

1

 14IT502
Hall Ticket Number:

III/IV B.Tech (Regular / Supplementary) DEGREE EXAMINATION

November, 2019 Information Technology

Fifth Semester Compiler Design
Time: Three Hours Maximum: 60 Marks

Answer Question No.1 compulsorily. (1X12 = 12 Marks)
Answer ONE question from each unit.

 (4X12=48 Marks)

1 Answer all questions (1X12=12Marks)
 a) Define assembler.
 b) Define symbol table.
 c) Define lexeme.
 d) List the possible actions can make in shift-reduce parsing.
 e) Define reduce/reduce conflict.
 f) Define syntax-directed definition.
 g) Define control stack.
 h) Define activation record.
 i) Define call by reference.
 j) Define register allocation.
 k) Define basic block
 l) Define flow graph.

UNIT I
2 a) Illustrate phases of compiler with an assignment statement a=(b+c)*(b+c)*2 8M
 b) Find whether the following grammar is LL(1) or not

S-> abSa|aaAb
A->baAb|b

4M

(OR)
3 a) Find the predictive parser for the following grammar and parse the sentence id+id*id

E→ E+T|T
T→ T*F|F
F→ (E)| id

8M

 b) Differentiate the lexical analysis with parsing. 4M
UNIT II

4 a) Construct the SLR parsing table for the grammar
S->(L)|a
L->L,S|S

8M

 b) Construct Syntax tree for b + 5 – a 4M
(OR)

5 a) Construct the LALR parsing table for the grammar
S->L=R|R
L->*R|id
R->L

8M

 b) Illustrate the construction of input/output translator with Yacc. 4M
UNIT III

6 a) Illustrate stack and heap storage allocation strategies for strings and records. 8M
 b) Demonstrate the representing of scope information. 4M

(OR)
7 a) Explain register assignment and allocation with an example. 4M
 b) Demonstrate different data structures to symbol tables 8M

2

UNIT IV
8 a) Describe simple target machine model. 6M
 b) Demonstrate determining the liveness and next-use information for each statement in a

basic block.
6M

(OR)
9 a) Illustrate back patching. 4M
 b) Illustrate the issues in design of code generator 8M

3

III/IV B.Tech (Regular / Supplementary) DEGREE EXAMINATION

November, 2019 Information Technology
Fifth Semester Compiler Design
Time: Three Hours Maximum: 60 Marks

Scheme of Evaluation & Answers

1. Answer all questions (1 x 12 = 12 Marks)

a)

Ans

Define assembler.

An assembler is a program that converts assembly language into machine code.

b)

Ans

Define symbol table.

Symbol table is an important data structure created and maintained by compilers in order to store

information about the occurrence of various entities such as variable names, function names,

objects, classes, interfaces, etc. Symbol table is used by both the analysis and the synthesis parts of

a compiler.

c)

Ans

Define lexeme.

A lexeme is a sequence of characters in the source program that matches the pattern for

a token and is identified by the lexical analyzer as an instance of that token

d)

Ans

List the possible actions can make in shift-reduce parsing.

1.Shift

2.Reduce

3.Accept

4.Error

e)

Ans

Define reduce/reduce conflict.

A reduce/reduce conflict occurs if there are two or more rules that apply to the same sequence of

input. This usually indicates a serious error in the grammar.

f)

Ans

Define syntax-directed definition.

A syntax directed definition is a context-free grammar in which. each grammar symbol X is

associated with two finite sets of values: the synthesized attributes of X and the inherited attributes

of X, each production A is associated with a finite set of expressions of the form.

g)

Ans

Define control stack.

Control stack or runtime stack is used to keep track of the live procedure activations i.e the

procedures whose execution have not been completed.

h)

Ans

Define activation record.

Information needed by a single execution of a procedure is managed using contiguous block of

storage called an activation record.

4

i)

Ans

Define call by reference.

The call by reference method of passing arguments to a function copies the address of an

argument into the formal parameter. Inside the function, the address is used to access the actual

argument used in the call.

j)

Ans

Define register allocation.

