In-		I/IV B.Tech (Supplementary) DEGREE EXAMINATION	haa
NOV Fire	/em + So	mostor Mathematic	nes T
r 11 s Timo	e: Th	ree Hours Maximum: 60 M	5 – 1 1arks
4nsv	ver Q	uestion No.1 compulsorily. (1X12 = 12 Ma	arks)
1 <i>пs</i> и 1	<i>er C</i> An	NE question from each unit.(4X12=48 Magnetic field)swer all questions(1X12=12 Magnetic field)	arks) arks)
1.	a)	Are the vectors (1,3) and (-2,5) are linear independent or dependent?	arksj
	b) c)	When does a non homogeneous system consistent? Give an example of a 3X 3 Skew Symmetric matrix	
	d)	Write Rolle's theorem.	
	e) f)	Define linear independent vectors. Define skew-Hermitian matrix	
	g)	Define a saddle point.	
	h)	Solve $\frac{dy}{dx} = xy$	
		$\frac{dx}{dx}$	
	i) i)	State Bernoulli's equation. State Newton's law of cooling	
	k)	Find the complete solution of $(D^2 - 2)y = 0$.	
	1)	State Euler – Cauchy equation.	
r	a)		6M
2.	a)	$\begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \end{bmatrix}$	0101
		Determine the rank of the matrix $A = \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}$ by reducing it to row echlon form.	
		$\begin{bmatrix} 0 & 1 & 1 & -1 \end{bmatrix}$	
	b)	For what values of k the equations $x + y + z = 1$, $2x + y + 4z = k$, $4x + y + 10z = k^2$, have a solution and	6M
		solve them completely in each case. (OR)	
3.	a)		6M
		Find eigen values and the corresponding eigen vectors of the matrix $\begin{bmatrix} 1 & 5 & 1 \end{bmatrix}$	
	b)	Are the vectors $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ linearly dependent? If so	6M
	,	express one of the vectors as a linear combination of others	
		UNIT II	
4.	a)	Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ to principal axes and also write matrix of transformation	6M
	b)	If $f(x) = \sin^{-1} x$, $0 < a < b < 1$, use mean value theorem to prove that	6M
		$\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b - \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}$	
		(OR)	
5.	a)	Verify Lagrange's mean value theorem for $f(x) = (x-1)(x-2)(x-3)$ in (0, 4).	6M
	b)	Show that a rectangular solid of maximum volume that can be inscribed in sphere is a cube. UNIT III	6M
6.	a)	Solve $(2x + xy)dx + 2xdy = 0$	6M
	b)	Solve $v' - v = e^{2x}$, $v(0) = 1$	6M
		(OR)	
7.	a)	Find the orthogonal trajectories of the family of parabolas $y^2 = 4ax$.	6M
	b)	Solve $(1+x^2)y'+3xy-6x=0$.	6M
0	a)	UNIT IV	6M
0.	a) b)	Find a real general solution of $x^2y^2 - 4xy^2 + 6y = 0$	6M
	0)	Solve by the method of undermined coefficients $(D + 1)y = \sin x$	0101
9.	a)	Solve $(r^2 D^2 + 9rD + 16)v = 0$	6M
	1 \	Solve $(x^2 - 3D + 2) x = x^2$ by the method of undetermined Coefficients	6M
	n 1	(m) (m) (m) = m (m) (m) = x (m) (m) = m (m) (m) (m) (m) (m) (m) (m) (m) (m) (UN

MA111