
18IT501
III/IV B.Tech (Regular) DEGREE EXAMINATION

Feb, 2021 Information Technology
Fifth Semester Software Engineering
Time: Three hours Maximum: 50 Marks
Answer question No.1 compulsorily. (1*10=10 Marks)
Answer any four from part-B (4*10=40 Marks)

a) Define Legacy Software.
The older programs which were developed decades ago and have been continually modified
to meet changes in business requirements and computing platforms are called as legacy
software.

b) What is a process pattern?
Process pattern describes a process-related problem that is encountered during software
engineering work, identifies the environment in which the problem has been encountered,
and suggests one or more proven solutions to the problem

c) What are Spike Solutions?
If a difficult design problem is encountered as part of the design of a story, XP
recommends the immediate creation of an operational prototype of that portion of the design
called a spike solution.

d) Define Refactoring.
Refactoring is the process of changing a software system in such a way that it does not alter
the external behaviour of the code yet improves the internal structure.

e) What are Exciting Requirements?
The features that go beyond the customer’s expectations and prove to be very satisfying when
present are called exciting Requirements. For example, software for a new mobile phone
comes with standard features, but is coupled with a set of unexpected capabilities (e.g.,
multitouch screen, visual voice mail) that delight every user of the product.

f) Define Modularity.
Software is divided into separately named and addressable components, sometimes called
modules that are integrated to satisfy problem requirements.

g) How the UML Swim lanes are used in the activity?
The UML swim lane diagram is a useful variation of the activity diagram and allows you to
represent the flow of activities described by the use case and at the same time indicate which
actor or analysis class has responsibility for the action described by an activity rectangle.

h) Differentiate Verification and validation
Validation is the process of checking whether the specification captures the customer's needs,
while verification is the process of checking that the software meets the specification.

i) What is Integration Testing?
Integration testing is a systematic technique for constructing the software architecture while at
the same time conducting tests to uncover errors associated with interfacing. The objective is
to take unit-tested components and build a program structure that has been dictated by design.

j) Differentiate Black box and White box Testing.
Black Box Testing is a software testing method in which the internal structure/ design/
implementation of the software being tested is not known to the tester. White Box Testing is a
software testing method in which the internal structure/ design/ implementation of the
software being tested is known to the tester.

Part-B

UNIT-I

2. a) Define Software. Explain about the considerable characteristics differences
 between software and hardware.
 Software Definition---1M Characteristics----4M
Software is: (1) instructions (computer programs) that when executed provide desired
features, function, and performance; (2) data structures that enable the programs to
adequately manipulate information, and (3) descriptive information in both hard copy and
virtual forms that describes the operation and use of the programs.
Characteristics
Software is developed or engineered; it is not manufactured in the classical sense.
Although some similarities exist between software development and hardware
manufacturing, the two activities are fundamentally different. In both activities, high quality
is achieved through good design, but the manufacturing phase for hardware can introduce
quality problems that are nonexistent for software. Both activities are dependent on people,
but the relationship between people applied and work accomplished is entirely different. Both
activities require the construction of a “product,” but the approaches are different. Software
costs are concentrated in engineering. This means that software projects cannot be managed
as if they were manufacturing projects.

Software doesn’t “wear out.”
The figure depicts Failure rate as a function of time for hardware. The relationship, often
called the “bathtub curve,” indicates that hardware exhibits relatively high failure rates early
in its life defects are corrected and the failure rate drops to a steady-state level for some
period of time. As time passes, however, the failure rate rises again as hardware components
suffer from the cumulative effects of dust, vibration, abuse, temperature extremes, and many
other environmental maladies. Stated simply, the hardware begins to wear out.
Software is not susceptible to the environmental maladies that cause hardware to wear out. In
theory, therefore, the failure rate curve for software should take the form of the “idealized
curve” shown in Figure 1.2. Undiscovered defects will cause high failure rates early in the
life of a program.

