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Answer question 1 compulsory.                  (14X1 = 14 Marks) 

Answer one question from each unit. 
                                                    (4X14=56 Marks) 
 

 

 

1. a) What are the characteristics of an algorithm? 

Input, Output, Definiteness, Finiteness, Effectiveness 

 
 

  

 b) Define order of an algorithm and the need to analyze the algorithm? 

In general the order of an algorithm translates to the efficiency of an algorithm. Algorithm 

analysis is an important part of a broader computational complexity theory, which provides 

theoretical estimates for the resources needed by any algorithm which solves a given 

computational problem. These estimates provide an insight into reasonable directions of search for 

efficient algorithms. 

 

  

 c) Define time complexity. 

The time complexity of an algorithm is the amount of computer time it needs to run to Compilation. 

 

  

 d) What is average case efficiency of an algorithm? 

In computational complexity theory, the average-case complexity of an algorithm is the amount of 

some computational resource (typically time) used by the algorithm, averaged over all possible 

inputs. Average Case Efficiency - average comparisons between minimum no. of comparisons and 

maximum no. 

 

  

 e) Give an example showing that Quicksort is not a stable sorting algorithm. 

Quick Sort is not stable because it swaps non-adjacent elements. The most succinct example: Given 

[2, 2, 1], the '2' values will not retain their initial order. 

Quick Sort is an unstable algorithm because we do swapping of elements according to pivot's 

position (without considering their original positions). 

 

  

 f) Differentiate between greedy method and Dynamic programming. 

The essential difference between the greedy method and dynamic programming is that in the greedy 

method only one decision sequence is ever generated. In dynamic programming, many decision 

sequences may be generated. 

 

  

 g) What is divide and conquer method? 

Given a function to compute on “n” inputs the divide-and-conquer strategy suggests splitting the 

inputs into “k” distinct subsets, 1 ˂ k ≤ n, yielding “k” sub problems. These sub problems must be 

solved, and then a method must be found to combine sub solutions into a solution of the whole. If 

the sub problems are still relatively large, then the divide-and-conquer strategy can possibly be 

reapplied. Often the sub problems resulting from a divide-and-conquer design are of the same type 

as the original problem. For those cases the reapplication of the divide-and-conquer principle is 

naturally expressed by a recursive algorithm. 
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 h) List the features of dynamic programming. 

1. Sub problems overlap 

2. Substructure has optimal property 

 

  

 i) What is a spanning tree? 

Given a connected, undirected graph, a spanning tree of that graph is a sub graph which is a 

tree and connects all the vertices together. 

 

  

 j) What is branch and bound? 

The term branch-and-bound refers to all state space search methods in which all children of the E-

node are generated before any other live node can become the E-node. 

 

  

 k) Define 0/1 knapsack problem. 

Given � objects and a knapsack. Object � has weight �� and profit �� and the knapsack has a 

capacity �. The objective is to maximize the total profit by selecting objects (no fractions allowed) 

without exceeding the total capacity of the knapsack. 

�������� Ʃ1≤�≤� ���� 

• ������� �� Ʃ1≤�≤� ���� ≤ � 

• �� = 0 �� 1 ��� 1 ≤ � ≤ � 

• �� is 0, the object � is not selected. 

• �� is 1, the object � is selected. 

 

  

 l) What are the two types of constraints used in backtracking? 

1. Explicit constraints are rules that restrict each xi to take on values only from a given set. 

2. Implicit constraints are rules that determine which of the tuples in the solution space of I satisfy 

the criterion function. 

 

  

 m) Define Cook’s Theorem. 

Satisfiability is in P if and only if P = NP 

 

  

 n) Explain the relation between P and NP problems. 

Every decision problem that is solvable by a deterministic polynomial time algorithm is also 

solvable by a polynomial time non-deterministic algorithm. 

 

 

  



3 
 

Unit –I 
2. a) Explain the various Asymptotic notations used in algorithmic analysis with examples. 

