

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

18CS302/18IT302
Hall Ticket Number:

II/IV B.Tech (Regular) DEGREE EXAMINATION

November, 2019 Common to CSE & IT

Third Semester Data Structures

Time: Three Hours

Maximum: 50 Marks

Answer Question No.1 compulsorily. (1X10 = 10 Marks)

Answer ONE question from each unit. (4X10=40 Marks)

1. Answer all questions (1X10=10 Marks)
 a) What do you mean by asymptotic notation? Name any three.
 b) Write the node structure for representing polynomials.
 c) What are the different notations to represent a mathematical expression? Which notation is

most suitable for use in Computers?

 d) Give any two applications of linear queue.
 e) Differentiate binary tree and binary search tree.
 f) Construct expression tree for (-a)+b*c-d/e.
 g) Why do we need to balance the tree? Justify.
 h) What is meant by Binary heap?
 i) Write any two applications of hashing.
 j) Define disjoint set with an example.

UNIT I

2. a) Differentiate array and linked list with an example. 4M
 b) Write a program to create a singly linked list and a function to remove nth element whose

location is specified?

6M

(OR)
3. a) Calculate the time complexity for the following recurrence relation

 T(n) = 1 + T(n-1) if n>1
 = 1 if n=1

4M

 b) Write an algorithm for the following operations in doubly linked list with neat diagrams.
i) insert_at_specific() ii) delete_at_specific()

6M

UNIT II

4. Write an algorithm for converting infix expression to postfix expression. Consider the

following expression
 (7+9)*2/4+3^5/6

 i) Convert the above infix expression to postfix.
ii) After conversion, Evaluate the postfix expression.

10M

(OR)

5. a) Write a C-routine for enqueue and dequeue operations of Linear queue. 5M
 b) Compare Shell sort and Radix sort with the help of suitable example. 5M

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

 UNIT III

6. a) Define the following with suitable examples
i) Full binary tree ii) Complete binary tree iii) Perfect binary tree

6M

 b) Draw the binary tree whose pre-order and in-order traversals are given below
preorder : A,B,D,G,C,E,H,I,F inorder: D,G,B,A,H,E,I,C,F

4M

(OR)

7. Define AVL tree. Start with an empty AVL search tree and insert the following keys in the

given order: H, I, J, B, A, E, C, F, D, G, K, L

 a) Draw the figures depicting your tree immediately after each insertion and following
rebalancing.
b) Remove the keys in order C, I, H. Draw your tree immediately after each delete.

10M

UNIT IV

8. a) Write a program to implement Heap Sort. 4M
 b) Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and hash function h(x)= x mod

10. Show the resulting hash table using linear probing and quadratic probing for bucket size
9? Compare their performance. [Take C1=2 and C2= 1 if necessary where C1 and C2 are
arbitrary constants.]

6M

(OR)
9. a) Explain the concept of separate chaining. 4M
 b) What are the advantages of Disjoint Set data structure? Explain various operations

performed on Disjoint Set data structure with an example.

6M

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

Scheme & Solutions

1. Answer all questions

a) What do you mean by asymptotic notation? Name any three.

Ans: Asymptotic notation of an algorithm is a mathematical representation of its complexity.

Majorly, three types of asymptotic notations are used for representing complexity of an algorithm.

They are 1. Big-oh (O) 2. Big-Omega (Ω) 3. Big-Theta(Ө) ----- 1M

b) Write the node structure for representing polynomials.

Ans: The node structure for representing polynomial is as follows:

Coefficient Exponent/Power Address

 Stores the coefficient Stores the exponent Stores the address of
 of a term of a tern next term ----- 1M

c) What are the different notations to represent a mathematical expression? Which notation

is most suitable for use in Computers?

Ans: There are three notations are used to represent mathematical expression in computer science.

They are 1. infix notation 2. Prefix notation 3. Postfix notation

Most suitable notation used in computers is “Postfix Notation” ----- 1M

d) Give any two applications of linear queue.

Ans: Queue is used in the following applications:

1. CPU Scheduling 2. Radix sort 3. Call centre phone system, etc. Any two valid ----- 1M

e) Differentiate binary tree and binary search tree.

Ans: Binary tree is the tree in which every node has zero or one or utmost two children. There is no

condition or relationship between the values of the parent and children nodes.

Binary search tree (which also inherits the properties of a binary tree), the node with value smaller

than or equal to the parent node must become the left child and the node with value greater than the

parent node must become the right child. ----- 1M

f) Construct expression tree for (-a)+b*c-d/e.