Although the industry is moving toward component-based construction, most software
continues to be custom built.
As an engineering discipline evolves, a collection of standard design components is created.
Standard screws and off-the-shelf integrated circuits are only two of thousands of standard
components that are used by mechanical and electrical engineers as they design new systems.
The reusable components have been created so that the engineer can concentrate on the truly
innovative elements of a design, that is, the parts of the design that represent something new.
In the hardware world, component reuse is a natural part of the engineering process. In the
software world, it is something that has only begun to be achieved on a broad scale.

b) What are the General Principles that focus on Software Engineering Practices as a
whole?

Any Five Software Engineering Principles can be considered ---5M

The First Principle: The Reason It All Exists
A software system exists for one reason: to provide value to its users. All decisions should be
made with this in mind. Before specifying a system requirement, before noting a piece of
system functionality, before determining the hardware platforms or development processes,
ask yourself questions such as: “Does this add real value to the system?” If the answer is
“no,” don’t do it. All other principles support this one.
The Second Principle: KISS (Keep It Simple, Stupid!)
Software design is not a haphazard process. There are many factors to consider in any design
effort. All design should be as simple as possible, but no simpler. This facilitates having a
more easily understood and easily maintained system. This is not to say that features, even
internal features, should be discarded in the name of simplicity. Indeed, the more elegant
designs are usually the more simple ones.
The Third Principle: Maintain the Vision
A clear vision is essential to the success of a software project. Without one, a project almost
unfailingly ends up being “of two [or more] minds” about itself. Without conceptual
integrity, a system threatens to become a patchwork of incompatible designs, held together by
the wrong kind of screws. . . . Compromising the architectural vision of a software system
weakens and will eventually break even the well-designed systems.
The Fourth Principle: What You Produce, Others Will Consume
Seldom is an industrial-strength software system constructed and used in a vacuum. In some
way or other, someone else will use, maintain, document, or otherwise depend on being able

to understand your system. So, always specify, design, and implement knowing someone else
will have to understand what you are doing. The audience for any product of software
development is potentially large.
The Fifth Principle: Be Open to the Future
A system with a long lifetime has more value. In today’s computing environments, where
specifications change on a moment’s notice and hardware platforms are obsolete just a few
months old, software lifetimes are typically measured in months instead of years. However,
true “industrial-strength” software systems must endure far longer. To do this successfully,
these systems must be ready to adapt to these and other changes. Systems that do this
successfully are those that have been designed this way from the start. Never design yourself
into a corner.
The Sixth Principle: Plan Ahead for Reuse
Reuse saves time and effort.Achieving a high level of reuse is arguably the hardest goal to
accomplish in developing a software system. The reuse of code and designs has been
proclaimed as a major benefit of using object-oriented technologies. However, the return on
this investment is not automatic. To leverage the reuse possibilities that object-oriented [or
conventional] programming provides requires forethought and planning. There are many
techniques to realize reuse at every level of the system development process. . . . Planning
ahead for reuse reduces the cost and increases the value of both the reusable components
and the systems into which they are incorporated.
The Seventh principle: Think!
This last principle is probably the most overlooked. Placing clear, complete thought before
action almost always produces better results. When you think about something, you are more
likely to do it right. You also gain knowledge about how to do it right again. If you do think
about something and still do it wrong, it becomes a valuable experience.

3. a) Explain with a neat diagram the Incremental Process Model

 Diagram-1M Explanation---4M

There are many situations in which initial software requirements are reasonably well defined,
but the overall scope of the development effort precludes a purely linear process. In addition,
there may be a compelling need to provide a limited set of software functionality to users

