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I11/1V B.Tech(Regular) DEGREE EXAMINATION
Scheme of Evalueation

FEB, 2021 Electronics & Communication Engineering
Fifth Semester Digital Signal Processing
Time: Three Hours Maximum:50 Marks
Answer Question No.l compulsorily. (10X1 = 10 Marks)
Answer any four question from Part A. (4X10=40 Marks)
1. | Answer all questions | (10X1=10 Marks)
a) | The signals that are discrete in time and quantized in amplitude are called
signals. 1M
Ans:-Digital
b) | A system is said to be if Added signals pass through it without interacting. 1M
Ans:-Additive
c) | For a time-invariant system, its do not change with time. 1M

Ans:- Characteristics

d) | What is one-sided Z-transform?
Ans:- one-sided z-transform does not contain information about the signal x(n) for 1M
negative. values of time (i.e., for n<0)

e) | Why is FFT called so?
Ans:- FFT is called so because using this algorithm DFT is computed in a faster way. 1M
This is achieved by utilizing the symmetry and periodicity properties of WiX.

f) | What is radix-2 FFT?

Ans. The radix-2 FFT is an efficient algorithm for computing N-point DFT of an N-point
sequence. In radix-2 FFT, the N-point sequence is decimated into 2-point sequences and the
2-point DFT for each decimated sequence is computed. From the results of 2-point DFTs,
the 4-point DFTs are computed. From the results of 4- point DFTs, the 8-point DFTSs are
computed and so on until we get N-point DFT.

1M

g) | What is the disadvantage of impulse invariant method?
Ans:-The disadvantage of the impulse invariance method is the unavoidable frequency- 1M
domain aliasing.

h) | What is the relation between analog and digital frequencies in impulse invariant

transformation? 1M
Ans:-

i) | What is the necessary condition for Linear phase realization of FIR systems? 1M
Ans:-h(n)=h(N-n-1)

J) | Name basic design elements of discrete time system. 1M
Ans:-Adder,Multiplier,delay element and Advance aelemeni..

Part A
2. | a) | How are discrete-time signals classified? Differentiate between them. 5M

discrete-time signals are classified as follows:

1. Deterministic and random signals

2. Periodic and non-periodic signals

3. Energy and power signals

4. Causal and non-causal signals

5. Even and odd signals

Deterministic and random signals:

A signal exhibiting no uncertainty of its magnitude and phase at any given instant of time is
called deterministic signal. A deterministic signal can be completely represented by
mathematical equation at any time and its nature and amplitude at any time can be
predicted.

Examples: Sinusoidal sequence x(n) = cos wn, Exponential sequence x(n) = e™", ramp
sequence x(n) = an.

A signal characterized by uncertainty about its occurrence is called a non-deterministic




or random signal. A random signal cannot be represented by any mathematical equation.
example of a non-deterministic signal is thermal noise.

Periodic and non-periodic signals

A signal which has a definite pattern and repeats itself at regular intervals of time is called a
periodic signal, and a signal which does not repeat at regular intervals of time is called a
non-periodic or aperiodic signal.

A discrete-time signal x(n) is said to be periodic if it satisfies the condition x(n) = x(n + N)
for all integers n.

The smallest value of N which satisfies the above condition is known as fundamental
period.

If the above condition is not satisfied even for one value of n, then the discrete-time signal
is aperiodic. Sometimes aperiodic signals are said to have a period equal to infinity.

Energy and power signals:

A signal is said to be an energy signal if and only if its total energy E over the interval (-
a,0) is finite (i.e., 0 <E < o). For an energy signal, average power P = 0.

Non-periodic signals which are defined over a finite time (also called time limited signals)
are the examples of energy signals.

Since the energy of a periodic signal is always either zero or infinite, any periodic
signal cannot be an energy signal.

A signal is said to be a power signal, if its average power P is finite (i.e., 0< P <a
). For a power signal, total energy E = a. Periodic signals are the examples of power
signals.