Ans: Expression tree for the given expression is as follows:

 ---- 1M

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

g) Why do we need to balance the tree? Justify.

Ans: In Binary search tree (BST), the time complexity for search operation in worst case (i.e., in

skewed trees) is O(n). To overcome this, BST needs to be height balanced. In Height Balanced trees

(AVL trees), time complexity for search operation is O(logn). ----- 1M

h) What is meant by Binary heap?

Ans: A binary heap is a complete binary tree which satisfies the heap ordering property. The

ordering can be one of two types:

The min-heap property: the value of each node is greater than or equal to the value of its parent,

with the minimum-value element at the root.

The max-heap property: the value of each node is less than or equal to the value of its parent, with

the maximum-value element at the root. ----- 1M

i) Write any two applications of hashing.

Ans: The following are the various applications of hashing

1. Data base system 2. Data dictionaries 3. Tagged buffers. Any two valid ---- 1M

j) Define disjoint set with an example.

Ans: A disjoint-set data structure is a data structure that keeps track of a set of elements

partitioned into a number of disjoint (non-overlapping) subsets. This can be used for determining if

two elements are in the same subset. E.g: if A={1,2,3} and B={4,5,6} are disjoint sets. ----- 1M

UNIT-I

2. a) Differentiate array and linked list with an example. [4M]

S.no. Array Linked List

1.
Insertions and deletions are
difficult. Insertions and deletions can be done easily.

2.
It needs movements of elements for
insertion and deletion.

It does not need movement of nodes for insertion
and deletion.

3. In it space is wasted. In it space is not wasted.

4. It is more expensive. It is less expensive.

5.
It requires less space as only
information is stored.

It requires more space as pointers are also stored
along with information.

6. Its size is fixed. Its size is not fixed.

7.
It cannot be extended or reduced
according to requirements.

It can be extended or reduced according to
requirements.

8.
Same amount of time is required to
access each element.

Different amount of time is required to access each
element.

 Any valid 4 differences ----- 4M

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

 2. b) Write a program to create a singly linked list and a function to remove nth element whose

location is specified? [Structure definition—1M, Creation---- 3M Nth node---- 2M] [6M]

Ans: #include <stdio.h>
 #include <stdlib.h>
 struct node

{
 int num;
 struct node *next;
};
void create(struct node **);
void nthnode(struct node *, int);
void release(struct node **);
int main()
{
 struct node *p = NULL;
 int n;
 printf("Enter data into the list\n");
 create(&p);
 printf("Enter the value n to find nth position from the last node: ");
 scanf("%d", &n);
 nthnode(p, n);
 release (&p);
 return 0;
} ------ 1M

void nthnode(struct node *head, int n)
{
 struct node *p, *q;
 int i;

 q = p = head;

 for (i = 0; i < n && q != NULL; i++)
 {
 q = q->next;
 }
 if (i < n)
 {
printf("Entered n = %d is larger than the number of elements = %d in list. Please try again.\n", n, i);
 }
 else
 {
 while (q->next != NULL)
 {
 q = q->next;

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

 p = p->next;
 }
 printf("%d is %d nodes from the last node.\n", p->num, n);
 }
} ------- 2M

void create(struct node **head)
{
 int c, ch;
 struct node *temp, *rear;

 do
 {
 printf("Enter number: ");
 scanf("%d", &c);
 temp = (struct node *)malloc(sizeof(struct node));
 temp->num = c;
 temp->next = NULL;
 if (*head == NULL)
 {
 *head = temp;
 }
 else
 {
 rear->next = temp;
 }
 rear = temp;
 printf("Do you wish to continue [1/0]: ");
 scanf("%d", &ch);
 } while (ch != 0);
 printf("\n");
} ------- 3M

void release(struct node **head)
{
 struct node *temp = *head;
 *head = (*head)->next;
 while ((*head) != NULL)
 {
 free(temp);
 temp = *head;
 (*head) = (*head)->next;
 }
}

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

(OR)

3. a) Calculate the time complexity for the following recurrence relation
 T(n) = 1 + T(n-1) if n>1

