14MA401

Hall Ticket Number:									

II/IV B.Tech (Regular / Supplementary Repeat Exam) DEGREE EXAMINATION

January, 2021 Fourth Semester Time: Three Hours	Common to all branches Engineering Mathematics-IV Maximum: 60 Marks					
Answer All Questions from Part - A Answer ANY FOUR questions from Part - B	(1X12 = 12 Marks) (4X12=48 Marks)					
Part - A1. Answer all questions	(1X12=12 Marks)					
a) Find the imaginary part of log (-i)						
b) State Cauchy-Rieman equations in Cartesian form						
c) Evaluate $\int_0^{1+i} z^2 dz$						
d) Write the formula Cauchy's Internal formula						
e) Evaluate $\int_c \frac{dz}{z-2}$ where 'c' is the circle $ z-2 = 1$						
f) Find the poles of $\frac{1}{z^2-1}$						
g) Find the value of finite population correction factor of	Find the value of finite population correction factor of $n=100$ and $N=1000$					
h) What is the mean and variance of Binomial distributi	on					
i) Define maximum error of estimate for small samples						
j) Define Type I error and Type II error						
k) Define F- distribution						
1) an assert with 95% that the maximum error is 0.05 and	l p= 0.2, find the size of the sample					
Part - B						
2. a) If w=logz find $\frac{dw}{dz}$ and determine where w is non anal	ytic 6M					
b) Show that $u = e^{-x}(x \sin y - y \cos y)$ is harmonic	6M					
3. a) Evaluate $\int_{0}^{1+i} (x^2 - iy) dz$ along the path (i)y=x (ii) y	_{7=X²} 6M					
b) Evaluate $\int \frac{\sin^2 z}{(z-\pi)^3} dz$, if c is the circle $ z = 1$	6M					
4. a) Obtain the Taylor series to represent the function $\frac{2}{(z+z)}$	$\frac{z^2 - 1}{2(z+3)}$ in the region $ z < 2$ 6M					
b) Obtain the Laurent series of the function $\frac{7z-2}{(z+1)z(z-2)}$	about $z_0 = -1$ 6M					
5. a) End the color and residence to ze^{z}	бМ					
Find the poles and residues at each pole $\frac{1}{(z-1)^3}$	-					
b) Use the method of contour integration to evaluate $\int_{-\infty}^{\infty}$	$\int_{\infty}^{\infty} \frac{x^2}{(x^2+a^2)^3} dx \tag{6M}$					

6M

6. a) If the probability of a random variable is given by $f(x) = \begin{cases} kx^2 & 0 < x < 1 \\ 0 & elsewhere \end{cases}$ Find the value k and probability that the random variable takes on a value (a) Between $\frac{1}{2}$ and $\frac{3}{2}$ (b) greater than $\frac{2}{2}$

- b) Find the probability that a random variable having the standard normal distribution will take as value 6M
 (a) Between 0.87 and 1.28
 (b) between -0.34 and 0.62
 (c) greater than 0.85
 (d) greater than -0.65
- a) If a 1-gallon can a paint covers on the average 513.3 square feet with a standard deviation of 31.5 6M square feet, what is probability that the sample mean covered by a sample of 40 of these 1-gallon cans will be anywhere from 510.0 to 520.0 square feet
 - b) The chi-square distribution with 4 degrees of freedom is given $f(x) = \begin{cases} \frac{1}{4}xe^{-\frac{x}{2}} & x > 0 \\ \frac{1}{4} & 0 & x \le 0 \end{cases}$ find the ^{6M}

probability that a variance of a random sample of size 5 from a normal population with $\sigma = 12$ will exceed 180

- 8. a) A random sample of size n=100 is taken from a population with $\sigma = 5.1$. Given that the sample 6M mean is $\bar{x} = 21.6$ construct a 95% confidence interval for the population mean u.
 - b) A research worker wants to determine the average time it takes a mechanic to rotate the tires of a car 6M and she wants to be able to assert with 95% confidence that the mean of her sample is off by atmost 0.50 minute. If she resume from past experience that $\sigma = 1.6$ minutes, how large a sample will she have to take
- 9. a) A company claims that its light bulbs are superior to those of its competitor. If a study showed that 6M to sample of n_1 =40 of its bulbs has a mean lifetime of 1647 hours of continuous use with a standard deviation of 27 hours. While a sample of n_2 =40 bulbs made by its main competitor has a mean life time of 1638 hours of continuous. Does this substantiate the claim at the 0.05 level of significance.
 - b) Experience has shown that 20% of a manufactured product as of the top quality. In one day's 6M production of 400 articles only 50 are of top quality. Test the hypothesis at 0.05 level.