Hal	l Ti	cket	t Nu	ımb	er:	

II/IV B.Tech (Supplementary) DEGREE EXAMINATION

II/IV B.Tech (Supplen	nentary) DEGREE EXAMINATION
April, 2017	Common for CSE & IT
Third Semester Time: Three Hours	Discrete Mathematical Structures Maximum : 60 Marks
Answer Question No.1 compulsorily.	(1X12 = 12 Marks)
Answer ONE question from each unit.	(4X12=48 Marks)
1. Answer all questions	(1X12=12 Marks)
a) (Pv~P) is a tautology or contradiction	
b) Give the generating function A(X) forc) In how many ways can 10 people arrar	•
d) Give the principle of Mathematical Ind	
e) State the Euler's theorem?	
f) Give the chromatic number for Cycle i	f the length is even?
g) What is meant by Bi – partite graph?	
h) What is the difference between tree and	d graph?
i) What is meant by POSET?	
j) Show that 3 and 24 integers are congru	ient modulo 7?
k) What is an Equivalence Relation?	ŋ
l) State the law of hypothetical syllogism	UNIT I
1. Show that the following are equivalent for	
a) $[P \vee (P^Q) \leftrightarrow P]$ (Using true	
b) [P v (~P^Q) \leftrightarrow P vQ] (Using rule	
	(OR)
2. a) Use Principle of Mathematical Inductio	
divisible by 15 for each +ve integer.	[6 M]following argument (Using Rules of Inference)[6 M]
Every living thing is a Plant or animal.	[0 w]
David's dog is alive and it is not a plant	•
All animals have hearts.	
Hence, David's dog has a heart.	
	UNIT II
3. a) Find the coefficient of X^{12} in	[6 M]
$1 - X^4 - X^7 + X^{11}$	
b) Find the coefficient of X^{25} in $(X^2+X)^{10}$	$x^{3} \cdot x^{4} \cdot x^{5} \cdot x^{6}$
b) Find the coefficient of X^{-1} in (X^{-1})	(OR) [6 M]
5 a) In How many ways can the committee of	f 5 teachers and 4 students be chosen from 9 teachers and 15
students if teacher A refuses to serve if	
	range themselves i) In a row of 10 chairs? ii) In a row of 7
chairs? iii) In a circle of 10 chair	-
	UNIT III
6. Solve the following recurrence relation	18:
a) $a_n = a_{n-1} + n$ where $a_0 = 2$. (using substitution	
b) a_n -6 a_{n-1} =0 where a_0 =1.(Using Generating	-
7 a) Define the terres 1) 1-this 9	(OR)
7. a) Define the terms: i) lattice?iii) Meet – semi	ii) Join – semi lattice [4 M] lattice iv) TOSET
	uset [D12;/]. Where '/' is the divisibility relation.
Determine this POSET is lattice or not	[8 M]

14CS IT 302

UNIT IV

8.	a) Find the Chromatic – Number for the "Wheel" graph?	[6 M]
	b) State and explain Euler's Formula for planar graph?	[6 M]
	(OR)	
9.	a) What is meant by Adjacency – Matrix? Give the adjacency matrix K_{3} .	3. [6 M]
	b) What is meant by Isomorphism? Discuss with suitable examples.	[6 M]

Hall Ticket Number:

II/IV B.Tech (Supplementary) DEGREE EXAMINATION

April, 2017 Third Semester

Time: Three Hours

Answer Question No.1 compulsorily.

Answer ONE question from each unit.

1. Answer all questions

- a Convert $(100101)_{\text{gray}}$ to binary.
- b Which logic gate is used in parity checkers?
- c How many numbers of Boolean functions that can be generated by n variables?
- d Differentiate between a prime implicant and non-prime implicant.
- e Write truth table for 2-bit magnitude comparator.
- f Design EX-OR gate using decoder
- g Write characteristic equation of JK flip flop.
- h Compare combinational and sequential circuits.
- i How many flip flops are required to build MOD-12 counter?
- j What is meant by PAL?
- k How many number of states can count by n-bit Johnson counter
- 1 Draw the block diagram of RAM cell.

UNIT I

2.a	Explain about signed magnitude and 2's complement approaches for representing the	
	fixed point numbers. Why 2's complement is preferable?	6M
2.b	Design all basic gates with NOR and NAND gates.	6M
	(OR)	
3.a	With respect to the Boolean expressions identify correct and in-correct statements (<i>i</i>) $A' + AB = A + B$, (<i>ii</i>) $A(A + B) = A$, (<i>iii</i>) $(A + B')(B' + C) = AC$, (<i>iv</i>) $A + A + AA' + B + B + BB' + AB = A$	
	BB' + AB = A	4M
3.b	Simplify the following Boolean function using 4-varaiable K-map and implement the simplified function with basic gates (inverter, and, & or) only.	1171
	$f(A,B,C,D) = \sum m(1,5,6,7,11,12,13,15)$	8M
	LINIT II	

UNIT II

4.a	Minimize the following Boolean function using tabulation method	
	$f(w,x,y,z) = \sum m(1,4,6,7,8,9,10,11,15)$	6M
4.b	Design a full adder with two half adders and basic gates.	6M
	(OR)	
5.a	Implement the following Boolean function using a single 8 X 1 multiplexer and no other gate.	
	F(A, B, C, D) = BC + ABD' + A'C'D	6M
5.b	Design seven segment display decoder.	6M
	UNIT III	
6.a	Design a MOD – 6 asynchronous counter using T-flip flops.	6M
6.b	Design a synchronous BCD counter using JK-flip flops.	6M
	(OR)	
7.a	Derive D flip flop and JK flip flop from T flip flop. Give the procedure for flip flop	