Register allocation refers to the practice of assigning variables to registers as well as handling

transfer of data into and out of registers.

k)

Ans

Define basic block.

A basic block is a sequence of consecutive statements in which flow of control enters at the

beginning and leaves at the end without any halt or possibility of branching except at the end.

l)

Ans

Define flow graph.

Flow graph is a directed graph. It contains the flow of control information for the set of basic

block. A control flow graph is used to depict that how the program control is being parsed among

the blocks.

UNIT-I
2 a) Illustrate phases of compiler with an assignment statement a=(b+c)*(b+c)*2 8M
Ans:

Lexical Analysis:

LA or Scanner reads the source program one character at a time, separates the source program into a

sequence of atomic units called tokens. The usual tokens are keywords such as WHILE, FOR, DO or

IF, identifiers such as X or NUM, operator symbols such as <,<=,+,>,>= and punctuation symbols such

2 Marks

5

as parentheses or commas. The output of the lexical analyzer is a stream of tokens, which is passed to

the next phase.

Syntax Analysis:

The second phase is called Syntax analysis or parser. In this phase expressions, statements, declarations

etc… are identified by using the results of lexical analysis. It takes the token produced by lexical

analysis as input and generates a parse tree (or syntax tree). In this phase, token arrangements are

checked against the source code grammar, i.e., the parser checks if the expression made by the tokens is

syntactically correct.

Semantic Analysis:

Semantic analysis checks whether the parse tree constructed follows the rules of language. For

example, assignment of values is between compatible data types, and adding string to an integer. Also,

the semantic analyzer keeps track of identifiers, their types and expressions; whether identifiers are

declared before use or not, etc. The semantic analyzer produces an annotated syntax tree as an output.

Intermediate Code Generations:

After semantic analysis, the compiler generates an intermediate code of the source code for the target

machine. It represents a program for some abstract machine. It is in between the high-level language

and the machine language. This intermediate code should be generated in such a way that it makes it

easier to be translated into the target machine code. This phase bridges the analysis and synthesis

phases of translation.

Code Generation:

The last phase of translation is code generation. A number of optimizations to reduce the length of

machine language program are carried out during this phase. The output of the code generator is the

machine language program of the specified computer.

a=(b+c)*(b+c)*2

id1=(id2+id3)*(id2*id3)*2

 =

 a *

 * 2

 + +

 id2 id3 id2 id3

 .
 .

 Temp1:=inttoreal(2)
 Temp2:=id2*id3
 Temp3:=Temp2*Temp2
 Temp4:=Temp3*Temp1
 a:=Temp4

 MOVF id2,R1
 MOVF id3,R2
 MULF R2,R1
 ADDF R1,R1
 MULF *2.0,R1
 MOVF R1,id1

Lexical Analysis

Syntax Analysis

Intermediate Code Generation

Code Generation

3 Marks

3 Marks

6

2 b) Find whether the following grammar is LL(1) or not 4M
 S-> abSa|aaAb
 A->baAb|b
Ans: The given grammar contains left factoring, so we have to eliminate left factoring, then grammar

will be S aS1 S1bSa | aAb A bA1 A1aAb | €

Find the FIRST & FOLLOW of variable

 FIRST(S) = { a } FIRST(S1) = { b,a } FIRST(A) = { b } FIRST(A1) = { a, € }

FOLLOW(S) = { a,$ } FOLLOW(S1) = { a,$ } FOLLOW(A) = { b } FOLLOW(A1) ={b }

Parse table:

 a b $

S S aS1

S1 S1 aAb S1bSa

A A bA1

A1 A1aAb A1 €

The parse table contains uniquely defined entries, Hence the given grammar is LL(1) grammar.

