Hall Ticket Number:

III/IV B.Tech (Regular/ Supplementary – Repeat Exam) DEGREE EXAMINATIONJanuary, 2021Common for ECE, EEE & EIESecond SemesterProfessional Ethics And Human Values

Time: Three HoursMaximum : 60 MarksAnswer all Questions from Part - A.(1X12 = 12 Marks)
(4X12=48
Marks)Answer ANY FOUR Questions from Part - B.Marks)Part - A1. Write short notes on the following
a) Integrity
b) Caring(12X1=12M)
(12X1=12M)

- c) Service Learning
- d) Self-respect
- e) Responsibility
- f) Inquiry
- g) Occupational crime
- h) Risk
- i) Loyalty
- j) IETE
- k) Computer Ethics
- 1) ASME

Part - B

2. a) Briefly explain about 'self-confidence'.	6M
b) Discuss about 'courage' in detail.	6M

3.	a) What are the common reflections of honesty? Give some actions of Engineer	•
	dishonesty	8M
	b) Briefly discuss valuing the time.	4M
4.	a) What is meant by moral dilemma? Suggest some steps to solve moral dilemma.	8M
	b) Discuss about the types of responsibility	4M
5.	Explain about Kohlberg's and carol Gilligan's theory in detail.	12M
6.	a) Explain engineering as social experimentation	8M
	b) Differentiate Engineering projects from standard experiments.	4 M
7.	a) What are the moral principles that justify confidentiality? Also give the types of	
	Confidential information.	6M
	b) Write a detailed note on Occupational Crime.	6M

14EC601

8.	a) What are the ten international human rights to be taken care of in case of giving practical	
	justice to the conflicts in MNCs?	8M
	b) What are the characters of engineers should have as managers?	4M
9.	a) Explain about Environmental ethics in detail ?	6M
	b) Explain about Computer ethics in detail?	6M

III/IV B.Tech (Regular / Supplementary – Repeat Exam) DEGREE EXAMINATION

January, 202	20 Electronics and Communication Engine	eering
Sixth Semes		0
Time: Three Ho		
Answer All Que.	stions from Part - A . (1X12 = 12)	2 Marks)
Answer ANY FC	DUR questions from Part - B . (4X12=48 M	/larks)
1 An arriven all arr	Part - A	Maulza)
1. Answer all qu	Explain the physical address formation in 8086. (1X12=12)	warks)
b	What is an addressing mode?	
С	What are the general purposes registers in 8086?	
d	What is the difference between simulator and emulator	
e	What is an interrupt?	
f	Define macro.	
g	What is a port? What is the need of a port?	
h	What is USART?	
i	What is 8259A?	
j	What is DPTR?	
k	Write the purpose of SBUF register.	
1	Explain TMOD and TCON	
	Part - B	
2.a	Draw the internal block diagram of 8086 microprocessor and explain pipe line concept?	6M
2.b	Explain the concept of segmented memory? What are its advantages?	6M
3.a	Explain the addressing modes of 8086.	6M
3.b	Write arithmetic and logical instructions and explain them	6M
4		
4.a	Explain the programming development steps in 8086?	6M
4.b	Explain the program development steps in 8086.	6M
5.a	Write an assembly language program to convert packed BCD to ASCII code.	6M
5.b	What is an interrupt? What is the difference between software and hardware	6M
	interrupts?	
6.a	Draw the block diagram of 8255 and explain working and modes of operation.	6M
6.b	Explain how a matrix keyboard can be interface to the processor and what are the steps	6M
	involved?	
7 -		\mathbf{O}
7.a	Draw the block diagram of 8237 and explain working and modes of operation.	6M
7.b	Write short notes on 8251	6M
8.a	Explain ADDRESSING MODES OF 8051 micro controller.	6M
8.b	Write about the comparison of Microprocessor and Micro controller?	6M
0.0	while about the comparison of microprocessor and micro controller:	U-14
9.a	Explain memory organization of 8051 micro controller	6M
9.b	Write a program for multiplication of two numbers using 8051 micro controller	6M

