output :

To test whether UPPERNAME Trigger working properly or not, insert one record in Sailors table
with SNAME in lowercase.
Query

Now to verify it is converted in Uppercase or not, display all records of Sailors
Query

Output

2) Trigger to restrict Deleting - This trigger prevents deleting SID=1 row.
CREATE OR REPLACE TRIGGER NODELETE
AFTER DELETE ON SAILORS FOR EACH
ROW BEGIN
IF :OLD.SID = 1 THEN
RAISE_APPLICATION_ERROR (-20015, 'YOU CAN NOT DELETE THIS ROW');
END IF;
END;
/
Output :

To test whether NODELETE Trigger working properly or not, delete sailors record with
SID=1. Query

Output

3) Program to indicate invalid age (if sailors age is more than 65) condition using Trigger

CREATE OR REPLACE TRIGGER AGELIMIT BEFORE INSERT ON SAILORS
FOR EACH ROW
WHEN (NEW.AGE>60)
BEGIN
RAISE_APPLICATION_ERROR (-20998,'ERROR : INVALID AGE');

END;
/
Output :

To test whether AGELIMIT Trigger working properly or not, insert one record in Sailors table
with sailors age more than 65.
Query

Output

Or same can be written using IF statement
CREATE OR REPLACE TRIGGER AGELIMIT BEFORE INSERT ON SAILORS
FOR EACH ROW
BEGIN
IF (:NEW.AGE>60) then
RAISE_APPLICATION_ERROR (-20998,'ERROR : INVALID AGE');

END IF;
END;
/
Output :

To test whether AGELIMIT Trigger working properly or not, insert one record in Sailors table
with sailors age more than 65.
Query

Output

To see all user defined triggers details (all parameters of trigger)
SELECT * FROM USER_TRIGGERS;
Output :

To see all user defined trigger names

SELECT TRIGGER_NAME FROM USER_TRIGGERS;
Output :

To See particular trigger‘s definition
SELECT DESCRIPTION, TRIGGER_BODY FROM USER_TRIGGERS WHERE
TRIGGER_NAME = 'AGELIMIT';
Output :

To see different parameters of triggers
SELECT TRIGGER_NAME, TRIGGER_TYPE,
TRIGGERING_EVENT, TRIGGER_BODY FROM USER_TRIGGERS;
Output :

To delete particular user defined trigger
DROP TRIGGER AGELIMIT

Output :

Experiment 7

Experiment 7 : Working with PL/SQL Procedures
Programs Development using Creation of Procedures, Passing Parameters IN and OUT of
Procedures

Procedural Language/Structured Query Language (PL/SQL) is an extension of SQL.
Basic Syntax of PL/SQL
DECLARE
/* Variables can be declared here */

BEGIN
/* Executable statements can be written here */

EXCEPTION
/* Error handlers can be written here. */
END;

As we want output of PL/SQL Program on screen, before Starting writing anything type (Only
Once per session)

SET SERVEROUTPUT ON

Ex :- PL/SQL to find addition of two numbers
DECLARE
A INTEGER := &A;
B INTEGER := &B;
C INTEGER;
BEGIN
C := A + B;
DBMS_OUTPUT.PUT_LINE ('THE SUM IS '||C);
END;
/
Output :

Decision making with IF statement :-
The general syntax for the using IF--ELSE statement is
IF (TEST_CONDITION) THEN

SET OF STATEMENTS
ELSE

SET OF STATEMENTS
END IF;

For Nested IF—ELSE Statement we can use IF--ELSIF—ELSE as follows
IF (TEST_CONDITION) THEN

SET OF STATEMENTS
ELSIF (CONDITION)

SET OF STATEMENTS
END IF;

Ex:- Largest of three numbers.
This program can be written in number of ways, here are the two different ways to write the
program.
1) Using IF-
ELSE DECLARE
A NUMBER := &A;
B NUMBER := &B;
C NUMBER := &C;
BIG NUMBER;