 = 1 if n=1 [4M]
 Ans: Given T(n) = 1+ T(n-1) if n˃1
 = 1 if n=1
 Consider T(n) = 1+ T(n-1) ----------- (eq.1)
 Back substitution:
 Substitute n = n-1 in eq.1 then
 T(n-1) = 1 + T(n-2) ----------- (eq.2)
 Similarly substitute n = n-2 in eq.1 then
 T(n-2) = 1 + T(n-3) ----------- (eq.3) -------- 2M
 Now, substitute eq.2 in eq.1 then eq.1 becomes
 T(n) = 1 + T(n-1)
 = 1 + (1 + T(n-2)) (:. From eq.2)
 = 2 + T(n-2)
 = 2 + (1 + T(n-3)) (:. From eq.3)
 = 3 + T(n-3)
 Similarly = 3 + (1 + T(n-4))
 = 4 + T(n-4)
 .
 .
 T(n) = k + T(n-k) -------- (eq.4) this function will end only when n-k=1 then k=n-1.
 Now, Substitute k = n-1 in (eq.4) then eq.4 becomes
 T(n) = n-1 + T(n-(n-1))
 T(n) = n-1 + T(1)
 T(n) = n - 1 + 1 (:. From given function T(1) = 1)
 T(n) = n
 The time complexity for given function in worst case is O(n) ------- 2M

 3. b) Write an algorithm for the following operations in doubly linked list with neat diagrams.

 i) insert_at_specific() ii) delete_at_specific() [6M]

 Ans: i) inserting at Specific location in the list :

The following steps to insert a new node after a specific node in the double linked list...

Step 1: Create a newNode with given value.

Step 2: Check whether list is Empty (head == NULL)

Step 3: If it is Empty then, assign NULL to newNode → previous & newNode → next and newNode

to head.

Step 4: If it is not Empty then, define two node pointers temp1 & temp2 and initialize temp1 with

head.

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

Step 5: Keep moving the temp1 to its next node until it reaches to the node after which we want to

insert the newNode (until temp1 → data is equal to location, here location is the node value after

which we want to insert the newNode).

Step 6: Every time check whether temp1 is reached to the last node. If it is reached to the last node

then display 'Given node is not found in the list!!! Insertion not possible!!!' and terminate the

function. Otherwise move the temp1 to next node.

Step 7: Assign temp1 → next to temp2, newNode to temp1 → next, temp1 to newNode → previous,

temp2 to newNode → next and newNode to temp2 → previous.

Example: Insert a node at intermediate position in double linked list is shown in below

 insertion method ----- 3Marks

ii) Deleting a Specific Node from the list:

The following steps to delete a specific node from the double linked list...

Step 1: Check whether list is Empty (head == NULL)

Step 2: If it is Empty then, display 'List is Empty!!! Deletion is not possible' and terminate the

function.

Step 3: If it is not Empty, then define a Node pointer 'temp' and initialize with head.

Step 4: Keep moving the temp until it reaches to the exact node to be deleted or to the last node.

Step 5: If it is reached to the last node, then display 'Given node not found in the list! Deletion not

possible!!!' and terminate the fuction.

Step 6: If it is reached to the exact node which we want to delete, then check whether list is having

only one node or not

Step 7: If list has only one node and that is the node which is to be deleted then set head to NULL

and delete temp (free(temp)).

Step 8: If list contains multiple nodes, then check whether temp is the first node in the list (temp ==

head).

Step 9: If temp is the first node, then move the head to the next node (head = head → next), set head

of previous to NULL (head → previous = NULL) and delete temp.

Step 10: If temp is not the first node, then check whether it is the last node in the list (temp → next

== NULL).

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

Step 11: If temp is the last node then set temp of previous of next to NULL (temp → previous →

next = NULL) and delete temp (free(temp)).

Step 12: If temp is not the first node and not the last node, then set temp of previous of next to temp

of next (temp → previous → next = temp → next), temp of next of previous to temp of previous

(temp → next → previous = temp → previous) and delete temp (free(temp)).

Example: Deleting a node at specified position in double linked list is shown in below

 Any one deletion method ----- 3Marks

UNIT II

4. a) Write an algorithm for converting infix expression to postfix expression. Consider the following

expression

 (7+9)*2/4+3^5/6

 i) Convert the above infix expression to postfix.

 ii) After conversion, Evaluate the postfix expression. [10M]

 Ans: Procedure to convert from infix expression to postfix expression is as follows:

1. Scan the infix expression from left to right.

2. a) If the scanned symbol is left parenthesis, push it onto the stack.

 b) If the scanned symbol is an operand, then place directly in the postfix expression (output).

 c) If the symbol scanned is a right parenthesis, then go on popping all the items from the stack and

place them in the postfix expression till we get the matching left parenthesis.