quickly and then refine and expand on that functionality in later software releases. In such
cases, you can choose a process model that is designed to produce the software in increments.
The incremental model combines elements of linear and parallel process flows discussed in
Section 2.1. Referring to Figure 2.5, the incremental model applies linear sequences in a
staggered fashion as calendar time progresses. Each linear sequence produces deliverable
“increments” of the software [McD93] in a manner that is similar to the increments produced
by an evolutionary process flow.
For example, word-processing software developed using the incremental paradigm might
deliver basic file management, editing, and document production functions in the first
increment; more sophisticated editing and document production capabilities in the second
increment; spelling and grammar checking in the third increment; and advanced page layout
capability in the fourth increment. It should be noted that the process flow for any increment
can incorporate the prototyping paradigm.
When an incremental model is used, the first increment is often a core product. That is, basic
requirements are addressed but many supplementary features (some known, others unknown)
remain undelivered. The core product is used by the customer (or undergoes detailed
evaluation). As a result of use and/or evaluation, a plan is developed for the next increment.
The plan addresses the modification of the core product to better meet the needs of the
customer and the delivery of additional features and functionality. This process is repeated
following the delivery of each increment, until the complete product is produced.
The incremental process model focuses on the delivery of an operational product with each
increment. Early increments are stripped-down versions of the final product, but they do
provide capability that serves the user and also provide a platform for evaluation by the user.

b) What are the phases of the Unified Process? Explain them.

Diagram—1M Explanation 4M

The inception phase of the UP encompasses both customer communication and planning
activities. By collaborating with stakeholders, business requirements for the software are
identified; a rough architecture for the system is proposed; and a plan for the iterative,
incremental nature of the ensuing project is developed.

Fundamental business requirements are described through a set of preliminary use cases that
describe which features and functions each major class of users desires. Architecture at this
point is nothing more than a tentative outline of major subsystems and the function and
features that populate them. Later, the architecture will be refined and expanded into a set of
models that will represent different views of the system. Planning identifies resources,
assesses major risks, defines a schedule, and establishes a basis for the phases that are to be
applied as the software increment is developed.
The elaboration phase encompasses the communication and modeling activities of the
generic process model (Figure 2.9). Elaboration refines and expands the preliminary use
cases that were developed as part of the inception phase and expands the architectural
representation to include five different views of the software—the use case model, the
requirements model, the design model, the implementation model, and the deployment
model. In some cases, elaboration creates an “executable architectural baseline” [Arl02] that
represents a “first cut” executable system.
The construction phase of the UP is identical to the construction activity defined for the
generic software process. Using the architectural model as input, the construction phase
develops or acquires the software components that will make each use case operational for
end users. To accomplish this, requirements and design models that were started during the
elaboration phase are completed to reflect the final version of the software increment. All
necessary and required features and functions for the software increment are then
implemented in source code. As components are being implemented, unit tests are designed
and executed for each.
The transition phase of the UP encompasses the latter stages of the generic construction
activity and the first part of the generic deployment (delivery and feedback) activity.
Software is given to end users for beta testing and user feedback reports both defects and
necessary changes. In addition, the software team creates the necessary support information
(e.g., user manuals, troubleshooting guides, installation procedures) that is required for the
release. At the conclusion of the transition phase, the software increment becomes a usable
software release.
The production phase of the UP coincides with the deployment activity of the generic
process. During this phase, the ongoing use of the software is monitored, support for the
operating environment (infrastructure) is provided, and defect reports and requests for
changes are submitted and evaluated.

UNIT-II
4. a) Illustrate Adaptive Software Development as a technique for building complex
systems.

 Diagram –1M Illustration-----4M

Adaptive Software Development (ASD) has been proposed by Jim High smith as a
technique for building complex software and systems. The philosophical underpinnings
of ASD focus on human collaboration and team self-organization.
High smith argues that an agile, adaptive development approach based on collaboration

is “as much a source of order in our complex interactions as discipline and engineering.”
He defines an ASD “life cycle” (Figure 3.3) that incorporates three phases, speculation,
collaboration, and learning.