(OR)
3 a) Find the predictive parser for the following grammar and parse the sentence id+id*id 8M
 E→ E+T|T
 T→ T*F|F
 F→ (E)| id
Ans: First eliminate the left recursion for E as

E → TE’

E’ → +TE’ | ε

Then eliminate for T as

T → FT’

T’→ *FT’ | ε

Thus the obtained grammar after eliminating left recursion is
E → TE’

E’ → +TE’ | ε

T → FT’

T’ → *FT’ | ε

F → (E) | id

FIRST and FOLLOW set of variables
First() :

FIRST(E) = { (, id}

FIRST(E’) ={+ , ε }

FIRST(T) = { (, id}

FIRST(T’) = {*, ε }

FIRST(F) = { (, id }

2 Marks

2 Marks

2 Marks

7

Follow():

FOLLOW(E) = { $,) }

FOLLOW(E’) = { $,) }

FOLLOW(T) = { +, $,) }

FOLLOW(T’) = { +, $,) }

FOLLOW(F) = {+, * , $,) }

Parser moves for the input string id+id*id$

3 b) Differentiate the lexical analysis with parsing. 4M

Ans: The main difference between lexical analysis and syntax analysis is that lexical analysis reads the source

code one character at a time and converts it into meaningful lexemes (tokens) whereas syntax analysis takes

those tokens and produces a parse tree as an output.

2 Marks

2 Marks

2 Marks

8

Lexical Analysis Paising

First phase of the compilation process. Second phase of the compilation process.

Process of converting a sequence of characters into a

sequence of tokes.

Process of analyzing a string of symbols conforming to

the rules of a formal grammar.

Lexing and tokenization are other names for lexical

analysis.

Syntactic analysis and parsing are the other names for

syntax analysis.

Reads the source program one character at a time and

converts it into meaningful lexemes (tokens).

Takes tokens as input and generates a parse tree as

output.

UNIT-II

4 a) Construct the SLR parsing table for the grammar 8M

 S (L) | a

 L L , S | S

Ans: The given grammar G is 1. S (L)

 2. S a

 3. L L , S

 4. L S

Augmented grammar G1 for the given grammar G is:

 S1 S

 S (L)

 S a

 L L , S

 L S

LR(0) items for the grammar are:

 I0:

S1. S

S . (L)

S . a

 Goto(I0,S)

I1: S1 S.

 Goto(I0, ()
I2:S (.L)

L .L , S

L .S

S .(L)

S . a

 Goto(I0,a)

I3: S a.

 Goto(I2, L)
I4: S (L.)

L L. , S

 Goto(I2, S)
I5: L S.

 Goto(I2, () = I2

Goto(I2, a) = I3

 Goto(I4,))

I6: S (L).

 Goto(I4, ,)

I7: L L , S.

 Goto(I7,S)

I8: L L , S.

 Find FOLLOW of variables:

FOLLOW(S) = {), , , $ }

FOLLOW(L) = {), , }

4 Marks

1 Mark

4 Marks

9

Construction of SLR parse table:

State ACTION GOTO

 () , a $ S L

0 S2 S3 1

1 Accept

2 S2 S3 5 4

3 r2 r2 r2

4 S6 S7

5 r4 r4

6 r1 r1 r1

7 8

8 r3 r3

4 b) Construct Syntax tree for b + 5 - a 4M

Ans: Syntax Tree or Abstract Syntax Tree is a condensed form of parse tree. In the syntax tree,

interior nodes are operators and leaves are operands.

-

 + a

 b 5

Each node in a syntax tree for an (arithmetic) expression is a record with several fields. In the node for

an operator, one field identifies the operator and the remaining fields contain pointers to the nodes of

the operands. The operator is often called the label of the node.

 p1:= mkleaf(id, entryb);

 p2:=mkleaf(num,5);

 p3:=mknode(‘+’,p1,p2);

 p4:=mkleaf(id,entrya);

 p5:=mknode(‘-‘,p3,p4);

(OR)

5 a) Construct LALR parsing table for the grammar S L=R S R L *R L id R L 8M

Ans: The given grammar is

 1) S L = R 2) S R 3)L*R 4)Lid 5) RL

3 Marks

2 Marks

2 Marks

10

Step-1: Convert given grammar into augmented grammar

 S1S S L = R S R L*R Lid RL

Step-2: Find LR(1) items

Step 3: Construction of parse table:

State
ACTION GOTO

= * id $ S L R

0 S411 S512 1 2 3

1 ACCEPT

2 S6 r5

3 r2

411 S411 S512 810 713

512 r4 r4

6 S11 S12 810 9

713 r3 r3

810 r5 r5

9 r1

All blanks are error.