BEGIN
IF (A > B) THEN

BIG := A;
ELSE BIG

:= B;
END IF;
IF(BIG < C) THEN DBMS_OUTPUT.PUT_LINE('BIGGEST OF A,
B AND C IS ' || C);

ELSE
DBMS_OUTPUT.PUT_LINE('BIGGEST OF A, B AND C IS ' || BIG);

END IF;
END;
/

Output :

2) Using IF—ELSIF—ELSE
DECLARE
A NUMBER := &A;
B NUMBER := &B;
C NUMBER := &C;

BEGIN
IF (A > B AND A > C) THEN
DBMS_OUTPUT.PUT_LINE('BIGGEST IS ' || A);

ELSIF (B > C) THEN
DBMS_OUTPUT.PUT_LINE('BIGGEST IS ' || B);

ELSE DBMS_OUTPUT.PUT_LINE('BIGGEST IS '
|| C);

END IF;
END;
/

Output :

Procedure in PL/SQL
Procedures are written for doing specific tasks. The general syntax of procedure is

CREATE OR REPLACE PROCEDURE <Pro_Name> (Par_Name1 [IN / OUT/ IN OUT]
Par_Type1, ….) IS (Or we can write AS)
Local declarations;
BEGIN
PL/SQL Executable statements;
..
..
..
EXCEPTION
Exception Handlers;
END <Pro_Name>;

Mode of parameters
1) IN Mode :- IN mode is used to pass a value to Procedure/Function. Inside the

procedure/function, IN acts as a constant and any attempt to change its value causes compilation
error.

2) OUT Mode : The OUT parameter is used to return value to the calling routine. Any attempt to
refer to the value of this parameter results in null value.

3) IN OUT Mode : IN OUT parameter is used to pass a value to a subprogram and for getting the
updated value from the subprogram.

To use/call procedure, write a PL/SQL code and include call in the code using

Pro_Name(Par_List);
Or you can execute from SQL Prompt as

execute Pro_Name(Par_List)

For dropping/deleting Procedure
DROP PROCEDURE Pro_Name;

Examples
1) Simple program to illustrate Procedure.
-- Assume file name P1
CREATE OR REPLACE PROCEDURE P1(A NUMBER)
AS BEGIN
DBMS_OUTPUT.PUT_LINE('A:'||A);
END P1;
/

Output :

Now write PL/SQL code to use procedure in separate file.
-- Assume file name testP1
DECLARE
BEGIN
P1(100);
END;
/

Output :

2) Program to illustrate Procedure with IN mode
parameter. -- Assume file name P2
CREATE OR REPLACE PROCEDURE P2(A IN NUMBER) AS
BEGIN
DBMS_OUTPUT.PUT_LINE('A:'||A);
END P2;
/

Output :

-- Assume file name testP2
DECLARE X
NUMBER;
BEGIN
X:=10;
DBMS_OUTPUT.PUT_LINE('X:'||X);
P2(X);
DBMS_OUTPUT.PUT_LINE('X:'||X);
END;
/

Output :

3) Program to illustrate Procedure with OUT mode parameter.
-- Assume file name P3
CREATE OR REPLACE PROCEDURE P3(A OUT NUMBER) AS
BEGIN
A:=100;
DBMS_OUTPUT.PUT_LINE('A:'||
A); END P3;
/

Output :

-- Assume file name testP3
DECLARE X
NUMBER;
BEGIN
X:=50;
DBMS_OUTPUT.PUT_LINE('X:'||X);
P3(X);
DBMS_OUTPUT.PUT_LINE('X:'||X);
END;
/

Output :

4) Program to illustrate Procedure with OUT mode parameter.
-- Assume file name P4
CREATE OR REPLACE PROCEDURE P4(A OUT NUMBER) AS
BEGIN
DBMS_OUTPUT.PUT_LINE('A:'||A);
END P4;
/

Output :

-- Assume file name testP4
DECLARE X
NUMBER;
BEGIN
X:=10;
DBMS_OUTPUT.PUT_LINE('X:'||X);
P4(X);
DBMS_OUTPUT.PUT_LINE('X:'||X);
END;
/