 d) If the scanned symbol is an operator, then go on removing all the operators from the stack and

place them in the postfix expression, if and only if the precedence of the operator which is on

the top of the stack is greater than (or greater than or equal) to the precedence of the scanned

operator and push the scanned operator onto the stack otherwise, push the scanned operator onto

the stack. ------ 3M

 i) Postfix form for given infix expression is 79+2*4/35^6/+ ------ 4M

 ii) Evaluation of post fix expression is 48.5 ------ 3M

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

5. a) Write a C-routine for enqueue and dequeue operations of Linear queue. [5M]

#include <stdio.h>

 #define MAX 50

 int queue_array[MAX];

int rear = - 1;

int front = - 1; Declaration ------ 1M

void enqueue()

{

 int add_item;

 if (rear == MAX - 1)

 printf("Queue Overflow \n");

 else

 {

 if (front == - 1)

 /*If queue is initially empty */

 front = 0;

 printf("Inset the element in queue : ");

 scanf("%d", &add_item);

 rear = rear + 1;

 queue_array[rear] = add_item;

 }

} /* End of enqueue() */ -------- 2M

 void dequeue()

{

 if (front == - 1 || front > rear)

 {

 printf("Queue Underflow \n");

 return ;

 }

 else

 {

 printf("Element deleted from queue is : %d\n", queue_array[front]);

 front = front + 1;

 }

} /* End of dequeue() */ ---------- 2M

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

5. b) Compare Shell sort and Radix sort with the help of suitable example. [5M]

 Any two valid comparisons ---- 2M

UNIT III
6. a) Define the following with suitable examples

 i) Full binary tree ii) Complete binary tree iii) Perfect binary tree [6M]

 Ans: i) Full Binary tree: A binary tree is full if every node has 0 or 2 children. Following are examples

of full binary tree.

 --------- 2M

 ii) Complete Binary Tree: A binary tree is complete binary tree if all levels are filled except

possibly the last level and the last level has all keys as left as possible. Following are examples of

complete binary tree.

 ----------- 2M

Shell Sort Radix Sort

1. Founded by Donald Shell in 1959 1. Founded by Harold H. Seward in 1954

2. Shell sort works by comparing elements

that are distant rather than adjacent elements

in an array or list where adjacent elements

are compared. Shell sort also called as

diminishing increment sort.

2. Radix sort is non-comparative integer

sorting algorithm that sorts data with integer

keys by grouping keys by the individual

digits which share the same significant

position and value.

3. It uses increment sequence for comparing

elements

3. It uses Queues for grouping same

significant position and value elements.

4. The worst case time complexity is O(n2) 4. The worst case time complexity is O(n2)

5. It is a complex algorithm. Still a less

efficient than merge, heap or quick sorting

techniques.

5. Radix sort is very fast compared to other

sorting techniques but it uses additional

space for sorting the elements.

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

 iii) Perfect Binary Tree: A binary tree is perfect binary tree in which all internal nodes have two

children and all leaves are at same level. Following are examples of perfect binary tree.

 A perfect binary tree of height H (where height is number of nodes on path from root to leaf) has

2H-1. --------- 2M

6. b) Draw the binary tree whose pre-order and in-order traversals are given below

 preorder : A,B,D,G,C,E,H,I,F inorder: D,G,B,A,H,E,I,C,F [4M]

 Ans:

 [Procedure --- 2M + Construction – 2M]

(OR)

7. Define AVL tree. Start with an empty AVL search tree and insert the following keys in the given

order: H, I, J, B, A, E, C, F, D, G, K, L

 a) Draw the figures depicting your tree immediately after each insertion and following

rebalancing.

 b) Remove the keys in order C, I, H. Draw your tree immediately after each delete. [10M]

 Ans: AVL Tree: AVL Tree is balanced binary search tree. Invented by G.M. Adelson-Velsky and E.M.

Landison in 1962. A binary tree is said to be balanced if the difference between the heights of left

and right sub trees of every node in the tree is either -1, 0, or +1. -------- 1M

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

a) After inserting all the given keys, the final AVL Tree is shown in below:

 Procedure ----- 3M

 Final tree ------ 2M

b) After deleting C from final AVL tree is as follows

After deleting ‘C’ After deleting ‘I’ After deleting ‘H’

 1M+1M+1M=3M

UNIT-IV

8. a) Write a program to implement Heap Sort. [4M]

 Ans:

void heapsort(int[], int);

void buildheap(int [], int);

void satisfyheap(int [], int, int);

void main()

{

 int a[10], i, size;

 printf("Enter size of list"); // less than 10, because max size of array is 10

 scanf("%d",&size);

 printf("Enter elements");

 for(i=0; i < size; i++)

