Answer question 1 compulsory. (14X1 = 14 Marks)
Answer one question from each unit. (4X14=56 Marks)
1. a) What are the characteristics of an algorithm?

Input, Output, Definiteness, Finiteness, Effectiveness

b) Define order of an algorithm and the need to analyze the algorithm?
In general the order of an algorithm translates to the efficiency of an algorithm. Algorithm
analysis is an important part of a broader computational complexity theory, which provides
theoretical estimates for the resources needed by any algorithm which solves a given
computational problem. These estimates provide an insight into reasonable directions of search for

efficient algorithms.

¢) Define time complexity.

The time complexity of an algorithm is the amount of computer time it needs to run to Compilation.

d) What is average case efficiency of an algorithm?
In computational complexity theory, the average-case complexity of an algorithm is the amount of
some computational resource (typically time) used by the algorithm, averaged over all possible
inputs. Average Case Efficiency - average comparisons between minimum no. of comparisons and

maximum no.

¢) Give an example showing that Quicksort is not a stable sorting algorithm.
Quick Sort is not stable because it swaps non-adjacent elements. The most succinct example: Given
[2, 2, 1], the '2' values will not retain their initial order.
Quick Sort is an unstable algorithm because we do swapping of elements according to pivot's

position (without considering their original positions).

f) Differentiate between greedy method and Dynamic programming.
The essential difference between the greedy method and dynamic programming is that in the greedy
method only one decision sequence is ever generated. In dynamic programming, many decision

sequences may be generated.

g2) What is divide and conquer method?
Given a function to compute on “n” inputs the divide-and-conquer strategy suggests splitting the
inputs into “k” distinct subsets, 1 <k < n, yielding “k” sub problems. These sub problems must be
solved, and then a method must be found to combine sub solutions into a solution of the whole. If
the sub problems are still relatively large, then the divide-and-conquer strategy can possibly be
reapplied. Often the sub problems resulting from a divide-and-conquer design are of the same type
as the original problem. For those cases the reapplication of the divide-and-conquer principle is

naturally expressed by a recursive algorithm.

h)

)

k)

D

List the features of dynamic programming.
1. Sub problems overlap

2. Substructure has optimal property

What is a spanning tree?
Given a connected, undirected graph, a spanning tree of that graph is a sub graph which is a

tree and connects all the vertices together.

What is branch and bound?
The term branch-and-bound refers to all state space search methods in which all children of the E-

node are generated before any other live node can become the E-node.

Define 0/1 knapsack problem.

Given n objects and a knapsack. Object i has weight wi and profit pi and the knapsack has a
capacity m. The objective is to maximize the total profit by selecting objects (no fractions allowed)
without exceeding the total capacity of the knapsack.

maximize Zi<i<n PiXi

* Subject to Ti<icn wixi <m

exi=0o0rland 1<i<n

* x; is 0, the object i is not selected.

* x; is 1, the object i is selected.

What are the two types of constraints used in backtracking?
1. Explicit constraints are rules that restrict each xi to take on values only from a given set.
2. Implicit constraints are rules that determine which of the tuples in the solution space of I satisfy

the criterion function.

Define Cook’s Theorem.

Satisfiability is in P if and only if P = NP

Explain the relation between P and NP problems.
Every decision problem that is solvable by a deterministic polynomial time algorithm is also

solvable by a polynomial time non-deterministic algorithm.

@

Unit -1
2. a) Explain the various Asymptotic notations used in algorithmic analysis with examples. COl
1. Big-oh Notation (O) :
O(g(n)) = { f({n): there exists positive constants ¢ and no, such that 0 <

fin)<cg(n) foralln> no }

e O(g(n)) is the set of functions with smaller or same order of growth as g(n).
¢ g(n)is an asymptotic upper bound for f(n).

Big-oh Visualization

| cglin)

! / omy

[
- e 100

oN?

