CE/CH/CS/EC/EE/EI/IT/ME 211 14MA301

(4X12=48 Marks)

(1X12=12 Marks)

Hall Ticket Number:												

II/IV B.Tech (Supplementary) DEGREE EXAMINATION

November, 2019 **Common to All Branches Engineering Mathematics-III** Maximum: 60 Marks (1X12 = 12 Marks)

Answer Question No.1 compulsor	rily.
Answer ONE question from each	unit.

Answer all questions

Third Semester

Time: Three Hours

Write Fourier Integral Theorem a)

b) Find f(x), if the Fourier Sine transform of
$$f(x) = \frac{1 - cosn\pi}{n^2 \pi^2}$$
, $(0 \le x \le \pi)$

- c) Define Convolution of two functions.
- d) Solve $u_{xy} = u_y$
- Write the solution of Wave equation e)
- Write the solution of Laplace equation. f)
- State Newton's divided difference formula g)
- h) Write Lagrange's Inverse Interpolation formula.
- i) Write the iterative formula for \sqrt{N} using Newton-Raphson method.
- j) Reduce $A = \begin{bmatrix} 8 & 5 \\ 2 & 3 \end{bmatrix}$ as LU-factorization
- k) Explain Euler's method.
- I) State Poisson's equation.

UNIT I

2 a) Write the Fourier integral representation for
$$f(x) = \begin{cases} 1 - x^2, for |x| \le 1 \\ 0, for |x| > 1 \end{cases}$$
 6M

b) Find the Fourier transform of $e^{-a^2x^2}$, a < 0. Hence write Fourier transform of $e^{-x^2/2}$ is 6M Self reciprocal

(OR)
3 a) Express the function
$$f(x) = \begin{cases} 1 - x^2, for |x| \le 1\\ 0, for |x| > 1 \end{cases}$$
 as Fourier integral. 6M

b) Find the Fourier Sine and Cosine transforms of e^{-ax}

UNIT II

- a) Solve $y^2 u_{yy} + 2y u_y 2u = 0$ 4
 - b) Find the deflection of a vibrating string of unit length having fixed ends with initial velocity 6M zero and initial deflection f(x) = k(sinx - sin2x). (OR)
- Find the temperature distribution in the rod at time t, if the ends A and B of a rod 20cm long 5 a) 6M have the temperature at $30^{\circ}c$ and $80^{\circ}c$ until steady state prevails. The temperature of the ends are changed to $40^{\circ}c$ and $60^{\circ}c$ respectively. Find the temperature distribution in the rod at time t.

b) Solve the Laplace equation
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 subject to the conditions $u(0, y) = u(l, y) = u(x, 0) = 0$ and $u(x, a) = \sin \frac{n\pi x}{l}$

6M

6M

CE/CH/CS/EC/EE/EI/IT/ME 211 14MA301

		UNIT III							
6	a)	Find by Newton's Method, the real root of the equation $3x = cosx + 1$	6M						
	b)	The area A of a circle of diameter d is given for the following values	6M						
		d 80 85 90 95 100							
		A 5026 5674 6362 7088 7854							
		Calculate the area of a circle of diameter 105.							
_		(OR)							
7	a)	Use Lagrange's formula to find the form of $f(x)$, given	6M						
		x 0 2 3 6 f(x) 648 704 729 792							
	b)	Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by applying (i) Trapezoidal rule, (ii) Simpson's rule.	6M						
UNIT IV									
8	a)	Apply Gauss-Seidel Iterative method to solve 2x + y + 6z = 9, 8x + 3y + 2z = 13, x + 5y + z = 7.	6M						
	b)	Using Cholesky's method solve 10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 104.	6M						

(OR) a) Apply Runga-Kutta forth order, Solve $\frac{dy}{dx} = x + y$ with y(0) = 1 at x = 0.29 6M

b) Solve the partial differential equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square with sides x = 0 = y, x = 3 = y with u = 0 on the boundary and mesh length 1. 6M