BT/CE/CH/CS/EC/EE/EI/IT/ME 211 **Hall Ticket Number:** II/IV B.Tech (Regular / Supplementary – Repeat Exam) DEGREE EXAMINATION January, 2021 **Common to all Branches Engineering Mathematics -III Third Semester Time:** Three Hours Maximum: 60 Marks Answer ALL Questions from PART-A. (1X12 = 12 Marks)Answer ANY FOUR questions from PART-B. (4X12=48 Marks) Part - A Answer all questions (1X12=12 Marks) Define Fourier cosine transform. b) Find the Fourier transform of e^{-x}. Write the complex form of Fourier integral. c) d) Write the initial condition of D-Alembert's solution of wave equation. e) Write the one dimension wave equation. Solve Uxy= -Ux. f) Write Newton's forward ward interpolation formula. g) What is the order of the Newton iteration method? State Newton's divided divided difference formula. i) Write the normal equations for $y = a + bx + cx^2by$ least squares method. j) k) Define Laplace equation. 1) Write the diagonal 5-point formulas for u_{ij} . Part - B Find the Fourier integral representation of the function $\int_{0}^{\infty} f(x) = \begin{cases} 1, & \text{if } |x| < 1 \\ 0, & \text{if } |x| > 1 \end{cases}$ 2. 6M a) Find the Fourier cosine transform of $f(x) = \begin{cases} -1, & \text{if } 0 < x < 1 \\ 1, & \text{if } 1 < x < 2 \\ 0, & \text{if } x > 2 \end{cases}$ b) 6M 3. Using fourier integrals show that $\int_{0}^{\infty} \frac{\cos xw + w \sin xw}{1 + w^{2}} dw = \begin{cases} 0, & \text{if } x < 0 \\ \pi/2, & \text{if } x = 0 \\ \pi e^{-x}, & \text{if } x > 0 \end{cases}$ a) 6M Find the Fourier sine transform of $f(x) = e^{-ax}$. b) 6M Find the deflection U(x,t) of a vibrating string of unit length with fixed ends starting 4. a)

with initial velocity zero for $f(x)=K[1-\cos 2\pi x]$ Where K=0.01.

Solve the general solution of one dimensional wave equation

5.

Find the solution u(x, y) of $u_{xx} - u_{yy} = 0$ by separating the variables.

6M

6M

12M

14MA301

6M

6M

6M

6M

BT/CE/CH/CS/EC/EE/EI/IT/ME 211

- 6. a) Find y(25) given that y(20) = 24, y(24) = 32, y(28) = 35, y(32) = 40 using Newton's Forward interpolation formula.
 - b) Find the Lagrange's interpolation polynomial from the following data and hence find y(4)

X	0	1	2	3
у	2	3	12	147

7. a) Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ using Simpsons's rule by taking h =0.2.

b) Using Newton's divided difference formula evaluate y(9) given

X	5	7	11	13	17
у	150	392	1452	2366	5202

8. a) Solve the system of equations by using Gauss-seidel method 2x + y + z = 4, x + 2y + z = 4, x + y + 2z = 4.

b) Solve
$$2x + 4y - 6z = -4$$
, $x + 5y + 3z = 10$, $x + 3y + 2z = 5$ using LU decomposition method.

- 9. a) Compute y(0.1) and y(0.2) by Runge-Kutta method of fourth order for the differential equation $\frac{dy}{dx} = x + y$, y(0) = 1.
 - Compute y(1) in steps of 0.1 using Euler's method $\frac{dy}{dx} = (y x)^2$, y(0) = 0, h = 0.1.