- 7.a Derive D flip flop and JK flip flop from T flip flop. Give the procedure for flip flop inter conversion.
 5M
- 7.b Explain about SR flip flop with its truth table. Write its characteristic table, excitation table and characteristic equation. Draw its logic diagram7M

Common for CSE & IT Digital Logic Design Maximum : 60 Marks

(1X12 = 12 Marks)

(4X12=48 Marks)

(1X12=12 Marks)

14CS IT303

UNIT IV

8.a	Draw a 4-bit shift register using JK flip flop which can shift the data to register one by	
	one on the application of a clock.	6M
8.b	Design a 4-bit binary up and down ripple counter.	6M
	(OR)	
9.a	Implement the following function using PLA	
	$F1 = \sum m(1,2,4,6)$	
	$F2 = \sum m(0,1,6,7)$	7M
	$F3 = \sum m(2,6)$	
9.b	Elucidate the importance of ROM with neat diagrams.	5M

Common for CSE & IT

Operating Systems

Maximum: 60 Marks

(4X12=48 Marks)

(1X12 = 12 Marks)

(1X12=12 Marks)

Hall Ticket Number:

-				
				1
				1
				1
				1
				1

II/IV B.Tech (Supplementary) DEGREE EXAMINATION

April, 2017 Third Semester

Time: Three Hours

Answer Question No.1 compulsorily.

Answer ONE question from each unit.

1. Answer all questions

- a) Describe the objectives of Operating Systems.
- b) Describe Process Control Block (PCB).
- c) List any three differences between Thread & Process
- d) What is race condition?
- e) Define waiting time
- f) List the types of semaphores
- g) What is a Dead Lock?
- h) List necessary condition for Dead Lock.
- i) What is contiguous memory allocation?
- j) What is a File?

2.

- k) What are File attributes?
- 1) Define Directory.

UNIT I

What is a "System Call" ? list the types of system calls. [12 M]

(**OR**)

3. Describe in detail about Types of scheduling queues & types of schedulers [12 M]

UNIT II

4. Explain CSP through Reader – writer Problem.

- [12 M]
- 5. Consider the following set of process with the length of the CPU burst time given in milliseconds. [12 M] The process are assumed to have arrived in the order 1,2,3 all at the time zero.

Process	CPU Burst Time
P1	24
P2	3
P3	3

i) Draw Gantt chart that indicates the execution of these processes using the Scheduling Algorithms FCFS & SJF.

ii) What is waiting time of each process for each of these scheduling algorithms?

iii) What is turnaround time of each process for each of these scheduling algorithms?

UNIT III

6.	Explain about deadlock avoidance with Bankers algorithm with an example	[12 M]
	(OR)	
7.	Explain memory management techniques : paging & segmentation	[12 M]
	UNIT IV	
8.	Explain file system mounting, file sharing & file protection.	[12 M]
	(OR)	

9.aDiscuss types of directory implementation[4 M]9.bExplain different disk space allocation methods[8 M]

(**OR**)

14CSIT305

Hall Ticket Number:

II/IV B.Tech (Supplementary) DEGREE EXAMINATION

	II/IV D. Tech (Supplementary) DEGREE EXAMINATION	_
Apr	ril, 2017 Computer Science & Engine	ering
Thi	rd Semester Data Struc	tures
Time	e: Three Hours Maximum : 60	Marks
Answ	ver Question No.1 compulsorily. (1X12 = 12	Marks)
Answ	ver ONE question from each unit. (4X12=48 M	(larks)
1. Ar	nswer all questions (1X12=12 M	(arks)
a.	Define ADT	
b.	What is Big Oh Notation	
c.	What is the structure of node for storing polynomial equations.	
d.	What is the ADT of a Stack	
e.	Write the post fix expression for $(a+b)*c^d-e$	
f.	List any two applications of queues.	
g. h.	Define tree What is the difference between binary tree and binary search tree	
п. i.	What is the applications of AVL Tree	
ı. j.	Explain any two types of hash functions	
J. k.	Define a priority queue	
1.	How do we represent a DAG using adjacency matrix	
	UNIT – I	
2.a	What are the advantages and disadvantages of doubly linked list over singly linked list? Explain the	6M
	applications of doubly linked lists.	
2.b	Write a program to reverse a singly linked list	6M
	(OR)	
3.a	How do we perform addition of two polynomials using singly linked list	6M
3.b	What are the various ways to analyze the time/space complexity of recursive functions? Explain with an example	6M
	UNIT – II	
4.a	List any two applications of stacks in computing environment	4M
4.b	Write a C program to implement a Stack which a restriction that, the first two elements which are to be	8M
	pushed are 0 & 1, later you can only push an element which is equal to sum of last two elements of	-
	stack.(i.e. when all elements are popped you will see a reverse order of Fibonacci series).	
	(OR)	
5.a	List the advantages and disadvantages of linked representation over array representation of queue.	4M
5.b	Write a C program that enqueues only palindrome numbers.	8M
	UNIT – III	
6.a	Construct a binary tree for the following data items: 80, 40, 75, 30, 20, 90, 50, 25, 80. Write the	8M
	inorder, preorder & postorder notation of constructed tree.	
6.b	Explain about the height of an AVL Tree	4M
-	(OR)	04
7.a	What are tree properties? List any four applications of trees.	6M
7.b	Explain the double rotations of AVL Tree using examples UNIT – IV	6M
8.a	Explain linear probing with an example. What are the disadvantages of this approach	6M
8.b	Define a Graph. Explain BFS with an example.	6M
5.5	(OR)	~
9.a	What are the applications of Priority Queues	4M
9.b	Explain chaining mechanism with an example. What are the disadvantages of chaining mechanism?	8M