During speculation, the project is initiated and adaptive cycle planning is conducted.
Adaptive cycle planning uses project initiation information—the customer’s mission
statement, project constraints (e.g., delivery dates or user descriptions), and basic
requirements—to define the set of release cycles (software increments) that will be
required for the project. No matter how complete and farsighted the cycle plan, it will
invariably change. Based on information obtained at the completion of the first cycle, the
plan is reviewed and adjusted so that planned work better fits the reality in which an ASD
team is working.
 Motivated people use collaboration in a way that multiplies their talent and creative
output beyond their absolute numbers. This approach is a recurring theme in all agile
methods. But collaboration is not easy. It encompasses communication and teamwork, but
it also emphasizes individualism, because individual creativity plays an important role in
collaborative thinking. It is, above all, a matter of trust. People working together must trust
one another to (1) criticize without animosity, (2) assist without resentment, (3) work as
hard as or harder than they do, (4) have the skill set to contribute to the work at hand, and
(5) communicate problems or concerns in a way that leads to effective action.
As members of an ASD team begin to develop the components that are part of an adaptive
cycle, the emphasis is on “learning” as much as it is on progress toward a completed
cycle. In fact, argues that software developers often overestimate their own understanding
(of the technology, the process, and the project) and that learning will help them to
improve their level of real understanding. ASD teams learn in three ways: focus groups
(Chapter 5), technical reviews and project post-mortems.

b) Write a Note on Feature Driven Development

 Diagram—1M Explanation 4M

Feature Driven Development (FDD) was originally conceived by Peter Coad and his
colleagues [Coa99] as a practical process model for object-oriented software engineering.
Stephen Palmer and John Felsing [Pal02] have extended and improved Coad’s work,
describing an adaptive, agile process that can be applied to moderately sized and larger
software projects.
In the context of FDD, a feature “is a client-valued function that can be implemented
in two weeks or less” [Coa99]. The emphasis on the definition of features provides the
following benefits:
• Because features are small blocks of deliverable functionality, users can describe them more
easily; understand how they relate to one another more readily; and better review them for
ambiguity, error, or omissions.
• Features can be organized into a hierarchical business-related grouping.
• Since a feature is the FDD deliverable software increment, the team develops operational
features every two weeks.
• Because features are small, their design and code representations are easier to inspect
effectively.
• Project planning, scheduling, and tracking are driven by the feature hierarchy, rather than an
arbitrarily adopted software engineering task set.

For example: Making a product sale is a feature set that would encompass the features
noted earlier and others.
The FDD approach defines five “collaborating” [Coa99] framework activities (in
FDD these are called “processes”) as shown in Figure 3.5. FDD provides greater emphasis on
project management guidelines and techniques than many other agile methods. As projects
grow in size and complexity, ad hoc project management is often inadequate. It is essential
for developers, their managers, and other stakeholders to understand.

5. a) Explain the Elements of Requirements Model.
 Explanation ----5M

There are many different ways to look at the requirements for a computer-based system.
Some software people argue that it’s best to select one mode of representation (e.g., the use
case) and apply it to the exclusion of all other modes. Other practitioners believe that it’s
worthwhile to use a number of different modes of representation to depict the requirements
model. Different modes of representation force you to consider requirements from different
viewpoints—an approach that has a higher probability of uncovering omissions,
inconsistencies, and ambiguity.
Scenario-based elements. The system is described from the user’s point of view using a
scenario-based approach. For example, basic use cases (Section 5.4) and their corresponding
use-case diagrams (Figure 5.2) evolve into more elaborate template-based use cases.
Scenario-based elements of the requirements model are often the first part of the model that is
developed. As such, they serve as input for the creation of other modeling elements. Figure
5.3 depicts a UML activity diagram17 for eliciting requirements and representing them using
use cases. Three levels of elaboration are shown, culminating in a scenario-based
representation.

Class-based elements. Each usage scenario implies a set of objects that are manipulated as
an actor interacts with the system. These objects are categorized into classes—a collection of

things that have similar attributes andcommonbehaviors. For example, a UML class diagram
can be used to depict a Sensor class for the SafeHome security function (Figure 5.4). Note
that the diagram lists the attributes of sensors (e.g., name, type) and the operations (e.g.,
identify, enable) that can be applied to modify these attributes. In addition to class diagrams,
other analysis modeling elements depict the manner in which classes collaborate with one
another and the relationships and interactions between classes.