1. Big-oh Notation ( O ) : 
                   O( g( n ) )  =   {  f( n ) :  there exists positive constants c and n0, such that   0   

f( n )  cg( n )  for all n   n0  } 

 O( g( n ) ) is the set of functions with smaller or same order of growth as g( n ). 

 g( n ) is an asymptotic upper bound for f( n ). 

Big-oh Visualization 

                          

 
2. Omega Notation (  ) : 
                      ( g( n ) )  =  {  f ( n ) : there exists positive constants c and n0, such that    0 

 cg( n )  f( n )  for all  n   n0  } 

 ( g( n ) ) is the set of functions with larger or same order of growth as g( n ). 

 g( n ) is an asymptotic lower bound for f( n ). 

 

3. Theta Notation (  ) : 
            ( g( n ) )   =   {    f( n ) :  there exists positive constants c1, c2, and n0, such that 0  

c1g(n)   f(n)  c2g(n)  for all n   n0  } 

 ( g( n ) ) is the set of functions with the same order of growth as g( n ). 

 g( n ) is an asymptotically tight bound for f( n ). 

 

For any two functions g(n) and f(n),  f(n) = ( g(n))  iff  f(n) = O(g(n)) and f(n) = (g(n)). 
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4. Little-oh Notation ( o ) : 

                                 o( g( n ) )  =  { f( n ) :    c > 0,  n0 > 0 such that  n   n0, we have 0 

  f( n ) < cg( n )  }. 

 f( n ) becomes insignificant relative to g( n ) as n approaches infinity: 

    lim [  f( n ) / g( n ) ]  =  0 
                       n  
 g( n ) is an upper bound for f( n ) that is not asymptotically tight. 

5. Little omega Notation ( w ) : 

                                 w( g( n ) )  =  {  f( n ) :  c > 0,  n0 > 0 such that  n   n0, we have 0 

 cg( n ) <  f( n )  }. 

 f ( n ) becomes arbitrarily large  relative to g( n ) as n approaches infinity: 

  lim [  f( n ) / g( n ) ]  =  . 
         n  
 g( n ) is a lower bound for f( n ) that is not asymptotically tight. 

 
 

 b) Write an algorithm to find the factorial of a number and find the time complexity of 
the algorithm 
 
The factorial of a number is defined as: 

f(n) = n * f(n-1) → for all n >0 
f(0) = 1 → for n = 0 
Algorithm factorial(n) { 
    if n is 0 
         return 1 
    return n * factorial(n-1) 
} 
Time complexity 

If we look at the pseudo-code again, added below for convenience. Then we notice that: 

factorial(0) is only comparison (1 unit of time), factorial(n) is 1 comparison, 1 

multiplication, 1 subtraction and time for factorial(n-1) 

From the above analysis we can write: 

T(n) = T(n — 1) + 3 
T(0) = 1 
T(n) = T(n-1) + 3 
     = T(n-2) + 6 
     = T(n-3) + 9 
     = T(n-4) + 12 
     = ... 
     = T(n-k) + 3k 
as we know T(0) = 1 

we need to find the value of k for which n - k = 0, k = n 

T(n) = T(0) + 3n , k = n 

        = 1 + 3n 

that gives us a time complexity of O(n) 

CO1 7M 
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(OR) 
3. a) What is the difference between Big ‘O’ notation and little ‘o’ notation? When do we 

use Theta (Θ) notation. Explain with examples. 
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Theta Notation (Θ-notation) 

Theta notation encloses the function from above and below. Since it represents the upper 

and the lower bound of the running time of an algorithm, it is used for analyzing the 

average-case complexity of an algorithm. 

 
( g( n ) )   =   {    f( n ) :  there exists positive constants c1, c2, and n0, such that 0  c1g(n) 

  f(n)  c2g(n)  for all n   n0  } 

 ( g( n ) ) is the set of functions with the same order of growth as g( n ). 

 g( n ) is an asymptotically tight bound for f( n ). 
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For any two functions g(n) and f(n),  f(n) = ( g(n))  iff  f(n) = O(g(n)) and f(n) = (g(n)). 