Causal and Non Causal Signals:

A discrete-time signal x(n) is said to be causal if x(n) = 0 for n < 0, otherwise the
signal is non-causal. A discrete-time signal x(n) is said to be anti-causal if x(n) =0 for n >
0.

A causal signal does not exist for negative time and an anti-causal signal does not
exist for positive time.
A signal which exists in positive as well as negative time is called a non-casual signal.

EVEN and odd signals

Any signal x(n) can be expressed as sum of even and odd components. That is x(n)
= Xe(n) + Xo(N) .
A general signal neither even nor odd, but have both even and odd components

A discrete-time signal x(n) is said to be an even (symmetric) signal if it satisfies the
condition: x(n) = x(-n) for all n.
Even signals are symmetrical about the vertical axis or time origin. Hence they are also
called symmetric signals:
an odd (anti-symmetric) signal if it satisfies the condition:

X(=n) =—=x(n) for all n

Odd signals are anti-symmetrical about the vertical axis. Hence they are called
antisymmetric signals.
Sinusoidal sequence is an example of an odd signal.
For an odd signal x (0) = 0.

b)

—3.1.2,. —4, 2}

Find the even and odd components of the signal ~*"*’— {
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Given x(n)= {_3, 1, % -4, 2}

x(_n') = {2. _4. T2. ].. _3}

o . .
x{,(n)=§lx(n)+x(—rr)l

=%[—3+2.1—4.2+ 2.-4+1,2-3]

_ {—0.5, -1.5,2,—-1.5, —0.5}
)
x,(n)= %I.r(rs) —x(—n)]

=%[—3—2,1+4,2—2.—4—1.2+3]

_ {—2.5. 2.5.0.-2.5, 2.5}

Obtain the relation between DFT and Z Transform.

There is a close relationship between Z transform and Fourier transform. If we replace
the complex variable z by e 7%, then z transform is reduced to Fourier transform.
Z transform of sequence x(n) i1s given by

oo
Xz =% x(m)z™" { Definition of z-Transform)
n=-oo
Fourier transform of sequence x(n) is given by

oo
X(@)=Y x(n)e™ (Definition of Fourier Transform)
N—oC
Complex variable z is expressed in polar form as Z= re’ where = [zl and @ 15 Lz
Thus we can be written as

X@) =1 [x(@)r"]e™™

n=-oo

SM




oo

X(z)]d"= ¥ x(n)e’™
n=-o
X(z)|d"= x(e) at [z] = unit circle.

Thus, X(z) can be interpreted as Fourier Transform of signal sequence (x(n) r™). Here r~
" grows with n if r<1 and decays with n if r=1. X(z) converges for |r|= 1. hence Fourier
transform may be viewed as Z transform of the sequence evaluated on unit circle. Thus
The relationship between DFT and Z transform is given by

X(z)]-d TF = x(k)
The frequency @=0 is along the positive Re{z) axis and the frequency []/2 1s along the

positive Im(z) axis. Frequency [] 15 along the negative Re(z) axis and 3][/2 is along the
negative Im(z) axis.

& Imiz)
w=]2
#(0,4])
/ z=rel®
| |
. | .
=] =0
z(-1,0) s z(1,0) Re(z)
@=3]]/2
2(0,-])
L

Frequency scale on unit circle X(z)= X(w) on unit circle

b)

Find Z Transform including the region of convergence of
x(n) — {an nz= 0
0 n<O0
By the definition

Zlx(n)] = Z x(n)z " = X(2)
X(z) =Z[a™un)] = Z a®u(n)z™"

n=—0oco

— Z(az—l)n
n=0 az‘ll <1
With geometric progression formula
1 z
X(z) = 1—_—az-' z—a

Converges for |az™!| < 1

Equivalentto |z] > [a] ,ROC
Values of z for which X(z)=0 are called zeros of X(z).

