
18IT502
Hall Ticket Number:

III/IV B.Tech (Regular) DEGREE EXAMINATION

Feb, 2021 Information Technology

Fifth Semester Automata & Compiler Design
Time: Three Hours Maximum: 50 Marks
Answer all questions from Part-A. (1X10= 10 Marks)
Answer ANY FOUR questions form Part-B. (4X10=40 Marks)

Part-A
1. Answer all questions (1X10=10 Marks)
 a) Define deterministic finite automata. CO1
 b) Define €-closure of a state. CO1
 c) What is the relation between Σ* = Σ+ CO1
 d) What is ambiguous grammar? CO2
 e) How many ways can PDA accepts the string? CO2
 f) Define compiler. CO3
 g) What are the difficulties with Top-Down parsing? CO3
 h) List the possible actions can make in shift-reduce parsing. CO3
 i) What are the different types of intermediate representations? CO4
 j) Define basic block? CO4

Part-B
UNIT-I

2. a) Design DFA to accept the language L where L = {w/w has both an even number of 0’s and even
number of 1’s}. CO1

5M

 b) Construct a DFA equivalent to the NFA given by M = ({p,q,r,s}, {0,1}, δ, p, {s}), where
δ is defined in the following table CO1

δ 0 1
p {p,q} {p}

q {r} {r}
r {s} Φ

*s {s} {s}

5M

3. a) Construct the minimum state equivalent DFA for the following CO1

5M

 b) Using pumping lemma prove L={ 0m 1n | m<n , n≥1 } is not regular. CO1 5M
UNIT-II

4. a) Consider the following grammar CO2
S A1B
A 0A | €
B 0B | 1B | €
Give leftmost and rightmost derivations of the following string 00101

5M

 b) Convert the grammar CO2
S 0S1 | A
A 1A0 | S | € to a PDA that accepts the same language by empty stack.

5M

5. a) Construct a PDA that accepts the language L = { WCWR / W∈ {a, b}* }. CO2 5M
 b) Convert the following grammar into CNF from G = ({S,A,B}, {a,b,c}, p, S) productions are

S→ABa CO2
A→aab
B→Ac

5M

UNIT-III
6. a) Explain the output of each phase of a compiler for the statement CO3

“Position = Initial + rate * 60.0”

5M

 b) Explain the role of lexical analyzer. CO3 5M

7. a) Test whether the grammar is LL(1) or not, and construct a predictive parsing table for E E+T/
T, T T*F/ F, F (E)/ id CO3

5M

 b) Explain the stack implementation of Shift – reduce parser with an example. CO3 5M
UNIT-IV

8. a) What is a three address code? Generate quadruples, triples and indirect triples for the
expression w := a* - (b + c) CO4

5M

 b) What are the different storage allocation strategies available? Explain each in brief? CO4 5M

9. a) Define basic block and flow graph. Write an algorithm to construct basic block. CO4

5M

 b) Write an algorithm for simple code generation and construct code sequence for the following
expression: w:=(a-b)+(a-c)+(a-c) using code-generator algorithm. CO4

5M

III/IV B.Tech (Regular) DEGREE EXAMINATION

Feb, 2021 Information Technology
Fifth Semester Automata and Compiler Design (18IT502)
Time: Three Hours Maximum: 50 Marks

Scheme of Evaluation & Answers

Part-A
1 Answer all questions (1X10=10 Marks)
 a) Define deterministic finite automata.

A DFA is represented formally by a 5-tuple, (Q, Σ, δ, q0, F), consisting of

 a finite set of states Q

 a finite set of input symbols Σ

 a transition function δ: Q × Σ → Q

 an initial (or start) state q0 � Q

 a set of states F distinguished as accepting (or final) states F � Q.

 b) Define €-closure of a state.

Epsilon (∈) – closure: Epsilon closure for a given state X is a set of states which can be

reached from the states X with only (null) or ε moves including the state X itself.

 c) What is the relation between Σ* = Σ+

Σ*(kleene star) is a unary operator on a set Σ of symbols or strings that gives an infinite

collection of all possible strings of all possible lengths including λ (empty string). Σ+ is same

as Σ* excluding empty string λ.

 d) What is ambiguous grammar?