 
 

 b) How many cases are there under Master’s Theorem? Explain any two of them with 
example. 
 
The Master Theorem applies to recurrences of the following form: 

  T (n) = a T (n/b) + f (n) 

where a ≥ 1 and b > 1 are constants and f(n) is an asymptotically positive function. 

There are 3 cases: 
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Unit –II 
4. a) Explain Quick sort algorithm and simulate it for the following data: 20, 35, 10, 16, 54, 

21, 25 
 

 The divide-and-conquer approach can be used to arrive at an efficient sorting 

method different from merge sort. 

 In merge sort, the file a[ 1 : n ] was divided at its midpoint into sub arrays which 

were independently sorted & later merged. 

 In Quick sort, the division into two sub arrays is made so that the sorted sub arrays 

do not need to be merged later. 

 This is accomplished by rearranging the elements in a[ 1 : n ] such that a[ i ] ≤ a[ j ] 

for all i between 1 & m and all j between ( m+1 ) & n for some m, 1 ≤ m ≤ n. 

 Thus the elements in a[ 1 : m ] & a[ m+1 : n ] can be independently sorted. 

 No merge is needed. This rearranging is referred to as partitioning. 

 Function partition of Algorithm accomplishes an in-place partitioning of the 

elements of a[ m : p-1 ] 

 It is assumed that a[ p ] >= a[ m ] and that a[ m ] is the partitioning element. If m=1 

& p-1 = n, then a[ n+1 ] must be defined and must be greater than or equal to all 

elements in a[ 1 : n ] 

 The assumption that a[ m ] is the partition element is merely for convenience, other 

choices for the partitioning element than the first item in the set are better in 

practice. 

 The function interchange ( a, i, j ) exchanges a[ i ] with a[ j ]. 

 
Algorithm QuickSort( p, q ) 
//Sort the elements a[ p ],…..,a[ q ] which resides in the global array a[ 1 : n ] into 
ascending //order; a[ n+1 ] is considered to be defined and must be >= all the elements 
in a[ 1 : n ] 
{ 
         if( p < q ) then             // If there are more than one element 
        { 
             j = Partition( a, p, q+1 );        //’j’ is the position of the partitioning element. 
            Quicksort( p, j-1 ); 
            Quicksort( j+1, q ); 
        } 
} 
  
Algorithm Partition( a, m, p )  

//within a[ m ], a[ m+1 ],…..,a[ p-1 ] the elements are rearranged in such a manner that 

if 

//initially t = a[ m ], then after completion a[ q ] = t for some q between m and p-1, a[ k 

] <= t //for m <= k < q, and a[ k ] >= t for  q < k < p , q is returned. Set a[ p ] = infinite. 
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{ 

 v = a[ m ]; i = m; j = p; 

 repeat 

 { 

   repeat 

        i = i + 1; 

   }until( a[ i ] ≥ v); 

   repeat 

         j = j - 1; 

   }until( a[ j ] ≤ v ); 

   if ( i < j ) then interchange(a, i. j ); 

 }until( i ≥ j ); 

 a[ m ] = a[ j ]; a[ j ] = v; 

 retun j; 

} 

  
Algorithm Interchange( a, i, j ) 

//Exchange a[ i ] with a[ j ] 

{ 

 temp  =  a[ i ]; 

 a[ i ]   =  a[ j ]; 

 a[ j ]   =  temp; 

} 

 
(1)     (2)    (3)      (4)     (5)     (6)     (7)     (8) 

   20,    35,    10,     16,     54,     21,     25     +∞ 
 
   20,    16,    10,     35,     54,     21,     25     +∞ 
 
   10,    16,    20,     35,     54,     21,     25     +∞ 
 
 
    (4)     (5)     (6)     (7)     (8) 
    35,     54,     21,     25     +∞ 
 
    35,     25,     21,     54     +∞ 
 
    21,     25,     35,     54     +∞ 
 
    
(1)     (2)    (3)    (4)     (5)     (6)     (7)    

 
   10,    16,    20,    21,    25,     35,     54      
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 b) Illustrate Merge sort algorithm and discuss Time complexity in both worst case and 
average case. 
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(OR) 
5. a) Solve the following greedy fractional knapsack problem.  