Output :

5) Program to illustrate Procedure with IN OUT mode
parameter. --Assume file name P5
CREATE OR REPLACE PROCEDURE P5(A IN OUT NUMBER)
AS BEGIN
DBMS_OUTPUT.PUT_LINE ('A:' || A);
END P5;
/

Output :

-- Assume file name testP5
DECLARE X
NUMBER;
BEGIN
X:=10;
DBMS_OUTPUT.PUT_LINE ('X:'|| X);
P5(X); DBMS_OUTPUT.PUT_LINE
('X:'|| X); END;

/

Output :

Experiment 8
Experiment 8: Working with LOOPS using PL/SQL and Exception Handling

Program Development using WHILE LOOPS, Numeric FOR LOOPS, Nested Loops using ERROR
Handling, BUILT-IN Exceptions, USE Defined Exceptions, RAISE- APPLICATION ERROR

LOOPING STATEMENTS:- For executing the set of statements repeatedly we can use loops.
The oracle supports number of looping statements like GOTO, FOR, WHILE & LOOP. Here is the
syntax of these all the types of looping statements.

• GOTO STATEMENTS
<<LABEL>>
SET OF STATEMENTS
GOTO LABEL;

• FOR LOOP

FOR <VAR> IN [REVERSE] <INI_VALUE>..<END_VALUE>
SET OF STATEMENTS

END LOOP;

• WHILE LOOP
WHILE (CONDITION) LOOP

SET OF STATEMENTS
END LOOP;

• LOOP STATEMENT

LOOP
SET OF STATEMENTS

IF (CONDITION) THEN
EXIT
SET OF STATEMENTS

END LOOP;
While using LOOP statement, we have to take care of EXIT condition; otherwise it may go into
infinite loop.

Example :- Here are the example for all these types of looping statement where each program
prints numbers 1 to 10.

GOTO EXAMPLE
DECLARE
I INTEGER := 1;

BEGIN
<<OUTPUT>>

DBMS_OUTPUT.PUT_LINE(I);
I := I + 1;

IF I<=10 THEN
GOTO OUTPUT;

END IF;
END;
/

Output :

FOR LOOP EXAMPLE
BEGIN
FOR I IN 1..10 LOOP
DBMS_OUTPUT.PUT_LINE(I);

END LOOP;
END;
/

Output :

WHILE EXAMPLE
DECLARE
I INTEGER := 1;

BEGIN
WHILE(I<=10) LOOP

DBMS_OUTPUT.PUT_LINE(I);
I := I + 1;
END LOOP;
END;
/

Output :

LOOP EXAMPLE
DECLARE
I INTEGER := 1;

BEGIN
LOOP

DBMS_OUTPUT.PUT_LINE(I);
I := I + 1;
EXIT WHEN I=11;
END LOOP;
END;
/

Output :

Write PL/SQL Program to display (Using different looping statements)
*
* *
* * *
* * * *

Program

Output :

DATA TYPES
We know basic data types in Oracle. Now let‘s see few more data types that are useful for writing
PL/SQL programs in Oracle.

%TYPE :- %TYPE is used to give data type of predefined variable or database column.
Eg:- itemcode Number(10);
icode itemcode%Type;
The database column can be used as
id Sailors.sid%type

%ROWTYPE :- %rowtype is used to provide record datatype to a variable. The variable
can store row of the table or row fetched from the cursor.
Eg:- If we want to store a row of table Sailors then we can declare variable
as Sailors%Rowtype

Comments :- In Oracle we can have two types of comments i.e Single Line & Multiline comments.

• Single line comment :- It starts with --.
-- Comment here

• Multiline comment is same as C/C++/JAVA comments where comments are present in the
pair of /* & */.

