February, 2021

Fifth Semester

Time: Three Hours

Answer Question No.1 compulsorily.
Answer ONE question from each unit.
1. Answer all questions

a)

Scheme - 111/1v B.Tech (Regular/Supplementary) DEGREE EXAMINATION

Define transfer function

The T.F of asystemis defined as the ratio of the Laplace transform of output to
Laplacetransform of input with zero initial conditions.

What is linear and non-linear control systems

A control system is said to be linear if superposition theorem is applied which satisfies two prpperties
1. Additivity f(x+y)=f(x)+f(y), Homogeneous property f(kx)=kf(x)

What is the need for signal flow graph

Block diagrams are very successful for representing control systems, but for complicated systems, the
block diagram reduction process is tedious and time consuming. So signal flow graphs are needed which
does not require any reduction process because of availability of a flow graph formula, which relates the
input and output system variables

what are static error constants

Kp, Kv and Ka are called static error constants

Give the equation of a second order system with unit step input.

What is the use of RH criterion

It is the easy method to determine the system stability form RH table 1% column elements

Give the formula for velocity error constant.

What is Bode plot?

The Bode plot is the frequency response plot of the transfer function of a system. A Bode plot consists
of two graphs. One is the plot of magnitude of sinusoidal transfer function versus log w. The other is a
plot of the phase angle of a sinusoidal function versus log w.

What is Polar plot?

The Polar plot of a Sinusoidal transfer function G(jw) is a plot of the magnitude of G(jw)versus the phase
angle of G(jw) on polar or rectangular co-ordinates as w is varied from zero to infinity

What do you mean by root locus technique

oot locus technique provides a graphical method of plotting the locus of the roots in the S-plane as a
given system parameter, is varied over the complete range of values (may be from zero to infinity). The
roots corresponding to a particular value of the system parameter can then be located on the locus or the
value of the parameter for a desired root location can be determined from the locus

What is observability?

Define state variable.

The variables involved in determining the state of dynamic system are called state variables. Generally
X1(),x2() ..coovvvvvennennen... X n (1) are called state variables.

Write the state model of a system
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X(® = A x(t) + B U®)
Y(t) = C x(t) + D U()

This is state model of a system.

UNIT |

...State equation

2. a) Obtain the transfer function of the block diagram given below?

R(S)
—de

R(E)__‘

R(S)__‘

1+ Gy(s)H,(s)

|G 2
1+ Gy(s)Hy(s)
v C(S)
+ Gg(s)
*@9—'@ T3 Gys)H)
G(s)
Gy(5) e
1+ G(s)Hy(s) ..
' -.._'M-" L G_z(i(__) .
1+ Gy(s)Ha(s
G,(s) H!(s) Gz(s) . G1(S)H1(s)

SM
Co1



R(S) Gy(s) ‘ .
% 1+ Go(8)H,(S) + Gy(5)Go(8)Hy(s) |

------------------

Cs) G(s) [Gy(s) + 1]
TRILY 14+ Go(=) HA(8) + (B.(8) G.(8) H.(S)

b)  Find the transfer function for the given mechanical system.

ft) x®

FORCE BALANCE EOUATIONS OF IDFALIZED ELEMENTS

Conslder an.ideal mass element shown in fig 1.9 which has neghglble friction and elast:cny Let a
force be applied on it. The mass will offer an opposing force whlch is proportional to acceleration of the
body. .

Let, f =Applied force - o - bex
- —Opposmgforceduetomass ‘ - o " f— M —E
dx 7 dzx : e Reference
Here, f, « — fn=M—5- B
e 7 dt? ' . : Ideal mass element.
d%x '

By Newton's second law, f.= f,=M ? T {1.2)

Consider an ideal frictional element dashpot shown in fig 1.10 which has negligible mass and
elasticity . Let a force be applied on It The dash-pot will offer an opposing force which is propomonal to

velocity of the body. '
Let, f =Applied force - S b_ I Hx :
f, = Opposing force due to friction | : “ f—-—» — {]I E ,
-Her‘e. f, o % or f,= B%’:- : ' Reference

’ v ' . Fig 1.1 0 Ideal dashpo! with
By Newton's second law,l f=f,= B%l """ az " one 8’?“" JSixed to reference.
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Consider an ideal elastic element spring shown in fig 1.12, : )
- which has negligible mass and friction. Let a force be applied on it. I—’ X

The spring will offer an opposing force which is proportional to : 2
displacement of the body. ' = - K ’
. Reference.
Let, f = Applied force Fig 1.12 : Ideal spring with one end

f = Opposing force due to elasticity Jixed to reference.