Ambiguous grammar: A CFG for which there are more than one left-most | right-most

derivation trees or more than one derivation trees for a given string.

 e) How many ways can PDA accepts the string?

Two ways. .i) Acceptance by final state. ii) Acceptance by empty stack.

 f) Define compiler.

A compiler is a computer program that translates computer code written in one programming

language (the source language) into another language (the target language).

 g) What are the difficulties with Top-Down parsing?

 Backtracking.

 · Left recursion.

 · Left factoring.

 · Ambiguity.

 h) List the possible actions can make in shift-reduce parsing.

1) Shift 2) Reduce

3) Accept 4) Error

 i) What are the different types of intermediate representations?

Syntax tree

Postfix notation (or) Reverse polish notation

Intermediate code

 j) Define basic block?

Basic Block is a straight line code sequence which has no branches in and out branches

except to the entry and at the end respectively. Basic Block is a set of statements which

always executes one after other, in a sequence.

Part-B
UNIT-I

2 a) Design DFA to accept the language L where L = {w/w has both an even number of 0’s
and even number of 1’s}.

 The DFA for language L is

Where the transition function δ is described by the transition diagram

5M

2 b) Construct a DFA equivalent to the NFA given by M = ({p,q,r,s}, {0,1}, δ, p, {s}), where
δ is defined in the following table

δ 0 1
p {p,q} {p}

q {r} {r}
r {s} Φ

*s {s} {s}

5M

The following table represents NFA to DFA conversion :

3 a) Construct the minimum state equivalent DFA for the following

For the basis, since C is the only accepting state, we put x in each pair that involves C.

5M

Now, we know some distinguishable pairs, we can discover others.

Consider pair (A,B): δ(A,0) B Ꭓ δ(A,1) F Put X

in (A,B) δ(B,0) G δ(B,1) C

Next Pair (A,D): δ(A,0) B Put X in (A,D) Pair

 δ(D,0) C

Next pair (A,E): δ(A,0) B Ꭓ δ(A,1) F Ꭓ

 δ(E,0) H δ(E,1) F

Next pair (A,F): δ(A,0) B

 δ(F,0) C Put X in (A,F) Pair

Next Pair (A,G): δ(A,0) B Ꭓ δ(A,1) F Ꭓ

 δ(G,0) G δ(G,1) E

Next Pair (AH): δ(A,0) B Ꭓ δ(A,1) F Put X in

(A,H) δ(H,0) G δ(H,1) C

Continue like this for remaining pairs also....

i.e (B,D), (B,E), (B,F), (B,G), (B,H), (D,E), (D,F), (D,G), (D,H), (E,F), (E,G), (E,H), (F,G),

(F,H), and (G,H).

Observe the above table (A,E), (A,G), (B,H), (D,F), and (E,G) pairs are empty.

 consider pair (A,G) δ(A,0) B (B,G) distinguishable pair or filled

with ‘X’, δ(G,0) G So, pair (A,G) also distinguishable pair.

Consider pair (E,G) δ(E,0) H (H,G) distinguishable pair or filled

with ‘X’, δ(G,0) G So, pair (E,G) also distinguishable

pair.

Hence, (A,G), (B,H), and (D,F) are equivalent states.

So, Minimum State DFA is:

3 b) Using pumping lemma prove L={ 0m 1n | m<n , n≥1 } is not regular.
Let L be a regular language. Then there exists a constant ‘c’ such that for every string w in L
such that |w| ≥ c.
We can break the string w into three parts, w = xyz, such that

 |y| > 0
 |xy| ≤ c
 For all k ≥ 0, the string xykz is also in L.

 Consider the string from L

w= 0000111= xyz

x=000; y=01; z=11

w= xyiz= 000 (01)i 11

If i= 2 then 000010100 not belongs to L

Hence, the given language is not regular.

