

1. 2. a) Define Rank of a matrix. b) Find the eigen values of $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$. c) Define Orthogonal matrix. d) State Rolle's theorem. e) Define Skew-Hermitian matrix. f) what is the condition for u = f(x, y) to have maximum and minimum. g) Find the integrating factor of $\log x \, dy + (y - \log x) dx = 0$. h) Define Orthogonal trajectories of curves. I) State Newton's law of cooling. j) Write the general form of Euler-Cauchy equation. k) Find the general solution of y'' + 6y' + 9y = 0. I) Find the wronskian of the functions $u = \cos 2x$, $v = \sin 2x$. 2 a) Find the Rank of the matrix $\begin{vmatrix} 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & 2 & 0 \end{vmatrix}$ 6M b) Find the eigen values and eigen vectors of $= \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$. 6M (or) 3 a) Test for consistency and solve 3x + 3y + 2z = 1, x + 2y = 4, 10y + 3z = -2, 2x - 3y - z = 5. 6M b)Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 1 & 1 \end{bmatrix}$. 6M 4 a) Reduce the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ to the diagonal form. 6M b) Show that $\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b - \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}$, 0 < a < b < 1. 6M (or) 5 a) Use Maclaurin's expansion (up to third degree) to show that $\log(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$, x > 0. b) Divide 24 into three parts such that the product of the first, square of second and cube of the third may be maximum. 6M

6 a) Solve the differential equation $y \sin 2x \, dx - (1 + y^2 + \cos^2 x) dy = 0$. 6M

b) Find the orthogonal trajectories of a confocal and coaxial parabolas $y^2 = 4a(x + a)$. 6M

7 a) Solve the differential equation $\frac{dy}{dx} + y = x^3 y^6$.

b)) If 30% of radioactive substance disappeared in 10 days. How long will it take for 90% of it to disappear?6M

8) a) Solve the differential equation y'' + 5y' + 6y = 0, given y(0) = 0, y'(0) = 15. 6M

b) Solve the differential equation $y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$,

by the method of variation of parameters.

(or)

9 a) Solve the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 2x^2 + 3e^{-x}$ 6M

b) The damped LCR circuit is governed by the equation $L \frac{d^2 q}{dt^2} + R \frac{dq}{dt} + \frac{q}{c} = 0$ where L, R, C are positive constants. Find conditions under which the circuit is over damped, under damped and critically damped. Find also the critical resistance. 6M

Scheme of valuation :

<u>1 a)</u> Definition	1 Mark
b) Eigen values 3 ,2 ,5.	1 Mark
c) <u>)</u> Definition	1 Mark
d) Statement	1 Mark
e) Definition	1 Mark
f) $\frac{\partial u}{\partial x} = 0$, $\frac{\partial u}{\partial y} = 0$	1 Mark
g) Integrating factor = x.	1 Mark
h) Definition	1 Mark
i) Statement	1 Mark
j) Definition	1 Mark
k) $y = (c_1 + c_2 x)e^{-3x}$	1 Mark
l) Wronskian = 2	1 Mark

2 a) Reduce into echelon form	5 marks
Rank	1 Mark
b) $ \mathbf{A} \cdot \mathbf{\lambda} \mathbf{l} = 0$	1 Mark

6M

6M

eigen values (1,1,-2)	2 Marks	
eigen vectors	3 marks	
3 a) <i>A X</i> = <i>B</i>	1Mark	
Echelon form	3 Marks	
Solution $x = 2, y = 1, z =$	-4 2 Marks	
b) Finding inverse	6 Marks	
4 a) Eigen values	3 marks	
Diagonalization	3 marks	
b) $f(x) = \sin^{-1} x$	1 Mark	
Apply LMVT	2 Marks	
Inequality	3 Marks	
5 a) $f(x) = \log(1+x)$	1 Mark	
Maclaurin's expansion	3 Marks	
Inequality	2 Marks	
b) $x + y + z = 24$	1 Mark	
$f(x, y, z) = x y^2 z^3$	1 Mark	
$F = xy^2z^3 + \lambda \left(x + y + z - 24\right)$	9 1 Mark	
Solution	3 Marks	
6 a) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	2 Marks	
Solution	4 Marks	
b) Form the differential equation 2 Marks		
Changing $oldsymbol{y}'$ by $rac{-1}{oldsymbol{y}'}$	1 Mark	
Orthogonal trajectory	3 Marks	
7 a) Bernoulli's form	1 Mark	
Substitution	2 Marks	
Solution	3 Marks	
b) Law	1 Mark	
Finding C value	1 Mark	
Finding K value	1 Mark	
Solution	2 Marks	
8 a) Roots	2 Marks	
Solution	2 Marks	
C_1, C_2 Values	2 Marks	
b) Finding complementary function 2 Marks		
Finding particular integral	4 Marks	
9 a) Finding complementary function 2 Marks		
Finding particular integral	4 Marks	

b) Finding over damping , under damping and critically damping $% \mathcal{A}_{\mathrm{rel}}$

the critical resistance.

6 Marks.