Herefcx or f=Kx
By Newton’s second law, |f=f=Kx | ... (1.5)

T.F X(t)/f(t)=1/ MS?+Bs+K

(OR)
3 (a) Find the overall transfer function of the system whose signal flow graph is shown in fig1.. 5M
' —H Co1
2
R(s) G, G, G, G, G, 1
o —Q > > » — > o~ > 0
1 1 2 3\__/4 5 v P
—H, —H,
. . Fig 1
There are two forward paths. .. K=2
Let forward path gains be P1and P2 .
Rs) 1 G, G, G, G, G 1 Cs)
T . 2 3 4 s s 7 = 8
Fig 2 : Forward path-1
R(s) 1 - G, G, 1 C@)
P> g P O - -0
' 5 6 7 8-
Fig 3 : Forward path-2.

Gainofforwardpath1 P.= G GG:,G‘G!5
“Gain of forward path-z P GGG

individual Loop Galn ) _
There are three individual Ioops Letindividual loop gains be P11, P21 and Ps.

3¢ ; ' o .
N N, &7
—H . 3 - < 5 s

1

Fig 4 : Loop-1. Fig 5 : Loop-2. Fig 6 : Loop-3.




Loop gain of individual loop-1, P =-GzH
Loop gain of individual loop-2, Pn =-G2GsHz

Loop gain of individual loop-3, Pst =-GsHs
Gain Products of Two Non-touching Loops '

Thele aretwo combinations of two non-wuchlng loops. Letthe gain products of two non touching loom be Prand Pz.

—Ha
Fig 7 : First combmanon of2 non-touchmg loops. | Fig8:Second combmanon of. 2 non-touchmg IOOPS

Gain product of first combination .
- P = —G -G = G G
of two non touching loops } Prz = PP = (-GHy) (-Gitly) Gt

Gain product of second oombmabonl B
- .- - »

=P, Pay = (-G5GaH,) (-GsHs) = GG3GsHoH,
IV. Calculation of A and A,

A = 1-(P11+ P21 + Pat) + (P12 + P2)
- = 1-(-Gekh- GaGiaHz - GsHs) + (GaGisHiHs+ GaGGisHzHs)
=1+ GzH1+ G2GsHz + GsHs + G2GsHiHs3 + G2GaGsHzHs

A1 = 1, Since there is no part of graph which is nottouching with first forward path.
-The part of the graph which is non touching with second forward path is shown in fig9.

Az = 1-P11=1-(-GoHi) = 1+ Gzhh ‘3 & )

V. Transfer Function, T | H
. b B |

By Mason's gain formula the transfer function, T is given by, - Figd

1 o1
T= XZ PAg =Z (PA,+P,A;)  (Number of forward paths is 2 and so K=2)
K

GG2G3G(Gs +GaGsGs (1+G,H,)
1+ GzH; + G,G3H, + GgH; + G,GsHH, + G,G3GsHH,
- G{G,G3G,Gs + G,GsGg + G,G4GsGsH,
1+ GH,; + G,G3H, + GgH; + GoGsHH, + G,GqGsHoH;
G1G:Gs [G/G, + Gy /G, + GeH]
1+ GgH, + G,GgH, + Gy + G,G.HH, + G,G.GHH,

(OR)



b)  Write the differential equations governing the mechanical rotational system shown in fig 1. Obtain the 5M

transfer function of the system

J1 58— Jz ?: | .
9; K5 o jB !
(Applied Torque) (Output)

' Fig 1.