Values of z for which X(z)=  are called poles of X(z).
Poles are indicated with X and zeros with o.
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z-plane

/ __\ Poleatz=a
| V=/Re .

i a

Zero at origin

Find 4 point DFT of sequence x(n)={1,-1,2,-2} directly.
Sol:

Given sequence is x(n) = {1, -1, 2, —2}. Here the DFT X(k) to be found is N = 4-point and

length of the sequence L = 4. So no padding of zeros is required.
We know that the DFT {x(n)} is given by

N-1 N-1 - 3 .
X(hy= Y xmWi =¥ x(n) e 77N =¥ x(n)e 1T k=0,1,2.3
n=0 n=0 n=0
3
X(0)= Y x(n) e’ = x(0)+x()+x2)+x(3)=1-1+2-2=0
n=0

3
XM=Y x(me " = x(0)+x(1) e + x(2) e 7 + x(3)e /O
n=>0

=1+ (=10 = j)+2(=1 = j0O)= 200+ j)
=—1-j
3

X(2)= 2 x(m)e ™ = x(0) + x(1)e ™ + x(2)e 27 + x(3)e™ 3"
n=>0

=1—1(=1= jO)+2(1— jO)—2(~1- jO)=6

3 i i gl
X(3)= z x(n)e 7S = x(0)+ x(1) e/ 4+ x(2)e™ 3 + x(3)e /O
n=0

=1=100+ j)+ 2(=1= jO)=2(0 = jy=—1+j
X(k) = {0, -1 — j. 6. -1 + j}
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b) | Find 4 point DFT of sequence x(n)={2,0,2,1} using DIT-FFT. SM
. A 427
Given that N = 4. We know that Wf = e/ ¥ *.
Therefore,
W) =e 77021,
;27 4K ™ ™ .
Wi =e 7% =¢72 =cos— —jsin- = —
4 5 J 5 J
The butterfly diagram of a 4-point DIT-FFT algo-
rithm is shown in Fig.
- 4
x(0)=2 p — X(0)
W40= 1 0 \/0
x(2)=2 >— __>1 > — AX(1)
o Fi=1 >O<4
x(1)=0 P . __=1 X(2)
Wi = 1>< W= /\o -
X(3) =0 — > - _O L - — X(G)
X (k) = {4,0,4,0F% |
a) | Derive 8 point DIT-FFT radix-2 algorithm and draw signal flow graph. 10M

1. DECIMATION IN TIME (DITFFT)

There are three properties of twiddle factor Wy
1) WY =W (Periodicity Property)
2) W N2 =_W* (Symmetry Property)
3) Wx'= Wi

N point sequence X(n) be splitted into two N/2 point data sequences fl(n) and f2(n).
f1(n) contains even numbered samples of x(n) and {2(n) contains odd numbered samples
of x(n). This splitted operation is called decimation. Since it is done on time domain

sequence it 1s called “Decimation in Time”. Thus

fl(m)=x(2m) where n=0,1,............. N/2-1
2(m)=x(2m+1) where n=0,1,............. N/2-1
N point DFT is given as




N-1
X(K) =Y x(n) W (1)
n=0
Since the sequence x(n) is splitted into even numbered and odd numbered samples, thus

N/2-1 N/2-1
X(k) =Y x 2m) W™ + ¥ x 2m+1) Wi (2)
m=0 m=0
X(k) =F1(k) + Wy F2(k) (3)
X(k+N/2) =F1(k) - Wx* F2(k) (Symmetry property) (4)

Fig 1 shows that 8-point DFT can be computed directly and hence no reduction in
computation.

x(0) X(0)
i i
X .

x(3) 8 [':E'T"t X(3)
x(7) X(7)

Fig . DIRECT COMPUTATION FOR N=8
:i / / x(1)
XX \ \ //
c1 w /\ c2 W S x@

D1 ws D2 X(3)
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o
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po—
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Fig . SIGNAL FLOW GRAPH FOR RADIX- DIT FFT N=8




Fig . BLOCK DIAGRAM FOR RADIX- DIT FFT N=8

2 gg.lrnt Combine 2
Point DFT's
2;?2_“ Combine —
4 Point
2 Point DFT +—
DFT Combine 2 —
: Point DFT's —
2 Point
DFT

Obtain H(z) from Ha(s) when T = 1sandH,(s) =

2105072 using bilenear transformation.