5M

UNIT-II
4 a) Consider the following grammar

S A1B
A 0A | €
B 0B | 1B | €
Give leftmost and rightmost derivations of the following string 00101

5M

4 b) Convert the grammar
S 0S1 | A
A 1A0 | S | € to a PDA that accepts the same language by empty stack.

Variables in the given grammar are: S and A
δ (q, €, S) = { (q,0S1) }
δ (q, €, S) = { (q, A) }
δ (q, €, A) = { (q,1A0) }
δ (q, €, A) = { (q,S) }
δ (q, €, A) = { (q, €) }

Terminals in the given grammar are: 0 and 1
δ (q, 0,0) = { (q, €) }
δ (q, 1,1) = { (q, €) }

5M

5 a) Construct a PDA that accepts the language L = { WCWR / W€ {a, b}* }.

Some string will come followed by one 'c', followed by reverse of the string before 'c'.

So we get to know that 'c' will work as an alarm to starting poping STACK.

So we will pop every 'a' with 'a' and every 'b' with 'b'.

For every two a's and b's push them into STACK

When 'c' comes do nothing.

5M

 LMD: for string 00101

 S A1B

 0A1B

 00A1B

 00€1B

 0010B

 00101B

 00101€

 00101

 RMD: for string 00101

 S A1B

 A10B

 A101B

 A101€

 0A101

 00A101

 00€101

 00101

Starting poping STACK: 'a' for 'a' and 'b' for 'b'.

 δ(q0, a, Z) = (q0, aZ)

 δ(q0, a, a) = (q0, aa)

 δ(q0, b, Z) = (q0, bZ)

 δ(q0, b, b) = (q0, bb)

 δ(q0, a, b) = (q0, ab)

 δ(q0, b, a) = (q0, ba)

 // this is decision step

 δ(q0, c, a) = (q1, a)

 δ(q0, c, b) = (q1, b)

 δ(q1, b, b) = (q1, ε)

 δ(q1, a, a) = (q1, ε)

 δ(q1, ε, Z) = (qf, Z)

5 b) Convert the following grammar into CNF from G = ({S,A,B}, {a,b,c}, p, S) productions

are
 S→ABa
A→aab
B→Ac

A CFG is in Chomsky Normal Form if the Productions are in the following forms –

 Non terminal -> non terminal . non terminal (or)

 Non terminal -> terminal

Example: Conversion to CNF

i)Removal of null productions

 There are no nll productions

ii) Remove unit productions

 There are no unit productions

5M

iii) Conversion of each production

Replace each production A → B1…Bn where n > 2 with A → B1C where C → B2 …Bn.

Repeat this step for all productions having two or more symbols in the right side.

S->ABa can be written as SAC CBD Da

A->aab can be written as ADE EDF Fb

B->Ac can be written as BAG Gc

The final CFG in Chomsky normal form is

SAC CBD Da ADE EDF Fb BAG Gc

UNIT-III
6 a) Explain the output of each phase of a compiler for the statement

“Position = Initial + rate * 60.0”

5M

6 b) Explain the role of lexical analyzer.
The LA is the first phase of a compiler. Its main task is to read the input character and

produce as output a sequence of tokens that the parser uses for syntax analysis.

Upon receiving a ‘get next token’ command form the parser, the lexical analyzer reads the

input character until it can identify the next token. The LA return to the parser representation

for the token it has found. The representation will be an integer code, if the token is a simple

construct such as parenthesis, comma or colon.

LA may also perform certain secondary tasks as the user interface. One such task is striping

out from the source program the commands and white spaces in the form of blank, tab and

new line characters. Another is correlating error message from the compiler with the source

program.

5M

7 a) Test whether the grammar is LL(1) or not, and construct a predictive parsing table for

E E+T/ T, T T*F/ F, F (E)/ id

First eliminate the left recursion for E as

E → TE’
E’ → +TE’ | ε

Then eliminate for T as
T → FT’
T’→ *FT’ | ε

Thus the obtained grammar after eliminating left recursion is
E → TE’
E’ → +TE’ | ε
T → FT’
T’ → *FT’ | ε
F → (E) | id

First() :

FIRST(E) = { (, id}
FIRST(E’) ={+ , ε }
FIRST(T) = { (, id}
FIRST(T’) = {*, ε }
FIRST(F) = { (, id }

Follow():
FOLLOW(E) = { $,) }
FOLLOW(E’) = { $,) }
FOLLOW(T) = { +, $,) }
FOLLOW(T’) = { +, $,) }
FOLLOW(F) = {+, * , $,) }

5M

Theparsing table has no multyply defined entries.
Hence, the given grammar is LL(1) grammar.