J,—&Z—W,K(e,.-e):'r
- d%, |
J.dt;

Ontakmg Laplacetransform of equamnﬁ)wmzerommaloondtﬂonsweget,

+Ko;-Kg =T

Jy 82 91($)+K91($) KG(S) T(s)

(4,87 +K) 8y(s) K 8(s) = T(s). R

d% _do

J2d2 +Bdt +K(6—.-6,)'=0

‘(’;f B%H(G Ko, =0

On takmg Laplace transform of above equation with zero initial condmons we get,
ersze(s) +Bs e(s) +Ko(s) - Kb,(s)= 01

s

(J,8°+Bs + K) 6(s) —Kb(s)= 0

. . C 2 . -
8y(s) = 9-25—':?“—}() os) T LL(®)
Substituﬁn for 0,(s) from equaﬁon (3) in equation (2) we get,

(U2 +K) .(JL‘%'..S*'_K).

- 2 ‘o2 4
[(J's +K)(JZSK+?S+K)"K2]e(s)=T(s)

o(s) - KQ(S) T(s)

RO K :
h T(s) (Js8? +K) (J;8° + Bs + Ky~ K?

Co1



UNIT 11

) Find (1) wa (i) Ty (iii) Ts (iv) Mp (v) tp for a system having transfer function Cgi
~ Standard form of (s) o2
Second order transfer function| R(s) s+ 2fw,s+o?
On comparing équaﬁon (1) &(2)weget,
02=10 %o,=2
. - = ‘ =i _1 =
. ®p -J— 3162radlsec ¢ 2%-3162 0.316
ot “ = tan' ¥1= 03167 ~1249rad
0316
@y = co,,\/1-§2 =3162/1-.0.3162 = 3 rad/ sec
Rise time, t, = =% ~F1249 _ 063 cec
@y 3
_x -0.316%
Percentage overshoot, %M, = e «100= 705 4100
= 0.3512x100=35.12%
Peak overshoot = 3150:)2 x 12 units = 4.2144 units
. = T
Peak time, =—=—=1047
BTG, 3 see
* Time constant ;I’=—L= 1 1sec
4 " 4w, 0316x3162
. For5% error, Settlingtime, t, =3T =3 sec
For2% error, Settling time,t, =4T =4 sec
RESULT
Risetime, t, = 0.63sec
Percentage overshoot, %M, = 35.12%
Peak overshoot .= 4.2144 units, (for a input of 12 units)
Peaktime, t, = 1.047sec
Settling time, t, = 3secfor5%ermor

= 4secfor2% emor

10

S2+25+10
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b)  Obtain the response of unity feedback system whose open loop transfer function is G(s) = m and EC’:'\SZ
when the input is unit step.
VSOLUT|ON - R(s) @ _C’(S)
Theclosed loop system is shown infig 1. , -
The closed loop transfer function, —— Ss) __Gls) - ’ N
% R(s)4 1+&(s) : " Fig 13 Closed loop system.
Cls)_ _s(s+5) _ se+5) ___ 4  __ 4 4

“R) 1,4 SETE*A s(s+5)+4 -sz'+5s+4=(5+4)v(s+1)
s(s+5) s{s+5)

. " 4
The response in s-domain, = -+
po C(s)=R(s) YT
Since the input is unit step, R(s) =§; ~.Cs)= 4

, T s(s*1)(s+4)
By partial fraction expansion, we can write,

- 4 _A,B,C .
) =G G+a) s 571 544

L _ 4 __4
A=Cls) x 8|, o= s+ (s+4)| ., 1"4—1

~ 4 | 4 _4
BCE) x &+~ STvay),. TR 3
1

4 | 4
C=C{s s+4 =
(s) X ( )Iss—4 5(5*1)|s- “ _4(_4+1) 3
The time domain response c(t) is obtained by taking inverse Laplace transform of C(s)

4 1 1 1
Response in time d ,cty= £ sk P AL A SN
ponse in ime Qmam c(t) {C(s)} = {s 33 s+4}

R S DS B P
= 1--3-e‘+§e ' = 1—3-[4e'—e_ ']A
(OR)
Determine the step, ramp, parabolic error constants of the following feedback control system. G(S) = 5&'\32
10(s+2)

s2(s+1)