- approxim-

14EC/EI 603 EC/EI 323

Hall Ticket Number:										

Janu	III/IV B.Tech (Regular/Supplementary -Repeat Exam) DEGREE EXAuary, 2021Electronics & Communi-	
Sixtl	n Semester Digita	l Signal Processing
Time	Maximum: 60 Marks	
nswe	er ALL Questions from PART-A.	(1X12 = 12 Marks)
nswe	er ANY FOUR questions from PART-B.	(4X12=48 Marks)
	Part-A	
	Answer all questions	(1X12 = 12 Marks)
a		
b		
с	´	
	List the properties of DFT.	
e		
f		
g		
h	· •	2
i		·?
j		
k	· · ·	ase
1	characteristics of an FIR filter?	
Ŋ) How the order of the filter affects the frequency response of Butterworth filt	er.
	Part-B	
Answ	er ANY FOUR Questions from the following.	(4X12 = 48 Marks
2 a	Check whether the system described by y[n] = cos{x[n]} is causal, linear a time-invariant?	and 6 N
b	 State and Prove the following properties of Z-transform: (i) Differentiation i the Z-domain and (ii) convolution. 	n 6 N
3 a	Determine the impulse response and unit step response of the system describ	bed 8 N
	by the difference equation: $y[n] = 0.7 y[n-1]-0.1 y[n-2] + 2 x[n]-x[n-2]$	
b	Determine the Z-transform of the sequence $x[n] = a^n u[n]$ where a<1.	4 N
4 a	Compute the 4-point DFT of the sequence $x[n] = \{2,1,4,3\}$ using DIF-F	FT 4 M
	algorithm.	
b	b) With neat sketches explain the 8-point DIT-FFT algorithm.	8 1
5 a	Compute the circular convolution of the sequences: $x_1[n] = [4,3,2,1]$ and $x_2[n] = [-1,-2,-3,1]$ using graphical method.	n] = 6 N
h	b) State and prove the following properties of DFT: (i) periodicity and	(ii) 61

18EC603

4 M

4 M

- 6 a) Design a digital low pass Butterworth filter using bilinear transformation with pass
 8 M band and stop band cut-off frequencies 800 rad/sec and 1800 rad/sec respectively.
 The pass band attenuation is -3 dB and stop band attenuation is -20dB.
 - b) Compare IIR and FIR filters.
- 7 a) Convert the analog filter with transfer function $H(s) = \frac{s+1}{(s+0.1)^2+16}$ into digital IIR 4 M filter system function using Bilinear transformation technique. Assume sampling time is 1 *sec*.
 - b) Obtain Lattice ladder structure for the following system and comment on stability. 8 M $y(n) + \frac{13}{24}y(n-1) + \frac{5}{8}y(n-2) + \frac{1}{3}y(n-3) = x(n) + 2x(n-1) + 2x(n-2) + x(n-3)$
- 8 a) Design an ideal LPF with a frequency response $H_d[e^{jw}] = \begin{cases} 1, for -\frac{\pi}{2} \le |\omega| \le \frac{\pi}{2} \\ 0, for \frac{\pi}{2} \le |\omega| \le \pi \end{cases}$ 8 M

Find the values of h[n] for N=11. Determine H[z]. Use Rectangular and Hamming windows.

- b) Compare the characteristics of rectangular window with Bartlett window. 4 M
- 9 a) Design a linear phase FIR high pass filter using Hamming window with a cut off 8 M frequencies $\omega_c=0.8\pi rad/sample$ and N=7.

∞∞∞∞∞∞∞

b) Prove that symmetric and anti-symmetric FIR filter have Linear phase.