Behavioral elements. The behavior of a computer-based system can have a profound effect
on the design that is chosen and the implementation approach that is applied. Therefore, the
requirements model must provide modeling elements that depict behavior.
Flow-oriented elements. Information is transformed as it flows through a computer-based
system. The system accepts input in a variety of forms, applies functions to transform it, and
produces output in a variety of forms. Input may be a control signal transmitted by a
transducer, a series of numbers typed by a human operator, a packet of information
transmitted on a network link, or a voluminous data file retrieved from secondary storage.
The transform(s) may comprise a single logical comparison, a complex numerical algorithm,
or a rule-inference approach of an expert system.

 b) What are the questions to be asked and answered to validate requirements?

As each element of the requirements model is created, it is examined for inconsistency,
omissions, and ambiguity. The requirements represented by the model are prioritized by the
stakeholders and grouped within requirements packages that will be implemented as software
increments. A review of the requirements model addresses the following questions:
• Is each requirement consistent with the overall objectives for the system/product?
• Have all requirements been specified at the proper level of abstraction? That is, do some
 requirements provide a level of technical detail that is inappropriate at this stage?
• Is the requirement really necessary or does it represent an add-on feature that may not be
 essential to the objective of the system?
• Is each requirement bounded and unambiguous?
• Does each requirement have attribution? That is, is a source (generally, a specific
 individual) noted for each requirement?
• Do any requirements conflict with other requirements?
• Is each requirement achievable in the technical environment that will house the system or

 product?
• Is each requirement testable, once implemented?
• Does the requirements model properly reflect the information, function, and behavior of the
system to be built?
• Has the requirements model been “partitioned” in a way that exposes progressively more
 detailed information about the system?
• Have requirements patterns been used to simplify the requirements model? Have all patterns
been properly validated? Are all patterns consistent with customer requirements?

UNIT-III

6. a) List and Explain the analysis rules of thumb that should be followed when creating
 the analysis model.

 Any five rules 5*1=5M
Analysis Rules of Thumb
Arlow and Neustadt suggest a number of worthwhile rules of thumb that should be followed
when creating the analysis model:
• The model should focus on requirements that are visible within the problem or business
domain. The level of abstraction should be relatively high. “Don’t get bogged down in
details” [Arl02] that try to explain how the system will work.
• Each element of the requirements model should add to an overall understanding of software
requirements and provide insight into the information domain, function, and behavior of the
system.
• Delay consideration of infrastructure and other nonfunctional models until design. That is,
a database may be required, but the classes necessary to implement it, the functions required
to access it, and the behavior that will be exhibited as it is used should be considered only
after problem domain analysis has been completed.
• Minimize coupling throughout the system. It is important to represent relationships between
classes and functions. However, if the level of “interconnectedness” is extremely high, effort
should be made to reduce it.
• Be certain that the requirements model provides value to all stakeholders. Each
constituency has its own use for the model. For example, business stakeholders should use
the model to validate requirements; designers should use the model as a basis for design; QA
people should use the model to help plan acceptance tests.
• Keep the model as simple as it can be. Don’t create additional diagrams when they add no
new information. Don’t use complex notational forms, when a simple list will do.

 b) What are the quality guide lines we have in order to evaluate Quality in the design
 process.

 Software quality guidelines---5M

 Design process

 The main aim of design engineering is to generate a model which shows firmness,
delight and commodity.

 Software design is an iterative process through which requirements are translated into
the blueprint for building the software.

Software quality guidelines

 A design is generated using the recognizable architectural styles and compose a good
design characteristic of components and it is implemented in evolutionary manner for
testing.

 A design of the software must be modular i.e the software must be logically
partitioned into elements.

 In design, the representation of data , architecture, interface and components should
be distinct.