SOLUTION

a) To find static error constants
For a unity feedback system, H(s)=1

Position error constant, K, = Lt G(s)H(s) = Lt G(s) = Lt 10(s+2)
S5

s-0 s%(s+ 1)

. _ _ 10(s+2)
Velocity error constant, K, = sI;tos G(s)H(s) = sI:'tos G(s) = 3'230 sm =
Acceleration error constant, K, = Lt s2G(s)H(s) = Lt szG(s)

o 1
0(S+2) 10x 2 10x2_,,

=—>0 2(5 +1) 1



K

b)  For the unity feedback system with G(S) = o o

stable.
SOLUTION
K
C(S) Gls) _,Ss+l)(s+2) _ - K
Thedosedloopn‘ansferﬂmcﬁon, Ris) 1 G(s) 1~+ K s )ik
s(s+1)(s+2)

Thednaracterisﬁcequaﬁonis. s(s+1)(s+2)+K=0
.~.s(s2+3s+2)+K=o = s +3s? +25+K=0
The routh array is constructed as shown below.

Thehughwpmewfsmmed;amdenshcpolymmalsoddnunber Hemeiotmmeﬁtstmwngmecoeﬁctensd
oddpowersofsandfommeseomdmmngmecoefﬁdemofevenpmtsofs

& P12 L ,
& : 3 : K 5'1: Ix2-Kx1
I . - o 3
. 16-K. s 8K
1 _ 3
® T 5-K
~ \ X , oexK-0x3
® . Ko MRV
LColumn1 ' s%: K

Forthe systemtio be stable there should notbeanysngn dlangemﬁ\eelmdﬁrstcokmn Hence choose the value
- of K'so that the first column elements are positive. . .

Froms°raw,fonhesystemmbeslable,K>.0
. . 6-K .
From s' row, for the system to be stable, T>O

-K
For §—3-—~>0,mevalueofl<sh0tudbelesman6.

. The iange of K for the system to be stable is 0<K<6.

UNIT 111
a) Define all the frequency domain specifications
The frequency domain specifications are,

1. .Resonant peak ,M_ - 4. Cut-offrate .
2. Resonant Frequency , o 5. Gain margin, K,

3. Bandwidth, o, ~ 6. -Phase margin, v
Resonant Peak (M) | '
‘ The maximum value of the magnitude of closed loop transfer function is called the resonant peak,

determine the range of K for the system to be 5&'\(")2
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Resonant Frequency (@)

The frequency at which the resonant peak occurs is called resonant frequency, @ . This is related
to the frequency of oscillation in the step response and thus it is indicative of the speed of transient
response. '

Bandvndth (;nl)

The Bandwidth is the range of ﬁ'equencles for which normahzed gain of the system is more than
-3 db. The frequency at which the gain is -3 db is called cut-off frequency. Bandwidth is usually defined
for closed loop system and it transmits the signals whose frequencies are less than the cut-off frequency.
The Bandwidth is a measure of the ability of a feedback system to reproduce the input signal, neise
rejection characteristics and rise time. A large bandwidth corresponds to a small rise time or fast response.

Cut-off Rate

The slope of the log-magnitude curve near the cut off frequency is called cut-off rate. The cut -off
rate indicates the ability of the system to dxstmgmsh the 51gnal from noise.
Gain Margin X

The gain margin, K_ is defined as the value of gain, to be added to system, in order to bring the
system to the verge of mstablhty

The gain margin, K is given by the recnproca] of the magnitude of open loop transfer function at
phase cross over ﬁ'equency The frequency at which the phase of open loop transfer function is 180° i
called the phase cross-over frequency, ®

—_ : 1 '
- Gain Ma.rgln, K, = m , e (3.4
. o)k

The gain margin in db can be expressed as,

1 e
K,indb=20 log K, =20log ——— (3.5)
IG(J(Dpc)I

lNote (G(j(x)w)l is the magnitude of G(jo) at ® = o,

Phase Margm (1)

The phase margin y, is defined as the additional phase lag to be added at the gain cross over
frequency in order to bring the system to the verge of instability. The gain cross over frequency _ is the
frequency at which the magnitude of the open loop transfer functlon is unity (or it is the frequency at
which the db magmtude is zero).