7 b) Explain the stack implementation of Shift – reduce parser with an example.

5M

UNIT-IV
8 a) What is a three address code? Generate quadruples, triples and indirect triples for the

expression w := a* - (b + c)
Three address code is a type of intermediate code which is easy to generate and can be easily

converted to machine code. It makes use of at most three addresses and one operator to

represent an expression and the value computed at each instruction is stored in temporary

variable generated by compiler.

5M

Three address code for the given expression: T1:= b+c

 T2:=uminus T1

 T3:=a*T2

 w:=T3

8 b) What are the different storage allocation strategies available? Explain each in brief?
The different ways to allocate memory are:

1. Static storage allocation 2. Stack storage allocation 3.Heap storage allocation

Static storage allocation

 In static allocation, names are bound to storage locations.

 If memory is created at compile time then the memory will be created in static area

and only once.

 Static allocation supports the dynamic data structure that means memory is created

only at compile time and deallocated after program completion.

 The drawback with static storage allocation is that the size and position of data objects

should be known at compile time.

 Another drawback is restriction of the recursion procedure.

Stack Storage Allocation

 In static storage allocation, storage is organized as a stack.

 An activation record is pushed into the stack when activation begins and it is popped

when the activation end.

 Activation record contains the locals so that they are bound to fresh storage in each

activation record. The value of locals is deleted when the activation ends.

 It works on the basis of last-in-first-out (LIFO) and this allocation supports the

recursion process.

Heap Storage Allocation

 Heap allocation is the most flexible allocation scheme.

 Allocation and deallocation of memory can be done at any time and at any place

depending upon the user's requirement.

 Heap allocation is used to allocate memory to the variables dynamically and when the

variables are no more used then claim it back.

 Heap storage allocation supports the recursion process.

5M

 Quaruples:

OP arg1 arg2 Result

+ b c T1

uminus T1 - T2

* a T2 T3

assign T3 - w

 Triples:

 OP arg1 arg2

(0) + b c

(1) uminus T1 -

(2) * a (1)

(3) assign w (2)

9 a) Define basic block and flow graph. Write an algorithm to construct basic block.

Basic block is a set of statements that always executes in a sequence one after the other.

Flow Graph is a directed graph with flow control information added to the basic blocks.

5M

9 b) Write an algorithm for simple code generation and construct code sequence for the
following expression: w:=(a-b)+(a-c)+(a-c) using code-generator algorithm.

For an instruction x = y OP z, the code generator may perform the following actions. Let us

assume that L is the location (preferably register) where the output of y OP z is to be saved:

 Call function getReg, to decide the location of L.

 Determine the present location (register or memory) of y by consulting the Address

Descriptor of y. If y is not presently in register L, then generate the following

instruction to copy the value of y to L:

MOV y’, L where y’ represents the copied value of y.

 Determine the present location of z using the same method used in step 2 for y and

generate the following instruction:

OP z’, L where z’ represents the copied value of z.

 Now L contains the value of y OP z, that is intended to be assigned to x. So, if L is a

register, update its descriptor to indicate that it contains the value of x. Update the

descriptor of x to indicate that it is stored at location L.

 If y and z has no further use, they can be given back to the system.

5M

The expression W= (A- B) + (A – C) + (A – C) might be translated in to the following
three address code:

 t := a – b

 u := a – c

 v := t + u

 d := v + u with d live at the end.

 Scheme prepared by

 Mr. G.Prasad, Asst.Professor.

 Department of I.T. Signature of the HOD, IT DEPT.

 Paper Evaluators:

S.No Name of the College Name of the Examiner Signature