						14EC6	04
Ha	ll Ti	cket Numbe	r:				
		III/IV B.Tec	ch (Regular/	Sunnk	ementar	y – Repeat Exam) DEGREE EXAMINATION	
Ian	mar	y, 2021	in (negumi)	Suppr	ementui	Electronics & Communication Enginee	ring
		emester				ANTENNAS AND WAVE PROPAGAT	-
		ree Hours				Maximum: 60 1	
Ansv	ver A	ll Questions from	n Part - A.			(1X12 = 12 M)	larks)
Ansv	ver A	NY FOUR quest	tions from Pa	rt - B.		(4X12=48 M	larks)
]	Part - A	
1.		swer all question				(1X12=12 N	larks)
	a) h)	What is a half		-			
	b) c)	Define a non- Define hertzia		enna?			
	d)	What is mean	-	radia	tor?		
	e)	Define Radiat	• 1				
	f)	Define array f	actor.	•			
	g)	What is the ra-				1	
	h)	Write the appl		-			
	i) j)	What are the a Give the relati					
	k)	What is a radi		WICI		o distance.	
	1)	Define critical					
						Part - B	
2.	a)	Explain how a	untenna radia	ates EN	A wave	S.	8M
	b)		-	-		space is driven by a current of 0.5 Amp at the strengths at a distance 1 Km the antenna at an angle	4M
3.	a)	Derive the Ma	gnetic field	compo	onents c	of an alternating current element.	6M
	b)		0	-		g current element is 1.76 dB	6M
4.	a)	Define and ex	plain the fol	lowing	g terms :	related to antennas:	8M
			(i) Gain				
			(ii) Directiv	•			
			(iii) Radiat		istance		
			(iv) Beam	width			
	b)	Find the Null-	to-Null bear	n widt	h of end	d fire array when array length is 10λ and N=20.	4M
5.	a)	Write short no	otes on Broa	dside a	rray.		6M
	b)	Compare Bind	omial array a	ind En	dfire A	ray antennas.	6M
6.	a)	Explain the or	veration of I	og ner	iodic ar	ntenna in detail.	6M
0.	b)					$f = 30$ MHz with an elevation angle $\Delta = 30^{\circ}$	6M
				-			P.T.O.

14EC604

7.	a)	Explain the Cassegrain feed system of reflectors. List out theadvantages and disadvantages of Cassegrain feed.	8M
	b)	Find the power gain and directivity of a horn whose dimensions are 10 x 5 cm operating at a frequency of 6 GHz.	4M
8.	a) b)	Bring out the important features of Ionosphere wave propagation. A HF radio link is established for a range of 2000 Km. If the reflection region of the ionosphere is at a bright of 200 Km and has the aritical frequency of 6 MHz calculate	8M
		ionosphere is at a height of 200 Km and has the critical frequency of 6 MHz, calculate MUF.	4M
9.	a)	Explain about the important characteristics of Ground wave propagation.	8M
	b)	Calculate the radio horizon of a TV antenna placed at a height of 166 meters. If the receiver is at a distance of 66 Km, what should be the height of the receiving antenna?	4M

										14EC	605
Ha	ll Ti	cke	t Nu	imber	•						
	L						10				
]	III/I'	B.Tec	h (]	Regula	r/Su	pplen	nen	tary – Repeat Exam) DEGREE EXAMINATION	
Jan	uar	y, 2	021							Electronics and Communication Engineer	ring
For	irth	Sem	ieste	er						Object Oriented Programming with JA	VA
Tim	e: Th	ree H	Hours							Maximum: 60 M	
Ansv	ver A	LL Ç	Juest	ions fron	n P	ART-A				(1X12 = 12 Ma)	arks)
				R questi				<i>-B</i> .		(4X12=48 Ma	
										Part - A	
1.			-	uestions						(1X12=12 Ma	arks)
	a)		•	lation.				T A			
	b)		•	four buz	ZZW	ords o	t JA	/A.			
	c)	l y _F Cla	be cas	sung.							
	d) e)		ss keyv	vord							
	(c) f)			four me	tho	ds of S	String	class			
	g)			class					•		
	h)			uper key	wo	rd					
	i)			four bui			ages	in JA	VA		
	j)			nrows in		VA					
	k)			vs. Thre							
	1)	Thr	ead I	ife cycle)					Dout D	
										Part – B	
2.	a) b)		ite a .							its significance in making JAVA popular. coots of a quadratic equation. Also draw the concerned flow	6M 6M
3.	a) b)									ifferences between break and continue statements. ication of two matrices.	6M 6M
4.	a) b)			differen e uses of						ith an example programs. /A.	6M 6M
5.	a) b)									structor overloading. A with example program.	6M 6M
6.	a) b)									rarchical inheritance technique. briefly describe any five methods of Object class.	6M 6M
7.	a) b)									ple program. with an example program.	6M 6M
8.	a) b)	Wri	ite a r def	JAVA p	rog	ram tł	nat pr	ompt	s th	handling mechanism with an example. e user to enter age (0-99). If age is less than 18, generate a Not eligible to vote" otherwise print "eligible to cast the	6M 6M
9.	a) b)									d using Runnable interface. eads with an example program	6M 6M
							-				