The phase margin 7, is obtained by addmg 180° to the phase angle ¢ of the open loop transfer
function at the gain cross over frequency

" Phase margin, y=180° + O e (3.6)
where, ¢, AGG(DF) ' '
rNote £G(jo,,) is the phase angle of G(jo)at o = o,




b) : — 10 : 6M
A unity feedback control system has G (S) S(11045)(17015) Draw the Bode plot and determine wyc Co3
and wpc from the plot

The sinusoidal transfer function of G([m) lspbmmed by replaungs by jointhe given transfettuncuom
: .10 : LT )
G("”) jm(1+30.4d))1(1+30.‘h;) R A
Thecomerfrequenaesare. .
1 .
md:a—ZSradlsec andm =a=10ra‘dlse§
TABLEA 7
Term |  Comerfequency. | Slope.
' ' _radidec ~ | dbidec
F 10 T - 20
o N
1 1
1+j040 Pt =6§f2.5 7 —2..(_),.~
N S P R
Magnitude in dB=20log10-20logw-20log,/1 + (0.4w)2-20log,/1 + (0.1w)2
W=0.1,15, 25, 35, 4.5,5, 10,15, 20, 25
PHASE PLOT
ThephaseangleofG(lw)asaﬁmcuongfmnsgwenby
$=-90°~tan—' 0.4 ~ g’ 0.10
RESULT
' Gaincross-over frequency = 5 rad/sec. -
Phase cross-over frequency = 5 radisec.
(OR)

a) ; — . . 5M

A unity feedback control system has G (S) SA19)(1129) Draw the polar plot and determine the gain co3

margin(GM) and phase margin(PM).

Given that, G(s) = 1/s(1+:s) (1 +2s)
- Puts=jo.

- Gljo) = !

Jo (1+J‘D) (1+J20)
The comer frequencies arem_, = 1/2=0.5 radisecand o, = 1 rad/sec.



Gljo) =1 = !
(lo) (1+jo) (1+20) 4 90° Y1+0? Ltan ' 1+ 402 stan'20
; ,
o J(1+0?) (1+40?) o :
“{Ga)i= ! - J S
@ {(1+0?) (1+40?) "o V1+4o?+0’+40' o V1+50?+4at
£G(jo) =-90°-tan"'® - tan™' 20 ’

Z—-90°~tan"'o —tan 20

TABLE-1: imde and

of G(j®) at vatious fre buencies
Q ] . ]
rad/sec 0.35 04 | 045 0.5 06 0.7 10
GG} 22 | 18 15 122 | 09 | 07 | o3
Z£Gjo) -144 150 | 156 -162 71 -179.5 -198
. deg A ~-180.
o
rad/sec 0.35 04 045 05 06 07 10
G (o) 178 | 156 | -137 | 114 | -0.89 07 | 029
G -1.29 0.9 061 | 037 | 0.14 0 0.09
RESULT
Gain margin, K = 1.4286
Phase margin,y =+12°
b)  Write the procedure for investigating the stability using the Nyquist Criterion
3 jm . N j ;
of ~3ts.plane -plane
4
a. Nyquist Contour when  b. Nyquist Contour when ¢. Nyquist Contour when.
thereisnopoleon .  there ave poles at origin there are poles on imaginary

axis and at origin
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2. The Nyquist contour should be mapped in the G(s)H(s)-plane using the function G(s)H(s) to
determine the encirclement ~1+jO point in the G(s)H(s)-plane The Nyquist contour of fig 4.5b
can be mwdedmofomsecuonscl,cz,c and C,. Thcmappmg of the four sections in the
G(s)H(s)-plane can be ca:ned sectionwise and then combmed together to get entire G(s)H(s)-
contour. i