Knapsack problem instance n = 4, Knapsack capacity m = 15, ( P1, P2, P3, P4 ) = ( 10, 

10, 12, 18 ) and ( W1, W2, W3, W4 ) = ( 2, 4, 6, 9 ).   

When one applies the greedy method to the solution of the knapsack problem, there are 

different measures one can attempt to optimize when determining which object to include 

next. Once an optimization measure has been chosen, the greedy method suggests choosing 

objects for inclusion into the solution in such away that each choice optimizes the measure 

at that time.  

We design an algorithm to achieve a balance between the rate at which profit and the 

rate at which capacity is used. At each step we include that object which has the maximum 

profit per unit capacity used. This means that objects are considered in order of the ratio Pi / 

Wi. 

If P1 / W1 ≥ P2 / W2 ≥ ……. ≥ Pn / Wn, then greedy knapsack generates an optimal 

solution to the given instance of the knapsack problem. 

P1 / W1   =  10/2  =  5 

P2 / W2  =  10/4  =  2.5 

P3 / W3  =  12/6  =  2 

P4 / W4  =  18/9  =  2 

Arranging the object in descending order of unit cost i.e;  P1 / W1  , P2 / W2   , P3 / W3   , P4 / 
W4    ( 5 , 2.5, 2, 2 ) then, 
 

Pi      =    10     10       12      18 
Wi    =     2        4         6        9 
Xi     =     1         1        1        3/9 

The optimal solution is,  

 =     10*1 + 10*1 + 12*1 + 18*(3/9) =   38 

Maximum profit is 38 and the solution vector is   (X1 , X2 , X3 , X4 )  =  ( 1, 1, 1, 3/9 ). 

CO2 7M 



12 
 

 b) Construct Minimum cost spanning tree using Prim’s algorithm. 
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 Unit –III 
6. a) Solve the following travelling sales person problem using Dynamic Programming. 

 

 
 

Let G( V, E ) be a directed graph with edge cost cij. The variable cij is defined such that 

cij > 0 for all i and j and cij =  , if < i, j >  E. Let    =  n  and assume n > 1.  

 A tour of G is a directed simple cycle that includes every vertex in V.  

 The cost of a tour is the sum of the costs of the edges on the tour.  

 The traveling salesman problem is to find a tour of minimum cost. 

Without loss of generality, regard a tour to be a simple path that starts and ends at 

vertex 1.  

 Every tour consists of an edge < 1, k > for some k  V - { 1 } and a path from 

vertex k to vertex 1.  

 The path from vertex k to vertex 1 goes through each vertex in V - { 1, k } 

exactly once. 

Let ɡ( i, S ) be the length of a shortest path starting at vertex i, going through all 

vertices in S, and terminating at vertex 1. 

The function ɡ( 1, V - { 1 } ) is the length of an optimal sales person tour. From the 

principle of optimality it follows that, 

ɡ( 1, V - { 1 } )   =          ----( 1 ) 

Generalizing equation ( 1 ) , we obtain ( for i ∉ S ) 

ɡ( i, S )   =          ----( 2 ) 

Equation ( 1 ) can be solved for ɡ( 1, V - { 1 } ) if we know ɡ( k, V - { 1, k } ) for all 

choices of k. The ɡ values can be obtained by using equation ( 2 ).  

Clearly, ɡ( i, Ø ) = . Hence we can use equation ( 2 ) to obtain ɡ( i, S ) 

for all S of size 1. Then we can obtain ɡ( i, S ) for   and so on.  

 When , the values of i and S for which ɡ( i, S ) is needed are such that   

i ≠ 1, 1∉ S and i ∉ S.  