Hall Ticket Number:													

III/IV B.Tech (Regular/Supplementary- Repeat Exam) DEGREE EXAMINATION

			tronics and Communication Engineering Computer Organization & Architecture Maximum: 60 Marks
		ALL Questions from PART-A.	(1X12 = 12 Marks)
Ans	werı	ANY FOUR questions from PART-B.	(4X12=48 Marks)
		Part - A	
1.		swer all questions	(1X12=12 Marks)
	a)	What is a mnemonic	
	b) c)	What are conditional codes What is the efficient way to represent signed number	rs in computers and why?
	d)	Define control store	is in computers and wry?
	e)	What is a register file	
	f)	Write the names of fast multipliers	
	g)	What is the use of cache memory	
	h)	What is LRU?	
	i)	What is super scalar operation	
	j) 1-)	What is interrupt What is ISR	
	k) 1)	What is cycle stealing	
	1)		
•	、 、	Part -	
2.	a)	Explain about basic operational concept?	6M
	b)	Explain about basic input and output operations?	6M
3.	a)	Write short notes on stacks and queues	6M
	b)	Explain basic instruction types	6M
4.	a)	Perform the multiplication of (-13*11) using booth	s algorithm 6M
	b)	Write procedure to perform the arithmetic operation	s on floating point number 6M
5.	a)	Explain about micro programmed control	6M
	b)	Draw and explain single bus architecture	6M
6.	a)	Write the operation of four stage pipeline	6M
	b)	With neat figure explain about memory controller	6M
7.	a)	Explain about virtual memory	6M
	b)	Implement 16MB DRAM using 2M*8 memory chi	6M
8.	a)	Draw and explain parallel port interfacing circuit	6M
5.	b)	Compare synchronous and Asynchronous buses	6M
	,		
9.	a)	Write short notes on USB	6M
	b)	Explain about bus arbitration	6M

━∞≠∞⊘⊙≠∞−

14EC606A

14EC/EE602

(1X12 = 12 Marks)

Hall Ticket Number:

1		1 1		1 1	
					1
1					

III/IV B.Tech (Regular/Supplementary-Repeat Exam) DEGREE EXAMINATION

January, 2021	Electronics and Communication Engineering
Sixth Semester	Microprocessors and Microcontrollers
Time: Three Hours	Maximum:60 Marks

Answer All Questions

Answer ONE question from each unit.

