Hall Ticket Number:									

I/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

_	I/IV B. Iech (Regular/Supplementary) DEGREE EXAMINATIO							
Januar	ry, 2021 Com	Common to all branches						
Second	Semester Numerical Methods and Ad	Numerical Methods and Advanced Calculus						
Time: Th	nree Hours	Maximum: 50 Marks						
Answer A	LL Questions from PART-A.	(1X10 = 10 Marks)						
Answer A	NY FOUR questions from PART-B.	(4X10=40 Marks)						
1 Am	Part - A	$(1\mathbf{V}10-10\mathbf{M}ordro)$						
1. An a)	iswer all questions Define an Algebraic equation.	(1X10=10 Marks)						
b)	Decompose A= $\begin{bmatrix} 4 & 1 \\ 3 & -5 \end{bmatrix}$ as LU. Here L and U are lower and upper triangu	1M lar matrices 1M						
	respectively.	11,1						
c)	Write Lagrange's interpolation formula.	1M						
d)	State the Simpson's 1/3 rd rule of integration.							
e)	Write the general formula to find y ₁ for the initial value problem $\frac{dy}{dx} = f(x)$	1M $(x, y), y(x_0) = y_0$ in 1M						
	Runge-Kutta method of 4 th order.							
f)	Evaluate the double integral $\int_{0}^{1} \int_{0}^{1-x} dx dy$.	1M						
g)	Transform $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ into polar form.	1M						
h)	Is the vector field $3x^4y^2I + 4x^3z^2J + 3x^2y^2K$ solenoidal?	1 M						
i)	Find a vector normal to the surface $f(x,y,z)=xyz$.							
j)	-							
	Part - B							
2. a)	Find a root of the equation $x^3 - 2x = 5$. Quaina the Disaction method	5M						
2. a) b)	The u root of the equation $x = 2x = 5$ of using the Disection method.							
0)	Solve $10x + y + z = 12$, $2x + 10y + z = 13$, $2x + 2y + 10z = 14$ by using 1 act	orization method. 5M						
3. a)	Find by Newton's method, the real root of the equation $3x = \cos x + 1$ 51							
b)	z + 54z = 110 using							
	Gauss-Seidel iteration method. Do five iterations.	5M						
4. a)	Find the cubic polynomial which takes the following values by using intermediate formula	Newton's forward						
	interpolation formula x: 0 1 2 3							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5M						
b)	Given the values							
	x: 5 7 11 13 17							

x.311317y:150392145223665202Evaluate f(9), using Newton's divided difference formula.

P.T.O.

5M

18MA002

5M

5. a) Find the value of y for x=0, using Picard's method for the initial value problem $\frac{dy}{dx} = y$, y(0) = 1.

- b) Use the Trapezoidal rule to estimate the integral $\int_{0}^{2} e^{x^{2}} dx$ taking 10 intervals. 5M
- 6. a) Evaluate $\iint_{A} xy \, dx \, dy$, where A is the domain bounded by x-axis, ordinate x=2a and the 5M curve $x^2 = 4ay$.
 - b) Evaluate $\iint r^3 dr d\theta$ over the area bounded between the circles $r = 2\sin\theta$, $r = 4\sin\theta$.
- 7. a) Evaluate the triple integral $\iint_{0}^{a} \int_{0}^{x+y} e^{x+y+z} dz \, dy \, dx$ 5M
 - b) Find the volume bounded by the xy-plane, the cylinder $x^2 + y^2 = 1$ and the plane x+y+z=3 5M
- 8. a) Find the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at the point (2,-1,1) in the direction of the vector I+2J+2K. in what direction the directional derivative is maximum? 5M
 - b) Using Stoke's theorem evaluate $\int_{C} \left[(x+y)dx + (2x-z)dy + (y+z)dz \right]$ where C is the boundary of the triangle with vertices (2,0,0), (0,3,0),(0,0,6).
- 9 Verify Green's theorem for $\int_C \left[(xy + y^2) dx + x^2 dy \right]$ where C is bounded by y = x and 10M $y = x^2$.