3. InsectlonC the value of ® varies from 0 to + . Themappmg ofsectnonC is obtained by
E .1ettmgs JmmG(s)H(s)audvatymgcoﬁ'omow-i-w

i.e. G()H(8) |mjo = G(j@) H(jo) L
- ©=0 0w ’ =6 t0

The locus of G(im)i—l(jm) as o is varied from O to +oo will be the G(s)H(s)-contour in

G(s)H(s)-plane corresponding to section C, in s-plane. This locus is the polar plot of

G(jo)H(jo). There are three ways of mapping this section of G(s)H(s)—contom-,'ﬂaey are,

(i) Calculate the values of G(]m)H(u.o) for various values of @ and sketch the actual loeus of
Go)H(je).
(or)
(i) Separate the real part and i imaginary part-of G(]co)H(iw) Equate the i 1magmary part to
_ zero, to find the frequency at which the G(jo)H(jo) locus crosses real axis (to find
phase crossover frequency). Substitute this frequency on real part and find the crossing
point of the locus on real axis. Sketch the approximate locus of G(jo)H(jo) from the
knowledge of type number and order of the system (or from the value of G(jo)H(jo)
at ® =0 and .= ).

(iii) Separate the magnitude and phase of G(;m)l—l(ico) Equate the phase of G(]&))H(](O) to —

" 180° and solve for @. This value of o is the phase crossover frequency and the magnitude

at this frequency is the crossmgpomtonma]axns Sketchtheappmx;matemot}ocusas
mentioned in method (ii).

4. The section C, of Nyquist contour has a semicircle of mﬁmte radius. Therefore, every point on
- sectionC, has mﬂmte magnitude but the argument varies from +n/2 to —n/2. Hence the mapping
of section C, from s-plane to G(s)H(s) plane can be obtained by letting s= Lt Re® in G(s)H(s)
and varymge from +W/2 to —/2 . ’ N
Consider the loop transfer function in tlme constant form and with y number of poles at origin,
as shown below.
UNIT IV
8. a) Explain various steps for constructing the Root Locus in case of a complex pole. 5M
CO4
EXPLANATION FOR THE VARIOUS STEPS IN THE PROCEDURE FOR CONSTRUCTING ROOT LOCUS

Step 1 : Locatmofpolwandzeros : .

- Draw the real and imaginary axis on an ordmary graph sheet and choose same scales both on real
and imaginary axis.
) The poles are marked by cross "X* ‘and zeros are marked by small circle "o". The number of root
locus branches is equal to number of poles of open loop transfer fumt:txon. The origin of a root locus is.
at a pole and the end is at a zero.

Let, n = number of poles
m = number of finite zeros :
Now, m root locus branches ends at finite zeros. The remaining n—m root locus branches will
end at zeros at infinity.
Step 2 : Root locus on real axis

In order to determine the part of root locus on real axis, take a test point on real axis. If the total
number of poles and zeros on the real axis to the right of this test point is odd number, then the test point
Iles on the root locus. If it is even then the test point does not lie on the root locus.




Step 4 : Breakaway and Breakin points

The breakaway or breakin points either lie on real axis or exist as complex conjugate pairs. If there
is a root locus on real axis between 2 poles then there exist a breakaway point. If there is a root locus on
real axis between 2 zeros then there exist a breakin point. If there is a root locus on real ans between pole
and zero then there may be or may not be breakaway or breakin point.

Let the characteristic equation be in the form,
B(s) +KA()=0
_-B®
A(s)

The breakaway and breakin point is given by roots of the equatxondK/ds 0. The roots of dK/ds 0
are actual breakaway or breakin point provided for this value of root, the gain K should be positive and
real. :

Step 5 : Angle of Dephrture and angle of arrival

Angle of Departure }_ . Sum of angles of vectorto the ) (Sum of angles of vectors to the)
€S

(from a complex pale A)| complex pole A from other poles} { complex pole A from zeros

. Note : The angles can be calculated as shown in fig 4.9 or they can be measured using protractor.