Ansv	ver C	DNE question from each unit. (4X12=48 N	/larks)	
1	Answer all questions (1)			
a)				
b)				
c)				
d)				
e)				
f				
g) h)				
i)				
j)				
a)				
b)				
		UNITI		
2	a)	Draw the 8086-microprocessor internal architecture and explain the operation of each block.	6M	
		Architecture Block Diagram 3M		
		Explanation 3M		
	b)	Explain the register organization of 8086.	6M	
		Register Block Diagram 3M		
		Explanation 3M		
-	,	(OR)		
3	a)	Explain program sequence changing instructions in Intel 8086.	6M	
		What are not show as a show sin a instruction 2 $2M$		
		What are program sequence changing instructions? 2M Explanation 4M		
	<u>م</u>	*	6M	
	b) What is the length of the instruction queue in 8086? Explain its usage? Explain the reason for limiting the length of the queue?			
		for minung the length of the queue :		
		Length of the instruction queue 1M		
	Usage 1M			
		Explanation 4M		
		UNIT II		
4	a)	Explain how a program is written in assembly language using Program development steps.	6M	
	- /		_	
		Flow chart 3M		
		Explanation 3M		
	b)	Draw the minimum mode pin diagram of 8086 microprocessor and explain each pin in	6M	
		detail.		
		Minimum Mode pin Diagram 3M		
		Each pin Explanation 3M		
		(OR)		
5	a)	Write an 8086 assembly language program to find maximum and minimum numbers in a	6M	

		series of data.	
		DATA SEGMENT	
		A DW 8,2,5,6,1,3	
		DATA ENDS	
		CODE SEGMENT	
		ASSUME DS: DATA, CS:CODE	
		START:	
		MOV AX,DATA	
		MOV DS,AX	
		MOV CX,0000	
		MOV CL,06	
		LEA BX,AX	
		MOV DX, WORD PTR[BX]	
		MOV AX,0000	
		L1: CMP AX,WORD PTR [BX] JNC L2	
		MOV AX,WORD PTR[BX]	
		L2: CMP DX,WORD PTR [BX]	
		JC L3	
		MOV DX, WORD PTR [BX]	
		L3: ADD BX,02	
		DEC CL	
		CMP CL,00	
		JNZ L1	
		MOV AH,4CH	
		INT 21H	
		CODE ENDS	
		END START.	
		Program with comments 6M	
	b)	Draw the timing diagrams of minimum mode read operation and explain indetail.	6M
		Minimum mode Explanation 2M	
		Timing diagram with explanation 4M	
		UNIT III	I
6	a)	Explain mode 0 and Mode 1 operation of 8255 PPI with necessary timing diagrams.	6M
		Mode 0 Operation of 8255: 3M	
		Mode 1 Operation of 8255: 3M	
	b)	With a neat sketch, explain DAC interfacing to 8086 microprocessor.	6M
		DAC Block diagram 3M	
		Interfacing Explanation 3M	
-			
7	a)	Explain sequence of operations for DMA data transfer with a neat sketch.	6M
		DMA with 8086 Block diagram 3M	
		Explanation 3M	
	b)	Illustrate and explain the internal architecture of 8251 USART.	6M
		Block Diagram 3M	
		Explanation 3M	
0	2	UNIT IV	C M
8	a)	Draw the 8051 architecture and explain its operation in detail.	6M
		Block Diagram 3M	
		Explanation 3M	
	1		

	b)	Write a program to find the given number is even or odd. If odd, count the number of 1's and sends the result to R0.	6M
		ORG 00H	
		MOV A,#NUMBER	
		MOV B,#02H	
		DIV AB	
		MOV R0,B	
		CJNE R0,#0H,ODD	
		MOV A,#00H	
		SJMP EVEN	
		ODD: MOV A,#01H	
		EVEN: NOP	
		END	
		Program Explanation 6M	
9	a)	(OR) Write an assembly language program to read the data serially at 19,200 baud rate and	6M
	u,	transfer the data to port 2.	0101
		ORG 00H MOV A,PCON SETB ACC.7 MOV PCON,A MOV TMOD,#20H MOV TH1,#-3 MOV SCON,#50H MOV P0,#0FFH SETB TR1 REP: MOV A,PO ACALL SEND SIMP REP SEND: MOV SBUF,A JNB TI,\$ CLR TI RET	
	b)	Program Explanation 6MExplain the interrupt structure and priorities of 8051 microcontroller.	6M
	5)	Explain the interrupt surdeture and provides of 6051 interocontroller.	
		Interrupt structure 3M Explanation with priorities 3M	