5 b) Illustrate the construction of input/output translator with YACC. 4M

Ans: Yacc: Yet Another Compiler-Compiler

YACC is a tool which will produce a parser for a given grammar.

YACC (Yet Another Compiler Compiler) is a program, designed to compile a LALR (1) grammar and

to produce the source code of the syntactic analyzer of the language produced by this grammar.

1 Mark

4 Marks

3 Marks

1 Mark

11

YACC file format:

 %{

 C declarations

%}

 yacc declarations

%%

 Grammar rules

%%

 Additional C code

– Comments enclosed in /* ... */ may appear in any of the sections.

UNIT-III

6 a) Illustrate stack and heap storage allocation strategies for strings and records. 8M

Ans: Stack Allocation

 Stack allocation manages the runtime storage as a stack, i.e., control stack

 Activation records are pushed and popped as activation begins and end respectively

 Locals are always bound to fresh storage in each activation, because a new activation is onto a

stack when a call is made

 Values of locals are deleted as activation ends

 The data structure can be created dynamically for stack allocation

Limitations

 Values of locals cannot be retained once activation ends

 The memory addressing can be done using pointers and indexed registers

 This type of allocation is slower than static allocation

Heap allocation

 Storage can be allocated and de allocated in any order

 If the values of non-local variables must be retained even after the activation record then such a

retaining is not possible by stack allocation

1 Mark

4 Marks

2 Marks

12

 It is used for retaining of local variables

 The heap allocation allocates the continuous block of memory when required for storage of

activation records. This allocated memory can be deallocated when activation ends

 Free space can be further reused by heap manager

 It supports for recursion and data structures can be created at runtime

Limitation

 Heap manages overhead.

6 b) How to represent scope information in symbol table? 4M

Ans: A compiler maintains two types of symbol tables: a global symbol table which can be accessed by

all the procedures and scope symbol tables that are created for each scope in the program.

To determine the scope of a name, symbol tables are arranged in hierarchical structure as shown in the

example below:

4 Marks

2 Marks

13

The global symbol table contains names for one global variable (int value) and two procedure names,

which should be available to all the child nodes shown above. The names mentioned in the pro_one

symbol table (and all its child tables) are not available for pro_two symbols and its child tables.

This symbol table data structure hierarchy is stored in the semantic analyzer and whenever a name

needs to be searched in a symbol table, it is searched using the following algorithm:

 First a symbol will be searched in the current scope, i.e. current symbol table.

 if a name is found, then search is completed, else it will be searched in the parent symbol table

until,

 Either the name is found or global symbol table has been searched for the name.

(OR)

7 a) Explain register assignment and allocation with an example. 4M

Ans: Register Assignment-The specific register that a variable will reside in is picked.

Register allocation is the process of assigning variables to registers and managing data transfer in and

out of registers. A program has a number of values to be maintained during the execution. The target

machine's architecture may not allow all of the values to be kept in the CPU memory or registers.

Code generator decides what values to keep in the registers.

7 b) Demonstrate different data structures to symbol tables. 8M

Ans: There are a number of data structures that can be used to implement a symbol table:

 • An Ordered List Symbols are stored in a linked list, sorted by the symbol’s name. This is simple, but

may be a bit too slow if many identifiers appear in a scope.

• A Binary Search Tree Lookup is much faster than in linked lists, but rebalancing may be needed.

(Entering identifiers in sorted order turns a search tree into a linked list.)

• Hash Tables the most popular choice.

The Linear List

• A linear list of records is the easiest way to implement a symbol table.