/* Comment here */

Inserting values to table :- Here is the example for inserting the values into a database through
PL/SQL Program. Remember that we have to follow all the rules of SQL like Primary Key
Constraints, Foreign Key Constraints, Check Constraints, etc. Ex:- Insert the record into Sailors
table by reading the values from the Keyboard.
DECLARE
SID NUMBER (5):=&SID;
SNAME VARCHAR2(30):='&SNAME';
RATING NUMBER(5):=&RATING;
AGE NUMBER(4,2):=&AGE;
BEGIN
INSERT INTO SAILORS VALUES(SID, SNAME, RATING, AGE);
END;
/
Output :

Reading from table
DECLARE
SID VARCHAR2(10); -- or can be defined SID Sailors.SID%Type
SNAME VARCHAR2(30);
RATING NUMBER(5);
AGE NUMBER(4,2);
BEGIN
SELECT SID, SNAME, RATING, AGE INTO SID, SNAME, RATING, AGE FROM SAILORS
WHERE SID='&SID';
DBMS_OUTPUT.PUT_LINE(SID || ' '|| SNAME || ' '|| RATING ||' '|| AGE);
END;
/
Output :

Some Points regarding SELECT --- INTO
We have to ensure that the SELECT….INTO statement should return one & only one row. If no
row is selected then exception NO_DATA_FOUND is raised. If more than one row is selected then
exception TOO_MANY_ROWS is raised.
To handle the situation where no rows selected or so many rows selected we can use Exceptions.
We have two types of exception, User-Defined and Pre-Defined Exceptions.

Program with User-Defined Exception
DECLARE
N INTEGER:=&N;
A EXCEPTION;
B EXCEPTION;
BEGIN
IF MOD(N,2)=0
THEN RAISE A;

ELSE RAISE B;
END IF;
EXCEPTION
WHEN A THEN

DBMS_OUTPUT.PUT_LINE ('THE INPUT IS EVEN.....');
WHEN B THEN
DBMS_OUTPUT.PUT_LINE ('THE INPUT IS
ODD.....'); END;
/
Output :

Program with Pre-Defined Exception
DECLARE
SID VARCHAR2(10);
BEGIN
SELECT SID INTO SID FROM SAILORS WHERE SNAME='&SNAME';
DBMS_OUTPUT.PUT_LINE (SID);
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE (‗No Sailors with given SID found‘);
WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE (‗More than one Sailors with same name
found‘); END;
/
Output :

Error Handling using RAISE_APPLICATION_ERROR
Procedure RAISE_APPLICATION_ERROR is used to generate user-defined errors in the PL/SQL.
The general syntax is
RAISE_APPLICATION_ERROR (ErrorCode, Error_Message [, TRUE/FALSE]);
The valid Error_Code is in range from –20000 to –20999. The Error_Message
length is maximum 2048 bytes.
The optional third parameter TRUE indicates that error message is put in stack. If FALSE is
mentioned then error replaces all previous errors.

Example to illustrate RAISE_APPLICATION_ERROR

-- Assume file name Raise_Application_Error
DECLARE
A INTEGER:=&A;
B INTEGER:=&B;
C INTEGER;
BEGIN
IF(B=0)THEN
RAISE_APPLICATION_ERROR (-20001,'DIVISION BY ZERO');
ELSE
C:=A/B;
DBMS_OUTPUT.PUT_LINE ('RESULT IS :'||C);
END IF;
END;
/
Output :

Experiment 9
Experiment 9: Working with Functions Using PL/SQL
Program Development using Creation of Stored Functions, Invoke Functions in SQL Statements
and Write Complex Functions.

Functions in PL/SQL
Similar to Procedure we can create Functions which can return one value to the calling
program. The syntax of function is
CREATE OR REPLACE FUNCTION <Fun_Name> (Par_Name1 [IN/OUT/ IN
OUT] Par_Type1, ….)
RETURN return_datatype IS
Local declarations;
BEGIN
PL/SQL Executable statements;
…….
EXCEPTION
Exception Handlers;
END <Fun_Name>;

To use/call Function we have two ways.
1) Write a PL/SQL code and include call in the code using

X=Fun_Name(Par_List);
2) You can execute from SQL Prompt as a select query

Select Fun_Name(Par_List) from Dual;

For dropping/deleting Function
DROP FUNCTION Fun_Name;