- . 6, =180°—tan™ =
A joa b
- 0, = 180°~tan™ %
0, =90°
- m-l a
‘ d
0, =tan =
‘ . e
k_d_>4_.._§_ﬂ c
e (] ale b
[
B
. A
Fig 4.9 : Calculation of angle of departure
Example:
Consider the two mplexmugatepol%AandA'shownmﬁgtl 9.(If poles are complex then they exist only as
conjuga?;a@ 4
Angle of departure
_glatpoleA }=130°*(9rf?3+9s)+(92 +0,)
Angle of departure| "
at pole A * }—‘v{AngIeofdepartureatPole A]




Step 6 : Point of intersection of root locus with imaginary axis

The point where the root loci intersects the imaginary axis can be found by following three methods.

1. By Routh Hurwitz array. | '

2. By trial and error approach. : . _

3. Lefting s = jo in the characteristic equation and separate the real part and imaginary part. Two
equations are obtained : one By equating real part to zero and the other by equating imaginary
part to zero. Solve the two equations for ® and K: The values of ® gives the points where the
root locus crosses imaginary axis. The value of K gives the value of gain K at there crossing
points. Also this value of K is the limiting value of K for stability of the system.

Step 7 : Test points and root locus -

Choose a test point. Using a protractor roughly estimate the angles of vectors drawn to this point
and adjust the point to satisfy angle criterion. Repeat the procedure for few more test points. Sketch the
root locus from the knowledge of typical sketches and the informations obtained in steps 1 through 6.

. _ k . 5M
Sketch the root locus of the system whose open loop transfer function is G (S) = SGIDGD) (S+4).F|nd the coa
value of K.
SOLUTION ‘
Step 1: To locate poles and zeros X

The poles of open loop transfer funiction afe the roots of the equation, s(s+2) (s+4)=0.
~Thepolesarelyingat, s=0,-2,-4.
Letus denote the poles as p,, p,, and Py - ' ‘ - | ~
Here, p,=0, p,=-2,p,=—4. ‘
The poles are marked by X(cross) as shown in fig 4.23.1.
Step 2 : To find the root locus on real axis
Themareiﬁree poles on the real axis.

' Ct_moseat&stpoimon mala)dsbeuﬂeens=Oands=—2.Tomeﬁgluofﬂﬁspoimmeml'nmberofrealpolsandzeros
s one, which is an odd number. Hence the real axis between s = 0 and s = -2 will be a part of roctlocus.

. Choosgat_wtpointon mlaadsbejweens=-2ahds=—4. Tothe right of this point, ihetotalnumberofrealpoi&sahd
zeros is twowhich is an even number. Hence the real axis between s =~2 and's = - 4 will notbe a part of rootfocus. .

. Chqos?atestpointon real axis to the left of s =— 4. To the right of this point, the total number of real poles and zeros
is three, which is an odd number. Hence the entire negative real axis froms =—4 to - cowill be a part of root locus.




Step 3 : To find asymptotes and centroid
anoethere are three poles the nurmber of root focus branches are three. There is no finite zero. Hence all memree R
locus branches ends atzeros at infinity. The number of asymptot&s requn'ed arethree. _
Angl&spfasymptotes=:—1-8(r)‘(—{?”)- o q=0,1,2, ... n-m.

Here,n=3andm=0. ..q=0,1,23.

. 180°
When g=0, 3 = +60° s-plane
When q=1, 'Angles=% 1803 x3 _ s180° centroid
Root locus 1 ’

Note: Insmwyhtfyvucaladatelhereqwrednmmer on real axisP2 Root Iocus on real axi
ofangles. Fere it is given by first three values of angles. The £ 3 4 51 é
remaining values will be repetitions of the previous values. 0.845

{Breakaway point)
CemmidzSumofpol%—Sumofze{os=0—2—4—0=_2 - :
n-m 3
oo s s F 4231 s vt e o
_ :?3;58\”" azrggt?ed imos 2 v ;gﬁg '1 a1 Ymptc’ root locus on real axis and location of po
: centroid ,and breakaway points..
‘Step 4 : To find the breakaway and breakin points '
. ' K I
Theclosedfoop) C(s) __G(s) _ s(s+2)(s+4) _ K :
transfer function| R(s) 1+G(s) ¢,___ K s(s+2)(s+4) + K ’
, - s(s+2)(s+4)
The characteristic equation is given by,
s(s+2)(s+4)+K=0 = s(s?+6s+8)+K=0 = s*+6s2+8s+K=0
. K=-g-652-8s : . : .
On differentiating the equation of K with respecttosweget, - . » .

