Hall Ticket Number:

II/IV B.Tech (Regular\Supplementary) DEGREE EXAMINATION

November, 2019

Fourth Semester Time: Three Hours

Information Technology

Automata Theory & Formal Languages

Maximum: 60 Marks (1X12 = 12 Marks)

(4X12=48 Marks)

(1X12=12 Marks)

6M

6M

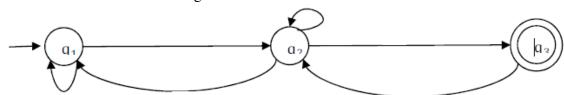
6M

6M

Answer Question No. 1 compulsorily. Answer ONE question from each unit.

- 1. Answer all questions
 - a) Define finite automaton.
 - b) Differentiate NFA and DFA.
 - c) What is the relation between $\Sigma^* = \Sigma^+$
 - d) What is regular expression?
 - e) Is (r*)* = r*?
 - f) Define Homomorphism.
 - g) Define CFG.
 - h) What is ambiguous grammar?
 - i) How many ways can PDA accepts the string?
 - j) Define Turing Machine.
 - k) What is instantaneous description of a TM?
 - 1) What is recursively enumerable language?

UNIT I


- 2. a) Give the DFA which accepts the language over $\sum = \{a,b\}$ that have the set of all strings starts 6M and ends with *aab*.
 - b) Design a DFA to accept the language L= { w | w has both an even number of 0's and an 6M even number of 1's}

(**OR**)

- a) If a language L is accepted by some ε-NFA then show that the language L is also accepted 6M by some DFA
 - b) Construct a DFA equivalent to the NFA given by $M = (\{p,q,r,s\}, \{0,1\}, \delta, p, \{s\})$, where δM bis defined in the following table.

	0	1
р	{p,q}	{p}
q	{r }	{ r }
r	{s }	-
S	{s }	{s}
UNIT II		

- 4. a) Show that $L = \{0^n 102^n / n \ge 0\}$ is not regular
 - b) Find out the RE for the following

(OR)

- 5. a) Construct an FA for RE 10 + (0 + 11)0*1
 - b) Discuss briefly the algebraic law's for regular expressions.

6. a) Let G be a grammar S->0B | 1A, A->0 | 0S |1AA, B->1 |1S | 0BB. For the string **00110101** find its 6M leftmost derivation and derivation tree.

14IT402

14IT402

	b)	Discuss about the following	6M
		(i) Chomsky's Normal Form (ii) Greibach Normal form	
		(OR)	
7.	a)	Design a PDA for the language L={ WW^{R} / W is in (0+1) [*] }	6M
	b)	Construct a PDA equivalent to the following grammar	6M
		$S \rightarrow aAA$	
		$A \rightarrow aS / bS / a$	
		UNIT IV	
8.	a)	Explain the Basic Turing Machine model and explain in one move. What are the actions take place	6M
		in TM?	
	b)	Design a Turing Machine to accept the language $L=\{0^n, 1^n/n \ge 1\}$.	6M
		(OR)	
9.	a)	State the decision properties of Context free languages.	6M
	b)	State and explain Post Correspondence problem with suitable example.	6M

-∞≥∞⊘∞=

ATFL (14IT402) Question Paper

- a) Define finite automaton.
- b) Differentiate NFA and DFA.
- c) What is the relation between $\Sigma^* = \Sigma^+$
- d) What is regular expression?
- e) Is (r*)* = r*?
- f) Define Homomorphism.

- g) Define CFG.
- h) What is ambiguous grammar?
- i) How many ways can PDA accepts the string?
- j) Define Turing Machine.
- k) What is instantaneous description of a TM?
- 1) What is recursively enumerable language?

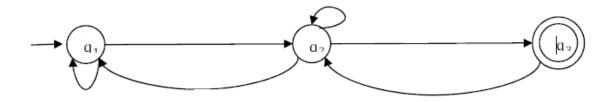
UNIT-I

2 a) Give the DFA which accepts the language over $\sum = \{a,b\}$ that have the set of all strings starts and ends with *aab*. 6M

2 b) Design a DFA to accept the language L= { $w \mid w$ has both an even number of 0's and an even number of 1's} 6M

(OR)

3 a) If a language L is accepted by some ϵ -NFA then show that the language L is also accepted by some DFA.


3 b) Construct a DFA equivalent to the NFA given by $M = (\{p,q,r,s\}, \{0,1\}, \delta, p, \{s\})$, where δ is defined in the following table.

	0	1
р	${p,q}$	{ p }
q	{r }	{ r }
r	{s }	-
S	{s }	{s}

UNIT-II

4 a) Show that $L = \{0^n 102^n / n \ge 0\}$ is not regular.

4 b) Find out the RE for the following

5 a) Construct an FA for RE 10 + (0 + 11)0*1

5 b) Discuss briefly the algebraic law's for regular expressions.

UNIT-III

6 a) Let G be a grammar S->0B | 1A, A->0 | 0S |1AA, B->1 |1S | 0BB. For the string

00110101 find its leftmost derivation and derivation tree. (6M)

- 6 b) Discuss about the following
 - (i) Chomsky's Normal Form (ii) Greibach Normal form (6M)

(OR)

7 a) Design a PDA for the language L={ WW^R / W is in $(0+1)^*$ }

6M 6M

6M

6M

6M

7 b) Construct a PDA equivalent to the following grammar

 $S \rightarrow aAA$ $A \rightarrow aS / bS / a$

UNIT-IV

8. a) Explain the Basic Turing	Machine	model and	explain	in	one move.	What are the actions
take place in TM?						(6M)

b)Design a Turing Machine to accept the language $L=\{0^n 1^n/n \ge 1\}$. (6M)

(**OR**)

9. a) State the decision	properties of Context free	langua ges.	(4M)

b)State and explain Post Correspondence problem with suitable example. (8M)