 {

 scanf("%d",&a[i]);

 }

 heapsort(a, size);

 getch();

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

}

void heapsort(int a[], int length)

{

 int heapsize, i, temp;

 buildheap(a, length);

 heapsize = length - 1;

 for(i=heapsize; i >= 0; i--)

 {

 temp = a[0];

 a[0] = a[heapsize];

 a[heapsize] = temp;

 heapsize--;

 satisfyheap(a, 0, heapsize);

 }

 for(i=0; i < length; i++)

 {

 printf("\t%d",a[i]);

 }

}

void buildheap(int a[], int length)

{

 int i, heapsize;

 heapsize = length - 1;

 for(i=(length/2); i >= 0; i--)

 {

 satisfyheap(a, i, heapsize);

 }

} -------- 2M

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

void satisfyheap(int a[], int i, int heapsize)

{

 int l, r, largest, temp;

 l = 2*i;

 r = 2*i + 1;

 if(l <= heapsize && a[l] > a[i])

 {

 largest = l;

 }

 else

 {

 largest = i;

 }

 if(r <= heapsize && a[r] > a[largest])

 {

 largest = r;

 }

 if(largest != i)

 {

 temp = a[i];

 a[i] = a[largest];

 a[largest] = temp;

 satisfyheap(a, largest, heapsize);

 }

} ------- 2M

8. b) Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and hash function h(x)= x mod 10. Show

the resulting hash table using linear probing and quadratic probing for bucket size 9? Compare

their performance. [Take C1=2 and C2= 1 if necessary where C1 and C2 are arbitrary

constants.] [6M]

 Ans: Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989}

 Hash table size=9 i.e., m=9

 H(x)= x mod 10

 In Linear probing, Hash function is as follows

 H(x)= (H1(x) + i) mod m where m denotes hash table size or bucket size and i=0,1,2,…

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

 Insert 4371 into hash table using linear probing

 H(4371) = ((4371 mod 10) + i) mod 9

 if i=0, H(4371) = (1 + 0) mod 9 = 1

 then the key 4371 will be placed at index 1 in hash table.

 Similarly calculate indexes for remaining keys using linear probing.

 After inserting all keys into hash table, hash table becomes

index Keys

0 4199

1 4371

2 9679

3 1323

4 6173

5 4344

6 1989

7

8

 Hash Table ------- 3M

 In Quadratic probing, Hash function is as follows

 H(x) = (H1(x) + C1.i + C2.i2) mod m. where m denotes hash table size or bucket size.

 i=0,1,2,….. and C1, C2 are arbitrary constants.

 To insert 4371, hash function will be

 H(4371) = ((4371 mod 10) + 2 .0 + 1.0) mod 9 [:.Here C1=2,C2=1 and i=0)

 = (1+0+0) mod 9 = 1

 Similarly calculate indexes for remaining keys using Quadratic probing, hash table becomes

index Keys

 0 4199

1 4371

2

3 1323

4 4344

5 9679

6 6173

7 1989

8

 Hash Table

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

 Comparison : In linear probing, difference of probe sequences is fixed i.e., 1 when collision occurs.

Where as in Quadratic probing, difference of probe sequences is not fixed. In the above problem to

insert 1989 into hash table using linear probing, its takes 7 probe sequences. Where as in quadratic

probing, it takes only 4 probe sequences. By seeing this, to insert 1989 , linear probing technique take

more time than quadratic probing. --------- 3M

(OR)

9. a) Explain the concept of separate chaining. [5M]

 Ans: Separate chaining is defined as a method by which linked lists of values are built in association

with each location within the hash table when a collision occurs. ----- 1M

 To understand the concept of Separate chaining, consider the following example

 Inserting the keys {36, 18, 72, 43, 6, 10, 5, 15} into hash table with table size 8 is as follows:

 Example ------- 4M

9. b) What are the advantages of Disjoint Set data structure? Explain various operations performed

on Disjoint Set data structure with an example. [5M]

 Ans: Advantages of Disjoint Data Structure:

1. It is used to identify cycles in undirected graph.

2. Used to identify whether an element is belongs to which subset. ----- 1M

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

1. Union(4,3)

2. Union(8,4)

3. Union(9,3)

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

 ------ 4M

Prepared By

K. Suresh Kumar,

Assistant Professor, Signature of HOD

Department of IT.

S.NO. Examiners College Contact Number Sign.

Written by K. Suresh Kumar, Asst.Professor, Dept.of IT,BEC