2
2N —10N 100

1ons X
100N

| O o)
i..x,/'f : 7 4
WX/ { 100

M i O(NlogN)

5 BN+10 2N—1
—— n 10NIogN=10N+1
y Niogns100N

")y = 0(gn)

2. Omega Notation (Q) :
Q(g(n)) = { f(n): there exists positive constants ¢ and no, such that 0

<cg(n)<fin) forall n> no }

o O(g(n))is the set of functions with larger or same order of growth as g(n).

e g(n)isan asymptotic lower bound for f(n).

()

cgln)

"

g
C fin) =Q(gn)

3. Theta Notation (®) :
®O(g(n)) = { fln): there exists positive constants c1, ¢2, and no, such that 0 <

cig(n) < fin) <cog(n) foralln> no }

e O(g(n))is the set of functions with the same order of growth as g(n).
o g(n)isan asymptotically tight bound for f(n).
cagln)

fin)

= tigin

Y //-" -
v
S n

Hy E
fln) =0O(g(n)

For any two functions g(n) and f(n), f(n) = O(g(n)) iff fin) = O(g(n)) and f(n) = Q(g(n)).

b)

4. Little-oh Notation (0) :

o(g(n)) = {f(n): Vc>0,3no>0suchthat V n > no, we have 0
< fln)<cg(n) }.

f({n) becomes insignificant relative to g(n) as n approaches infinity:

lim[fin)/g(n)] =20

n—oo

e g(n)isan upper bound for f(n) that is not asymptotically tight.
5. Little omega Notation (w) -

w(g(n)) ={ f(n):Vc>0,3no>0such that V n > no, we have 0
<cg(n)<fln) }.

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity:

lim[f{n)/g(n)] = co.

n—oo

e g(n)isalower bound for f{ n) that is not asymptotically tight.

Write an algorithm to find the factorial of a number and find the time complexity of COlI
the algorithm

The factorial of a number is defined as:

f(n) =n * f(n-1) — for all n >0
f(0)=1—->forn=0
Algorithm factorial(n) {
ifnis0
return 1
return n * factorial(n-1)

}

Time complexity

If we look at the pseudo-code again, added below for convenience. Then we notice that:
factorial(0) is only comparison (1 unit of time), factorial(n) is 1 comparison, 1
multiplication, 1 subtraction and time for factorial(n-1)

From the above analysis we can write:

Tn)=Tn—1)+3

T0)=1

T(n)=T(n-1)+3
=T(n-2)+6
=T(n-3)+9
=T(n-4)+ 12

— T(n-k) + 3k
as we know T(0) =1
we need to find the value of k for whichn-k=0,k=n
T(n)=T(O)+3n,k=n
=1+3n

that gives us a time complexity of O(n)

™

(OR)
3. a) What is the difference between Big ‘O’ notation and little ‘0’ notation? When do we COl

use Theta (O) notation. Explain with examples.

they are both asymptotic notations that specify upper-bounds for functions and
running times of algorithms.

However, the difference is that big-O may be asymptotically tight while little-o
makes sure that the upper bound isn't asymptotically tight.

Let's read on to understand what exactly it means to be asymptotically tight.

2. Mathematical Definition

Big-O and little-o notations have very similar definitions, and their difference lies in
how strict they are regarding the upper bound they represent.

2.1. Big-O

For a given function g(n). O(g(n)) is defined as:

O(g(n)) = {f(n) : there exist positive constants c and ng such that 0 < f(n) < ¢g(n) for
alln > ngl

So O(g(n)) is a set of functions that are, after no, smaller than or equal to g(n). The

function's behavior before ng is unimportant since big-O notation (also little-o notation)

analyzes the function for huge numbers. As an example, let's have a look at the
following figure:

cg(n)

Sfn)

n

f(n) = 0O(g(n))

o

Here, f(n) is only one of the possible functions that belong to O(g(n)). Before ng, f(n)
is not always smaller than or equal to g(n), but after ng, it never goes above g(n).