Ex :- Program to illustrate Function. (Finding Square of a number)
-- Assume file name Fun
CREATE OR REPLACE FUNCTION FUN (A NUMBER)
RETURN NUMBER IS
BEGIN
RETURN (A*A);
END FUN;
Output :

-- Assume file name testFun
DECLARE
X NUMBER:=&X;
S NUMBER;
BEGIN
S:=FUN(X);
DBMS_OUTPUT.PUT_LINE('SQUARE OF A NUMBER '|| S);
END;
Output :

Experiment 10

Experiment 10: Working CURSORS
Develop Programs using Features Parameters in a CURSOR, FOR UPDATE CURSOR, WHERE
CURRENT of Clause and CURSOR Variables

Cursors : - Oracle uses temporary work area cursor for storing output of an SQL statement.
Cursors are defined as

CURSOR C1 IS SELECT SID, SNAME, RATING, AGE FROM SAILORS;
OR

CURSOR C1 IS SELECT * FROM SAILORS;
Generally while using cursors we have to Open the cursor then extract one row (record) from the
cursor using Fetch operation, do the necessary operations on the Record. After completing the work
Close the cursor. But if we want to do automatic opening & closing to cursor then we can use FOR
loop in cursor.

FOR loop in Cursor
The cursor FOR loop gives easy way to handle the Cursor. The FOR loop opens the Cursor, fetches
rows and closes the cursor after all rows are processed. For Eg:

FOR Z IN C1 LOOP
- - - - - - -
END LOOP;
The cursor FOR loop declares Z as record, which can hold row, returned from cursor.

Example using Cursor
DECLARE
CURSOR C1 IS SELECT * FROM SAILORS;

BEGIN
FOR Z IN C1 LOOP
DBMS_OUTPUT.PUT_LINE
(Z.SID || ' ' || Z.SNAME);
END LOOP;
END;
/
Output :

Same example using While
DECLARE
CURSOR C1 IS SELECT * FROM SAILORS;

Z C1%ROWTYPE;
BEGIN
OPEN C1;
FETCH C1 INTO Z;
WHILE (C1%FOUND) LOOP
DBMS_OUTPUT.PUT_LINE(Z.SID || ' ' || Z.SNAME);
FETCH C1 INTO
Z; END LOOP;
CLOSE C1;
END;
/
Output :

Suppose we want to display all sailors‘ information according to their rating with proper heading.
(eg: ‗Sailors with rating 1‘….. etc) then we can write program as follows.

Ex:- Display records according to rating with proper heading.
DECLARE
I INTEGER:=1;
CURSOR C1 IS
SELECT * FROM SAILORS ORDER BY
RATING; Z C1%ROWTYPE;
BEGIN
WHILE(I<=10)LOOP
DBMS_OUTPUT.PUT_LINE(‗SAILORS WITH RATING‘||I);
FOR Z IN C1 LOOP
IF(Z.RATING=I)THEN
DBMS_OUTPUT.PUT_LINE(Z.SID||‗ ‘||Z.SNAME||‗ ‘||Z.AGE||‗ ‘||Z.RATING);
END IF;
END LOOP;
I:=I+1;
END LOOP;
END;
/
Output :

Multiple cursors in a program :- We can use multiple cursors in a program.

Ex:- To display details of particular table sailors, boats, reserves according to users choice.
DECLARE
INPUT VARCHAR2(30):= ‗&INPUT‘;
CURSOR C1 IS SELECT * FROM SAILORS;
CURSOR C2 IS SELECT * FROM BOATS;
CURSOR C3 IS SELECT * FROM RESERVES;
BEGIN
IF(INPUT=‘SAILORS) THEN
DBMS_OUTPUT.PUT_LINE(‗SAILORS INFORMATION:‘);
FOR Z IN C1 LOOP
DBMS_OUTPUT.PUT_LINE(Z.SID||‗ ‘||Z.SNAME||‗ ‘||Z.AGE||‗ ‘||Z.RATING);
END LOOP;
ELSIF(INPUT=‗BOATS‘)THEN
DBMS_OUTPUT.PUT_LINE(‗BOATS INFORMATION:‘);
FOR X IN C2 LOOP
DBMS_OUTPUT.PUT_LINE(X.BID||‗ ‘||X.BNAME||‗ ‘||X.COLOR);
END LOOP;
ELSIF(INPUT=‗RESERVES‘)THEN
DBMS_OUTPUT.PUT_LINE(‗RESERVES INFORMATION:‘);
FOR Y IN C3 LOOP
DBMS_OUTPUT.PUT_LINE(Y.SID||‗ ‘||Y.BID||‗ ‘||Y.DAY);
END LOOP;
ELSE
DBMS_OUTPUT.PUT_LINE(‗NO SUCH TABLE EXISTS‘);
END IF;
END;
/
Output :