• The new names are added to the table in the order mat they arrive.

• Whenever a new name is to be added to the table, the table is first searched linearly or

sequentially to check whether or not the name is already present in the table.

2 Marks

2 Marks

2 Marks

2 Marks

• . If the name is not present, then the record

position specified by the available pointer

• To retrieve the information about the name, the table is searched sequentially, starting from the

first record in the table.

• The average number of comparisons,

search and p = n for an unsuccessful search, where

• The advantage of this organization is that it takes less space, and additions to the table are

simple.

• This method's disadvantage is that it has a higher accessing time.

Name info Name

Search Trees

• A search tree is a more efficient approach to symbol table organization.

• add two links, left and right, in each record, and these links point to the record in the search tree.

• Whenever a name is to be added, first the name is searched in the tree.

• If it does not exist, then a record for the new name is created and added at the proper position in

the search tree.

• This organization has the property of alphabetical accessibility; that is, all the names accessible

from name;. by following a left link, precede name, in alphabetical order.

• Similarly, all the name accessible from name, by following right link follow nam

alphabetical order

• The expected time needed to enter

Iog2n; so for greater numbers of records (higher n

organization.

Hash Tables

• A hash table is-a table of pointers numbered from zero to

a record within the symbol table.

• To enter a name into symbol table, we find out the hash value of the name by applying a

suitable hash function.

14

. If the name is not present, then the record for new name is created and added to the list at a

position specified by the available pointer

To retrieve the information about the name, the table is searched sequentially, starting from the

The average number of comparisons, p, required for search are p = (n

for an unsuccessful search, where n is the number of records in symbol table.

The advantage of this organization is that it takes less space, and additions to the table are

This method's disadvantage is that it has a higher accessing time.

Name info Name info Name info Name

A search tree is a more efficient approach to symbol table organization.

add two links, left and right, in each record, and these links point to the record in the search tree.

Whenever a name is to be added, first the name is searched in the tree.

oes not exist, then a record for the new name is created and added at the proper position in

This organization has the property of alphabetical accessibility; that is, all the names accessible

from name;. by following a left link, precede name, in alphabetical order.

Similarly, all the name accessible from name, by following right link follow nam

The expected time needed to enter n names and to make m queries is proportional to

ter numbers of records (higher n) this method has advantages over linear list

pointers numbered from zero to k~\ that point to the symbol table and

a record within the symbol table.

To enter a name into symbol table, we find out the hash value of the name by applying a

for new name is created and added to the list at a

To retrieve the information about the name, the table is searched sequentially, starting from the

= (n + l)/2 for successful

is the number of records in symbol table.

The advantage of this organization is that it takes less space, and additions to the table are

Name info

A search tree is a more efficient approach to symbol table organization.

add two links, left and right, in each record, and these links point to the record in the search tree.

oes not exist, then a record for the new name is created and added at the proper position in

This organization has the property of alphabetical accessibility; that is, all the names accessible

from name;. by following a left link, precede name, in alphabetical order.

Similarly, all the name accessible from name, by following right link follow name, in

queries is proportional to (m + n)

) this method has advantages over linear list

that point to the symbol table and

To enter a name into symbol table, we find out the hash value of the name by applying a

2 Marks

2 Marks

• The hash function maps the name into an integer between ze>o and

an index in the hash table, we search the list of the symbol table records that are built on that

hash index.

If the name is not present in that list, we create a record fo

8 a) Describe simple target machine model.

Ans:

 Familiarity with the target machine and its instruction set is a prerequisite for designing a good

code generator.

 The target computer is a byte

 It has ngeneral-purpose registers, R

 It has two-address instructions of the form:

op source, destination

data fields.

It has the following op-codes:

 MOV (move source

15

nction maps the name into an integer between ze>o and k-lt

an index in the hash table, we search the list of the symbol table records that are built on that

If the name is not present in that list, we create a record for name and insert it at the head of the list.

UNIT-IV

Describe simple target machine model.