CO3 14M 
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Initially, ɡ( i, Ø )  =  ci1    for  1 ≤ i ≤ n 

ɡ( 1, Ø )  =  c11  =    0 

ɡ( 2, Ø )  =  c21  =  4 

ɡ( 3, Ø )  =  c31  =  1 

ɡ( 4, Ø )  =  c41  =  3 

 
Next, we compute ɡ( i, S )  with   ,  i ≠ 1, 1∉ S and i ∉ S. 

ɡ( 2, { 3 } )  =   c23 +  ɡ( 3, Ø )   =   2 + 1      =   3 

ɡ( 2, { 4 } )  =   c24 +  ɡ( 4, Ø )   =   1 + 3      =   4 

ɡ( 3, { 2 } )  =   c32 +  ɡ( 2, Ø )   =   2 + 4      =   6 

ɡ( 3, { 4 } )  =   c34 +  ɡ( 4, Ø )   =   5 + 3      =   8 

ɡ( 4, { 2 } )  =   c42 +  ɡ( 2, Ø )   =   1 + 4      =   5 

ɡ( 4, { 3 } )  =   c43 +  ɡ( 3, Ø )   =   5 + 1      =   6 

 
Next, we compute ɡ( i, S )  with   ,  i ≠ 1, 1∉ S and i ∉ S. 

ɡ( 2, { 3, 4 } )  =    

         =   

         =   

                      =  7 ( when j = 4 ) 

 

ɡ( 3, { 2, 4 } )  =    

         =   

         =   

                      =  6 ( when j = 2 ) 

 

ɡ( 4, { 2, 3 } )  =    

         =   

         =   

                      =  4 ( when j = 2 ) 
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Finally, from equation ( 1 ) we obtain 

ɡ( 1, { 2,  3, 4 } ) =  

            =  

              =  

         =  7 ( when j = 3 and 4 ) 

 

An optimal tour of the graph has length 7.  

 

A tour of this length can be constructed if we retain with each ɡ( i, S )  the value of j that 

minimizes the right hand side of the equation ( 2 ). Let J( i, S )  be this value.  

 When J( 1, { 2, 3, 4 } ) = 3. Thus the tour starts from 1 and goes to 3. The remaining 

tour may be obtained from g( 3, { 2, 4 } ). So J( 3, { 2, 4 } )  =    2. Thus the next edge is 

(3, 2). The remaining tour is for g( 2, { 4 } ). So J( 2, { 4 } ) =  4. The optimal tour is 

1→3→2→4→1. 

      When J( 1, { 2, 3, 4 } ) = 4. Thus the tour starts from 1 and goes to 4. The remaining 

tour may be obtained from g( 4, { 2, 3 } ). So J( 4, { 2, 3 } )  =    2. Thus the next edge is 

(4, 2). The remaining tour is for g( 2, { 3 } ). So J( 2, { 3 } ) =  3. The optimal tour is 

1→4→2→3→1. 

 
 

(OR) 
7. a) What is meant by connected component? What is Bi- connected graph? Find Bi- 

connected components for the given graph. 
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 b) What are the graph traversal techniques? Explain BFS with an example. 
 
Graph traversal techniques  

 Breadth first traversal 

 Depth first traversal 

 
Breadth first search  
 
• In Breadth first search we start at vertex v and mark it as having been reached. The vertex 

v at this time is said to be unexplored.  

• A vertex is said to have been explored by an algorithm when the algorithm has visited all 

CO3 7M 
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vertices adjacent from it.  

• All unvisited vertices adjacent from v are visited next. There are new unexplored vertices. 

Vertex v has now been explored.  

• The newly visited vertices have not been explored and are put onto the end of the list of 

unexplored vertices. The first vertex on this list is the next to be explored.  

• Exploration continues until no unexplored vertex is left. The list of unexplored vertices 

acts as a queue and can be represented using any of the standard queue representations.  