Updating the Records :- Similar to inserting the values as well as selecting the values we can use
the PL/SQL programming for updating the records in the given table.
Ex:- To update rating of sailors by 2 if rating is less than 5, by 1 if rating is >5 and doesn‘t change
the rating if it is equal to 10.

DECLARE
CURSOR C1 IS SELECT * FROM SAILORS;
Z C1%ROWTYPE;
BEGIN
FOR Z IN C1 LOOP
IF (Z.RATING<5) THEN
UPDATE SAILORS SET RATING=RATING+2 WHERE SID=Z.SID;
ELSIF (Z.RATING>5 AND Z.RATING<10) THEN
UPDATE SAILORS SET RATING=RATING+1 WHERE SID=Z.SID;
END IF;
END LOOP;
FOR Z IN C1 LOOP
DBMS_OUTPUT.PUT_LINE (Z.SID||‗ ‘||Z.RATING);
END LOOP;
END;
/
Output :

Deleting the Records :- Similar to inserting and updating the values as well as selecting the values
we can use the PL/SQL programming for deleting the records from the given table.

Ex:- Write a program to delete records from sailors table by reading SID from Keyboard.

DECLARE
BEGIN
DELETE FROM SAILORS WHERE SID=‗&SID‘;
END;
/

Output :

Passing parameters to Cursor

We can pass parameters to cursor. When you open cursor the value is passed to cursor and
processing can be done there in cursor definition.
Ex:- suppose we want to display all sailors information according to their rating with proper
heading. (eg: ‗Sailors with rating 1‘….. etc). Already we have seen same program with parameters
to the cursor.
Following program illustrates how we can pass parameters to the cursor.

--Assume file name Cur_Par
DECLARE
CURSOR C1(R NUMBER) IS SELECT * FROM SAILORS WHERE RATING=R;
I INTEGER;
BEGIN
FOR I IN 1..10 LOOP
DBMS_OUTPUT.PUT_LINE('SAILORS WITH RATING '|| I || ' ARE');
DBMS_OUTPUT.PUT_LINE('SID NAME AGE'); FOR
Z IN C1(I) LOOP
/* It‘s not compulsory to define variable using rowtype for simple cursor as well as for
update cursor */
DBMS_OUTPUT.PUT_LINE(Z.SID ||' ' ||Z.SNAME ||' '||Z.AGE);
END LOOP;
END LOOP;
END;
/
Output :

Use of Cursor for Update
(FOR UPDATE CURSOR, WHERE CURRENT of clause and CURSOR variable is used).
We can use update cursors for update operation only. The following example shows change of
rating (Already we have written this program without using Update Cursor) using Update Cursor.

DECLARE
CURSOR C1 IS SELECT * FROM SAILORS FOR UPDATE;
BEGIN
FOR Z IN C1 LOOP
/* It‘s not compulsory to define variable using rowtype for update cursor as well as for
simple cursors */
IF(Z.RATING <=5) THEN
UPDATE SAILORS SET RATING= RATING+2 WHERE CURRENT OF
C1; ELSIF(Z.RATING>5 AND Z.RATING<10)
UPDATE SAILORS SET RATING= RATING+1 WHERE CURRENT OF C1;
END IF;
END LOOP;
END;
/
Output :