—K=-(3s2+12s+8)

dK
Put =0
. ds

.~(3s2+125+8)=0 = (3s?+125+8)=0

_-12+£412 4X3"8=_0_s45 or —3.154-

2x3

Check for K : When s = —0.845, the value ofKis gwen by,
=—[(-0.845)° + 6(-0.845)? + 8(-0. 845)] = 3 08
Since K, is positive and real for, s =-0.845, this pomt is actual breakaway point. ;
When's =-3.154, the value of Kis given by,
=—[(~3.154)* + 6(—3.154)* + 8(-3.154)}= -3.08
Since K, is negative for, s =-3.154, this is nota actual breakaway point.



Step 5 : To find angle of departure

Since there are no complex pole orzero, we need not find angle of departure orarrival.
Step 6 : To ﬁnd the crossing point of :maglnary axis
The dwa«actensuceqmon is glven by,
$3+6s?+8s+K=0
Puts =jo ‘
(o} + 6(o)? + 8) + K=0
—jo’ 602 +j80+K=0

Equating i lmagmarypanmzem : Equating real part to zero
-o*+Bo=0 ' - B0?+K=0
_. 3 -
jo”=-Ro . . K=60?=6x8=48

T 0%2=8 = o= +s/~ +28
The crossing point of rootlocus is +j2.8. ThevalueofKoorrespondmgtoﬂ'nspomtusK 48. (Thlslsthekmmngvalue

 of K for the stability of the system).

The complete root locus sketch is showninfig 4.23.2 Therootlowshasthreebfandr&s Onebrandlstarlsatﬂtepole
ats——4andhavelmrwghnegahvereala:ustomeet1hezematmﬁmy The other two root locus branches startsats =0 and
$=-2and travel through negative real a ,breakawayfwmreala)osats-—0845 menmimaginafyaxisatﬁ:tjzsand
uavelpamﬂelmasynmmmtometmezemsatmw

(OR)
Derive Transfer Function from State Model

Note that as the system is time invariant, the coefficient of matrices A, B, C and D are
constants. While the definition of transfer function is based on the assumption of zero
initial conditions i.e. X(0) = 0.

8 X(s) A X(s) + B U(s)
s X(s) ~ A X(s) = B U(s)

Now s is an operator while A is matrix of order n x n hence to match the orders of
two terms on left hand side, multiply 's' by identity matrix I of the order n x n.

sl X(s) - A X(s) = B U(s)

[s] - A] X(s) = B U(s)
Premultiplying both sides by sl - A]"},
(sl - AT’ [sI - A] X(s)

[SsI - AT ! BU(s)

Now [BI-AT'[s1-A] = 1
X(s) = [sI - AI"! BU(s) ..(3)
Substituting in the equation (2b),

Y(s) = C[sI-Al'! B U(s) + D U(s)

Y(s) {C [sI - AI"! B + D} U(s)
Hence the transfer function is,

SM
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Consider a standard state model derived for linear time invariant system as,

X = AX(® + B U®)
and Y(t) = CX(t) + DU
Taking Laplace transform of both sides,

[s X(s) - X(0)] = A X(s) + BU(s)
and Y(s) = C X(s) + D Us)

T6) = %:c[ﬂ-m—‘mn .. (4a)

b) The state and output equations of a SISO system are
=12 L6+
y=0 -1[]]

Determine the controllability and observability.

P I

Solution : a) For controllability, Q.= [B: AB]Jasn =2

o =[5 3]l]-[3]

1 =2
@ o]
1 =2
Io 1 = 1 hencerank of Q. =2 =n

Hence system is completely controllable.
For observability, Q, = [CT : ATC"] asn =2

o]
e =[5 a3
@ -1 w3

~. Hence the rank of Q, =1 <n
Thus system is not completely observable.

CT

... (1a)
... (1b)

... (2a)
... (2b)
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