Familiarity with the target machine and its instruction set is a prerequisite for designing a good

computer is a byte-addressable machine with 4 bytes to a word.

purpose registers, R0, R1, . . . , Rn-1.

address instructions of the form:

 where, op is an op-code, and source

codes:

source to destination)

lt and using this value as

an index in the hash table, we search the list of the symbol table records that are built on that

r name and insert it at the head of the list.

 6M

Familiarity with the target machine and its instruction set is a prerequisite for designing a good

addressable machine with 4 bytes to a word.

source and destination are

2 Marks

3 Marks

3 Marks

16

8 b) Demonstrate determining the liveness and next-use information for each statement in a basic

 block. 6M

Ans:

(OR)

9 a) Illustrate back patching. 4M

Ans: The problem in generating three address codes in a single pass is that we may not know the labels

that control must go to at the time jump statements are generated. So to get around this problem a series

of branching statements with the targets of the jumps temporarily left unspecified is generated.

Back Patching is putting the address instead of labels when the proper label is determined.

Back patching Algorithms perform three types of operations

1) Makelist (i) – creates a new list containing only i, an index into the array of quadruples and returns a

pointer to the list it has made.

2) Merge (i, j) – concatenates the lists pointed to by i and j, and returns a pointer to the concatenated

list.

3) Backpatch (p, i) – inserts i as the target label for each of the statements on the list pointed to by p.

4 Marks

2 Marks

4 Marks

17

9 b) Illustrate the issues in designing of code generator? 8M

Ans: The following issue arises during the code generation phase:

1. Input to code generator:

The input to code generator is the intermediate code generated by the front end, along with

information in the symbol table that determines the run-time addresses of the data-objects

denoted by the names in the intermediate representation. Intermediate codes may be represented

mostly in quadruples, triples, indirect triples, Postfix notation, syntax trees, DAG’s etc. Assume

that they are free from all of syntactic and state semantic errors, the necessary type checking has

taken place and the type-conversion operators have been inserted wherever necessary.

2. Target Program:

Target program is the output of the code generator. The output may be absolute machine

language, reloadable machine language, assembly language.

 Absolute machine language as an output has advantages that it can be placed in a fixed

memory location and can be immediately executed.

 Reloadable machine language as an output allows subprograms and subroutines to be

compiled separately. Reloadable object modules can be linked together and loaded by

linking loader.

 Assembly language as an output makes the code generation easier. We can generate

symbolic instructions and use macro-facilities of assembler in generating code.

3. Memory Management –

Mapping the names in the source program to addresses of data objects is done by the front end

and the code generator. A name in the three address statement refers to the symbol table entry

for name. Then from the symbol table entry, a relative address can be determined for the name.

4. Instruction selection –

Selecting best instructions will improve the efficiency of the program. It includes the instructions that

should be complete and uniform. Instruction speeds and machine idioms also plays a major role when

efficiency is considered. But if we do not care about the efficiency of the target program then

instruction selection is straight-forward.

For example, the respective three-address statements would be translated into latter code sequence as

shown below: P:=Q+R

 S:=P+T

 MOV Q, R0

 ADD R, R0

 MOV R0, P

 MOV P, R0

 ADD T, R0

 MOV R0, S

3 Marks

3 Marks

18

5. Register allocation issues –

Use of registers makes the computations faster in comparison to that of memory, so efficient utilization

of registers is important. The use of registers is subdivided into two sub problems:

1. During Register allocation – we select only those set of variables that will reside in the

registers at each point in the program.

2. During a subsequent Register assignment phase, the specific register is picked to access the

variable.

6. Evaluation Order:

The code generator decides the order in which the instruction will be executed. The order of

computations affects the efficiency of the target code. Among many computational orders, some will

require only fewer registers to hold the intermediate results.

Scheme prepared by

Mr. G.Prasad, Asst.Prof.,

Department of I.T. Signature of the HOD, IT DEPT.

Paper Evaluators:

S.No Name of the College Name of the Examiner Signature

1 Mark

1 Mark