38

Solution: Given H,(s)= and T = 1 s.

s2+055+2

2 (1=
To get H(z) using the bilinear transformation, put s = = 1~z
T 147"
3s
H(z)=H_,(s) 2 (11 5 -
=2 _‘ s +055 +2 S
T|1:-0 2 (1=
\ A F=— |
T ,\I+:._lJ
— 7_]
3x?2 1-2 ]
B 1+2°
B ']_7—1‘2 | =71
2 — +05]|2 — || +2
1+z I+z
([
6 ‘"_I
3 l+z
40-z7Y +(0-zHa+z7hH+200+ 77"
(1+z7H?
- 6(1+z7h
41-27" 47+ (U-z7H+200 427" + 77D

6467
7—-477"' +5772
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b)

Compare bilinear and Impulse invariance.

Ans. The impulse invariant and bilinear transformations are compared as follows:

Impulse invariant transformation Bilinear transformation
(i) It is many-to-one mapping. (i) It is one-to-one mapping.

(ii)) The relation between analog and  (ii) The relation between analog and digital
digital frequency is linear. frequency is nonlinear.

(iii) To prevent the problem of aliasing. (iii) There is no problem of aliasing and so
the analog filters should be band the analog filter need not be band limited.
limited.

(iv) The magnitude and phase responses (iv) Due to the effect of warping, the phase
of analog filter can be preserved by response of analog filter cannot be
choosing low sampling time or high preserved. But the magnitude response
sampling frequency. can be preserved by prewarping.

SM

Design a Type-1 Chebyshev filter to meet following specifications: ap=3dB;as=16dB;
fp=1KHz and fs= 2KHz.

From the given data we can find

i ' Q, = 27 x 1000 Hz = 2000  rad/sec
Qs = 27 x 2000 Hz = 4000 7 rad/sec

and ap = 3dB; ay = 16dB.

~Step 1:

Co 1001 1056 _1

cogti M) N M

1001ep — 1 = 1003 — 1

N > : -
: cosh™! L 'COSh cosh™ i
- : Q','J - L ZOGD‘H"
=1.91

Step 2: Rounding N to _n_e-xt higher value we get N = 2, .

1
iz

Step 3: The values of minor axis and. major axis can be found as below

For NN even, the oscillatory curve starts from

e (100.1{;,, 1)05 ( 003 )(],5 =I1

,u'=£_1+\jl+€_2=2414

o) Q [LLVN —1,’N]

/2 _ "
) ~ 20007 ((2.414)"/ ~2(2.414), 1/2)
YN 1 UN) o [(2 414)'/2 ¢ (2. 414777
2 : ; 2

= 9107

[
b :'QP = 219771'

10M




Step 4: The poles are given by

Sk = acos ¢y + jbsingy, k=1,2
op =1 - (2k—Lim

k== 1
12]- 5N -k ]:,2
g 2/ F 'E— 5 :
hr=5+7=13
T 3 .
-¢2——2+—‘1—=225

81 = acos¢y + j bsing; = —643.46m 4 j15547
$2 = 0.co8 g + j bsin ¢ = —643.46m — 715547

Step 5: The denominator of H (s) = (s + 643.467)2 + (15547)?

: 643.467)2 + (1554m)>
Step §: The wumerator of H(s) = (
_ : (s) V1+e2

. _ 1414.38)%r?
The transfer -functmn H(s) = poars 1(287:4'3 +}(1682)21r”'

= (1414.38)%x?

Illustrate Frequency response of FIR filter with rectangular window.

'besign of FIR filters Using Windows .