 A design must carry appropriate data structure and recognizable data patterns.
 Design components must show the independent functional characteristic.
 A design creates an interface that reduces the complexity of connections between the

components.
 A design must be derived using the repeatable method.
 The notations should be use in design which can effectively communicates its

meaning.

7. a) Explain the following Architectural Styles
 Data Centered Architecture b) Data Flow Architecture

 Data Centered Architecture------5M Data Flow Architecture-----5M

Data-centered architectures. A data store (e.g., a file or database) resides at the center of this
architecture and is accessed frequently by other components that update, add, delete, or
otherwise modify data within the store. Figure 9.1 illustrates a typical data-centered style.
Client software accesses a central repository.
In some cases the data repository is passive. That is, client software accesses the data
independent of any changes to the data or the actions of other client software. A variation on
this approach transforms the repository into a “blackboard”

that sends notifications to client software when data of interest to the client changes.

Data-centered architectures promote integrability [Bas03]. That is, existing components can
be changed and new client components added to the architecture without concern about other
clients (because the client components operate independently). In addition, data can be passed
among clients using the blackboard mechanism (i.e., the blackboard component serves to
coordinate the transfer of information between clients). Client components independently
execute processes.

Data-flow architectures. This architecture is applied when input data are to be transformed
through a series of computational or manipulative components into output data. A pipe-and-
filter pattern (Figure 9.2) has a set of components, called filters, connected by pipes that
transmit data from one component to the next. Each filter works independently of those
components upstream and downstream, is designed to expect data input of a certain form, and
produces data output (to the next filter) of a specified form. However, the filter does not
require knowledge of the workings of its neighboring filters.
If the data flow degenerates into a single line of transforms, it is termed batch sequential.
This structure accepts a batch of data and then applies a series of sequential components
(filters) to transform it.

UNIT-IV

 8. a) Explain the Integration Test Strategy for Conventional Software
Integration Test Strategy----5M

Integration testing is a systematic technique for constructing the software architecture while
at the same time conducting tests to uncover errors associated with interfacing. The objective
is to take unit-tested components and build a program structure that has been dictated by
design.

Top-down integration. Top-down integration testing is an incremental approach to
construction of the software architecture. Modules are integrated by moving downward

through the control hierarchy, beginning with the main control module

main program). Modules subordinate (and ultimately subordinate) to the main control module
are incorporated into the structure in either a depth-first or breadth-first manner. Referring to
Figure 17.5, depth-first integration integrates all components on amajor control path of the
program structure. Selection of a major path is somewhat arbitrary and depends on
application-specific characteristics.
 For example, selecting the left-hand path, components M1, M2 , M5 would be integrated
first. Next, M8 or (if necessary for proper functioning of M2) M6 would be integrated. Then,
the central and right-hand control paths are built. Breadth-first integration incorporates all
components directly subordinate at each level, moving across the structure horizontally.
From the figure, components M2, M3, and M4 would be integrated first. The next control
level, M5, M6, and so on, follows.
Bottom-up integration. Bottom-up integration testing, as its name implies, begins
construction and testing with atomic modules (i.e., components at the lowest levels in the
program structure). Because components are integrated from the bottom up, the functionality
provided by components subordinate to a given level is always available and the need for
stubs is eliminated. A bottom-up integration strategy may be implemented with the following
steps:
1. Low-level components are combined into clusters (sometimes called builds) that perform a
specific software sub function.
2. A driver (a control program for testing) is written to coordinate test case input and output.
3. The cluster is tested.
4. Drivers are removed and clusters are combined moving upward in the program structure.

Integration follows the pattern illustrated in Figure 17.6. Components are combined to form
clusters 1, 2, and 3. Each of the clusters is tested using a driver (shown as a dashed block).
Components in clusters 1 and 2 are subordinate to Ma. Drivers D1 and D2 are removed and
the clusters are interfaced directly to Ma. Similarly, driver D3 for cluster 3 is removed prior
to integration with module Mb. Both Ma and Mb will ultimately be integrated with
component Mc, and so forth.

b) Write a note on the debugging process.

