Hall Ticket Number:

14MA201

I/IV B.Tech (Supplementary) DEGREE EXAMINATION

January, 2021 Second Semester Time: Three Hours	Common toall branches Engineering Mathematics -II Maximum : 60 Marks
Answer All Questions from Part - A. Answer ANY FOUR questions from Part - B.	(1X12 = 12 Marks) (4X12=48 Marks)
1.Answer all questions	(1X12=12 Marks)
 a) Find the solution of dy/dx = 2xy. b) Define orthogonal trajectories. c) Find the integrating factor of dy/dx + xy = sin x d) What is the general solution of (D²-3D+2)y = 0, where D ≡ e) Define Euler - Cauchy equation. f) Write L-C-R circuit without e.m.f. g) What is the Laplace transform of f(t) = Sin 2t. h) Define unit step function. i) State second shifting property of Laplace transforms. j) Given A = x²yi - 2xz j + 2yz k, find divergence of A. k) When a vector function is said to be irrotational. l) State Stoke's theorem. 	d/dx.
2. a) Solve the differential equation $y' - y = e^{2x}$, $y(0) = 0$. b) Find the orthogonal trajectories of $y^2 = 4ax$.	(6M) (6M)
 3. a) Solve the differential equation y' sin 2y + x cos 2y = 2x. b) A thermometer, reading 10°C, is brought into a room whose minutes later the thermometer reading is 18°C. How long w 	(6M) e temperature is 23°C. Two ill it take until the reading
shows 22.8°C.	(6M)
4. a) Solve the differential equation $x^2y'' - 4xy' + 6y = 0, y(1) = 1$,	y'(1) = 0. (6M)
b) Using the method of undetermined coefficients solve $y'' + 3y''$	$y' + 2y = 30e^{2x}$ (6M)
 5. a) Using the method of variation of parameters solvey" -4y' + 4 b) Find the current I(t) in an L-C-R circuit with R = 11 ohms, I which is connected to a source of voltage E(t) = 100 sin 400 	$4y = x^2 e^x$. (6M) L= 0.1 Henry, C = 10 ⁻² Farad bt. Assume that the current
and charge are zero when $t = 0$.	(6M)
6. a) Find the Laplace transform of (i) t cos 2t (ii) $(e^{-at}-e^{-bt})/t$.	(6M)

b) Using Laplace transform technique solve $(D^2 - 2D + 1)y = e^t$, y(0) = 2, y'(0) = -1. (6M)

P.T.O

14MA201

7. a) Find
$$L^{-1}\left(\frac{1}{s(s^2 + \omega^2)}\right)$$
 (6M)

b) Using convolution theorem, find $L^{-1}\left(\frac{1}{(s^2+4)(s^2+9)}\right)$ (6M)

UNIT IV

8. a) Find a unit normal vector to the surface $z^2 = 4(x^2 + y^2)$ at the point P: (1, 0, 2) (6M)

b) Find the directional derivative of $f(x,y,z) = xy^2 + yz^3$ at the point (2,-1,1) in the direction of the vector I + 2J + 2K. (6M) (OR)

- 9. a) If $\overline{F} = 3xyI y^2J$ evaluate $\int_C \overline{F} \cdot d\overline{R}$, where C is the curve in the xy-plane $y = 2x^2$ from (0,0) to (1,2). (6M)
 - b) Apply Green's theorem to evaluate $\int_{C} [(xy + y^2)dx + x^2dy]$, where C is bounded by y = xand $y = x^2$. (6M)