The easiest way to obtain an FIR flter is to simply truncate the ;miljdseg?:m
of an IIR filter. If h,(n) represents the impulse responssmﬂi*i:d ; gl ter.
then an FIR filter with impulse response h(n) can be O .

hy(n), N, =n E N;
h(n) =1, Otherwise

In general, i(n) can be thought of as being formed by the product of A,(n) and
a **window function,’* w(n), as follows:

h(n) = hy(n) - win)

For the h(n) of (4.43), w(n) is said to be a rectangular window and is given by

1, N,=n=N,
wla) = 0, otherwise

SM




If we let H(e™), H, ("), and W(e/*) represent the Fourier transforms of A(n).
hy(n), and w(n), respectively, the frequency response H(e’*) of the resulting
filter is the convolution of H ,(e/*) and W(e/*) given by

He®) = 5= | Hatemwiere-m)ds = ey« wier)

For example, if H,(e’”) represents an ideal low-pass filter with cutoff frequency

wo and w(n) is a rectangular window positioned about the origin, the H(e’™) is
as shown in Fig. 4.13.

 Therefore, it is seen that the convolution produces a smeared version of
he ideal low-pass frequency response H,(e/). In general, the wider the main

A Haleiw)

b)

Merits of frequency sampling technique

(i) Unlike the window method, this technique can be used for any given magnitude response.
(i) This method is useful for the design of non-prototype filters where the desired magnitude
response can take any irregular shape.

There are some disadvantages with this method i.e the frequency response obtained by
interpolation is equal to the desired frequency response only at the sampled points. At the other
points, there will be a finite error present.

SM




Draw the direct form I, and direct form I, structures for the system given by:
1+4z 71+ 3272

O N

Therefore, the transfer function of the system is

H(z) =

Hi= Y@ _ 1+4z7" +377
X2 1+ (131277 + (92427 + (124) 77
Let Y@ _ Y@ W©)
X(z) W X2
W(z) 1
where = T - 3
X(z) 140312z +924) 77 +(1/24) 7~
Sol:
Y(z) -1 )
d =1+4z +3z
an Wiz)

On cross multiplying the above equations, we get

| 3 .
W) |1+ l—z‘] + i"' + L 7= | =X(2)
12 24 24
: o 13 T
1.€. W(z)=X(2) E;. Wiz) 2—.:. Wi(z) ﬂ;. Wi(z)
and Y(2)= W(@) + 427 W(2) + 327°W(2)
R Y s
r\I/ r\::_/" T > Y@
|
HB—»:/‘; \‘, ¥z}
i 7
S
2X(z) r| 3 /+\.L- ;jj{i- z2¥(z)
‘/ \i"/ ~
L
:—I
]l
~ 24 ¥(2)

Direct form-| realization structure
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= ¥(z)

e T =we

Direct form-1 realization structure

b)

Realize FIR linear phase filter for N, even.
: | ' ~ hin) = h(N = 1= p)

It will now be shown that this symmetry allows the transfer function to be
rewritten 5o that approximately hall the number of multiplications are required
for the resulting realization, ‘The transfer Tunction 1(z2) is the Z transform of the
impulse response as follows:

N
H(z) = 4hn)] = D, hin)z "

e t)

Using (5.70) and (5,71), H(z) can be casily written as follows for odd and even
N.
Jor even N:

NSZ ]
My = S htmylz 4z )

TR Y]

impulse response as follows:

NI
H(z) = Zhm)] = >, himz "

Het)
for odd N:
(N-3)/2
”(Z) = Z h(n)lz "oy z..(N -J--n)l o }f«N ot I)/zjz-.w., 1)/2
)

The output transform, ¥(z), can be obtained by multiplying the input

transform, X(z), yhere N is even, the following:

N2
Yiz) = D, h(m)z™" + 2"V~ 1"")X(2)
n=()

= WO)[1 + 2~V V)X(2) + h(D[z"" + 2N~ 2]X(2)
4o ANJ2 = D[z” V2D 42N 21x(g)
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(o) o—1—{557] = B .

x{n=(N=1)

R | Ll g T

L /}\ @ ,Jllc\h[ﬂ'l-
\Z/

T

}-: (x}-f— {x:}-b— G

f'-;:['\ yin)
NS
L : "
_'4 2-‘\, -_@ 2