The equal sign in the definition represents the concept of asymptotical tightness,
meaning that when n gets very large, f(n) and g(n) grow at the same rate. For
instance, 3n® = O(n?3) satisfies the equal sign, hence it is asymptotically tight, while
3n = O(n?) is not.

For more explanation on this notation, look at an introduction to the theory of big-O
notation (/cs/big-o-notation).

2.2. Little-o

Little-o notation is used to denote an upper-bound that is not asymptotically tight.
It is formally defined as:

o(g(n)) = {f(n) : for any positive constant ¢, there exists positive constant ny such that
0 < f(n) < cg(n) foralln > ng}.

Note that in this definition, the set of functions f(n) are strictly smaller than cg(n).
meaning that little-o notation is a stronger upper bound than big-O notation. In
other words, the little-o notation does not allow the function f(n) to have the same
growth rate as g(n).

Intuitively, this means that as the n approaches infinity, f(n) becomes insignificant
compared to g(n). In mathematical terms:
lim f)

=0
n= g(n)

In addition, the inequality in the definition of little-o should hold for any constant e,
whereas for big-0, it is enough to find some ¢ that satisfies the inequality.

If we drew an analogy (https.//mitpress.mit.edu/books/introduction-algorithms-third-
edition) between asymptotic comparison of f(n) and g(n) and the comparison of real
numbers e and b, we would have f(n) = O(g(n)) = a < bwhile f(n) = o(g(n)) = a < b.

3. Examples

Let's have a look at some examples to make things clearer.

For f(n) = 2n + 3, we have:
* f(n) = O(n) but f(n) # o(n)
e f(n)=0(n? and f(n) = o(n?)
o f(n)=0(?* and f(n) = o(n?®)
In general, for f(n) = a;n® + a,—1n*~1 + ... + ap, We will have:

* f(n) =0(n") but f(n) # o(n”)
* f(n)=0@""")and f(n) = o(n""")
* f(n)=0(n"*?)and f(n) = o(n""?)

Theta Notation (®-notation)

Theta notation encloses the function from above and below. Since it represents the upper
and the lower bound of the running time of an algorithm, it is used for analyzing the

average-case complexity of an algorithm.

®(g(n)) = { fln): there exists positive constants c1, ¢2, and no, such that 0 < ci1g(n)

< fin) < cog(n) foralln> no }

e O(g(n))is the set of functions with the same order of growth as g(n).

e o(n)is an asymptotically tight bound for f(n).

b)

For any two functions g(n) and f(n), fin)=0(g(n)) iff f(n) = O(g(n)) and f(n) = Q(g(n)).

How many cases are there under Master’s Theorem? Explain any two of them with COlI

example.

The Master Theorem applies to recurrences of the following form:
T m)=aT (n/b)+f(n)

where a > 1 and b > 1 are constants and f(n) is an asymptotically positive function.

There are 3 cases:

cagln)

= X
. Jin)
'/

S Tegn

ny

n

f(n)=0B(g(n))

L. If f(n) = O(n'*%%=¢) for some constant ¢ > 0, then T(n) = O(n'%:).

2. 1f f(n) = O(n'%* log" n) with' k > 0, then T'(n) = O(n'&“lo

3. If f(n) = Q(n'*% 2%€) with ¢ > 0, and f(n) satisfies the regularity condition, then T'(n) = 6(f(n)).
Regularity condition: af(n/b) < ¢f(n) for some constant ¢ < 1 and all sufficiently large n.

Example-Case 1

« T(n) = 4T () +n
ca=4b=2k=1

* log,a>k
« T(n) = 6(n?)

Example-Case 2

* T(n) = 4T (5) +n?
ca=4b=2k=2

* logpba=kp=0

Example-Case 3

+ T(n) = 3T (3) +n?
ca=3b=2k=2

* logpa >k
* T(n) = 0(n?)