Algorithm BFS( v )       
// A breadth first search of ‘G’ is carried out. Beginning at vertex v; For any node       
// i, visit.  if ‘i’ has already been visited. The graph ‘v’ and array visited [ ] are    
// global; visited [ ]  initialized to zero.  
 { 

   u := v;   // q is a queue of unexplored  

   visited[ v ] := 1; 

   repeat 

   {  

    for all vertices w adjacent from u do  

         { 

     if ( visited[ w ] = 0 ) then 

     { 

      Add w to q;  

      visited[ w ] := 1; 

                } 

    } 

    if q is empty then return;  

    delete u from q;  

   } until (false) 

 } 

 If BFS is used on a connected undirected graph G, then all vertices in G get visited and 

the graph is traversed. However, if G is not connected, then at least one vertex of G is not 

visited. A complete traversal of the graph can be made by repeatedly calling BFS each 

time with a new unvisited starting vertex. The resulting traversal algorithm is known as 

breath first traversal.  

Algorithm BFT( G, n ) 
     { 
   for i := 1 to n do 
    visited[ i ] := 0; 
   for i := 1 to n do 
    if ( visited[ i ] = 0 ) then BFS( i ) 
  } 
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Unit –IV 
8. a) Let m = 31 and weights W( 7, 11, 13, 24 ) draw a portion of state space tree using an 

algorithm of sum of subsets in backtracking approach? 

 
    s, n, r 

 
 
 
 x(1)=1 x(1)=0 
 
 
 
 x(2)=1 x(2)=0 x(2)=1  x(2)=0 
 
 
x(3)=1 

 x(3)=0          x(3)=1                       x(3)=0    x(3)=0                 x(3)=1        x(3)=0 
  
 
              x(4)=1                                                            x(4)=1 
    x(4)=1                                            x(4)=0 
     x(4)=0 
 
 
  
   
  
  

    1st    solution is   ( 1,  1,  1,  0 ) 

    2nd   solution is   ( 1,  0,  0,  1 ) 

CO4 7M 

0,1,55 

7,2,48 

18,3,37 

31,4,24 18,4,24 

7,3,37 

20,4,24 7,4,24 

     0,2,48 

11,3,37 

11,4,24 

    0,3,37 

18,5,0 10,5,0 

A 

31,5,0 B 

B 

A 

13,4,24 0,4,24 

B 
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 b) Explain the backtracking solution to the 4-queens problem and draw a portion of the 

tree that is generated during backtracking? 

The n-queens problem is place n-queens on an n x n chessboard so that no two queens 

attack i.e., no two queens are on the same row, or column, or diagonal. 

If we imagine the squares of the chessboard being numbered as the indices of the two  

dimensional array a[ l : n, l : n ], then we observe that every element on the same diagonal 

which runs from the upper left to the lower right has the same "row – column" value. Also, 

every element on the same diagonal which goes from the upper right to the lower left has 

the same "row + column" value. Suppose two queens are placed at positions ( i, j ) and ( k, 

l ). Then by the above they are on the same diagonal only if 

  i – j   =   k – l  or i + j    =    k + l 

 The first equation implies 

    j – l   =   i – k 

 The second equation implies 

    j – l   =   k – i 

Therefore two queens lie on the same diagonal if and only if | j-l |= | i-k |. 

All solutions to n-queens problem can therefore be represented as n-tuples ( x1, …., xn ), 

where xi is the column on which queen i is placed. 

Explicit constraints Si = { 1, 2, 3, 4, ……, n }, 1 ≤ i ≤ n 

Implicit constraints for this problem are that 

 No two xi’s can be the same and 

 No two queens can be on the same diagonal 

 

Example: 4-queens. 
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Two possible solutions are 

Solutin-1 : ( 2, 4, 1, 3 )  

Solution 2 : ( 3, 1, 4, 2 ) 

 

(OR) 
9. a) Draw a portion of the state space tree generated by LCBB for the following Knapsack 

problem? Where n = 4, m = 15, (P1, P2, P3, P4) = ( 10, 10,12,18), (W1, W2, W3, W4, 

W5) =  ( 2,4,6,9 ) Clearly show the solutions obtained? 
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Maximum profit is 38 and the solution vector is   (X1 , X2 , X3 , X4 )  =  ( 1, 1, 0, 1 ). 
 

 

 
 
 
 

          HOD, CSE 
 
 