Diagram---1M Process---4M

Debugging is not testing but often occurs as a consequence of testing.5 Referring to Figure
17.7, the debugging process begins with the execution of a test case. Results are assessed and
a lack of correspondence between expected and actual performance is encountered. In many
cases, the non corresponding data are a symptom of an underlying cause as yet hidden. The

debugging process attempts to match symptom with cause, thereby leading to error
correction.
The debugging process will usually have one of two outcomes: (1) the cause will be found
and corrected or (2) the cause will not be found. In the latter case, the person performing
debugging may suspect a cause, design a test case to help validate that suspicion, and work
toward error correction in an iterative fashion.
A few characteristics of bugs provide some clues:
1. The symptom and the cause may be geographically remote. That is, the symptom may
appear in one part of a program, while the cause may actually be located at a site that is far
removed. Highly coupled components exacerbate this situation.
2. The symptom may disappear (temporarily) when another error is corrected.
3. The symptom may actually be caused by nonerrors (e.g., round-off inaccuracies).
4. The symptom may be caused by human error that is not easily traced.

5. The symptom may be a result of timing problems, rather than processing problems.
6. It may be difficult to accurately reproduce input conditions (e.g., a real-time application in
which input ordering is indeterminate).
7. The symptom may be intermittent. This is particularly common in embedded systems that
couple hardware and software inextricably.
8. The symptom may be due to causes that are distributed across a number of tasks running
on different processors.

 9.a) Explain Flow graph notation in Basis Path Testing.

 Flow Graph Notation Explanation----4M Diagram---1M

Before we consider the basis path method, a simple notation for the representation of control
flow, called a flow graph (or program graph) must be introduced.3 The flow graph depicts
logical control flow using the notation illustrated in Figure 18.1. Each structured construct
(Chapter 10) has a corresponding flow graph symbol.

To illustrate the use of a flow graph, consider the procedural design representation in Figure
18.2a. Here, a flowchart is used to depict program control structure. Figure 18.2b maps the
flowchart into a corresponding flow graph (assuming that no compound conditions are
contained in the decision diamonds of the flowchart). Referring to Figure 18.2b, each circle,
called a flow graph node, represents one or more procedural statements. A sequence of
process boxes and a decision diamond can map into a single node. The arrows on the flow
graph, called edges or links, represent flow of control and are analogous to flowchart arrows.
An edge must terminate at a node, even if the node does not represent any procedural
statements (e.g., see the flow graph symbol for the if-then-else construct). Areas bounded by
edges and nodes are called regions. When counting regions, we include the area outside the
graph as a region.

b) Explain about Equivalence partitioning in Black box Testing.

Explanation about Equivalence partitioning----5M

Equivalence partitioning is a black-box testing method that divides the input domain of a
program into classes of data from which test cases can be derived. An ideal test case single-
handedly uncovers a class of errors (e.g., incorrect processing of all character data) that might
otherwise require many test cases to be executed before the general error is observed.
Test-case design for equivalence partitioning is based on an evaluation of equivalence classes
for an input condition. Using concepts introduced in the preceding section, if a set of objects
can be linked by relationships that are symmetric, transitive, and reflexive, an equivalence
class is present. An equivalence class represents a set of valid or invalid states for input
conditions. Typically, an input condition is a specific numeric value, a range of values, a set

of related values, or a Boolean condition. Equivalence classes may be defined according to
the following guidelines:
1. If an input condition specifies a range, one valid and two invalid equivalence classes are

defined.

2. If an input condition requires a specific value, one valid and two invalid equivalence

classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid equivalence

class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

By applying the guidelines for the derivation of equivalence classes, test cases for each input

domain data item can be developed and executed. Test cases are selected so that the largest

number of attributes of an equivalence class is exercised at once.

Scheme prepared by Signature of the HOD

Paper Evaluators:

S.No Name of the College Name of the Examiner Signature