T(n) = 8(n?logn)

gi“l'l n)‘

™

4. a) Explain Quick sort algorithm and simulat[eh;;tfols the following data: 20, 35, 10, 16, 54, CO2 7™M
21,25

e The divide-and-conquer approach can be used to arrive at an efficient sorting
method different from merge sort.

e In merge sort, the file a[1 : n] was divided at its midpoint into sub arrays which
were independently sorted & later merged.

e In Quick sort, the division into two sub arrays is made so that the sorted sub arrays
do not need to be merged later.

e This is accomplished by rearranging the elements ina[1 : n] such thata[1] <a[]]
for all i between 1 & m and all j between (m+1) & n for somem, 1 <m <n.

e Thus the elementsina[1 : m | & a[m+1 : n | can be independently sorted.

e No merge is needed. This rearranging is referred to as partitioning.

e Function partition of Algorithm accomplishes an in-place partitioning of the
elements of af m : p-1]

e Itis assumed that a[p] >=a[m] and that a]| m] is the partitioning element. If m=1
& p-1 = n, then a[nt+1] must be defined and must be greater than or equal to all
elementsinal 1 :n]

e The assumption that a[m] is the partition element is merely for convenience, other
choices for the partitioning element than the first item in the set are better in
practice.

e The function interchange (a, 1, j) exchanges a[1] with a[j].

Algorithm QuickSort(p, q)
//Sort the elements a[p |......,a[q] which resides in the global array a[1 : n] into
ascending //order; a[n+1] is considered to be defined and must be >= all the elements

ina[1:n]

{
if(p <q) then // If there are more than one element
{

j = Partition(a, p, q+1); /I’ 1s the position of the partitioning element.
Quicksort(p, j-1);

Quicksort(j+1, q);
h
}
Algorithm Partition(a, m, p)
//within a[m], a[m+1],.....,a[p-1] the elements are rearranged in such a manner that
if

//initially t = a[m], then after completion a[q] =t for some q between m and p-1, a[k

]<=t/form<=k<q,and a[k] >=tfor q<k<p, qisreturned. Set a[p] = infinite.

v=a[m];i=m;j=p;
repeat
{
repeat
1=1+1;
tuntil(a[1] > v);
repeat
i=i-L
juntil(a[j J<v);
if (1 <j) then interchange(a, 1. j);
juntil(1>]);
afm]=aljl;a[j]=v;

retun j;

Algorithm Interchange(a, i, j)
//Exchange a[1] with a[j]

{
temp = a[1i];
a[i] =a[j];
a[j] = temp;
}

m 2 3 H 6 © O @
20, 35, 10. 16, 54, 21, 25 +wo

20, 16, 10, 35, 54, 21, 25 +oo

10, 16, 20, 35, 54, 21, 25 +oo

@ 6 © 7 O
35, 54, 21, 25 oo

35, 25, 21, 54 +Hoo

21, 25, 35, 54 +owo

M @ 6 @& 6 © O

10, 16, 20, 21, 25, 35, 54

b) Illustrate Merge sort algorithm and discuss Time complexity in both worst case and CcCo2 ™
average case.

1 Algorithm MergeSort(low, high)

2 // allow : high] is a global array to be sorted.

3 // Small(P) is true if there is only one element
4 // tosort. In this case the list is already sorted.
5

6 if (low < high) then // If there are more than one element
7

8 // Divide P into subproblems.

9 // Find where to split the set.

10 mid = [(low + high)/2];

11 // Solve the subproblems.

12 MergeSort(low, mid);

13 MergeSort(mid + 1, high);

14 // Combine the solutions.

15 Merge(low, mid, high);

16

17 }

Algorithm 3.7 Merge sort

1 Algorithm Merge(low, mid, high)

2 // allow : high] is a global array containing two sorted

3 // subsets in allow : mid] and in a[mid + 1 : high]. The goal
4 // is to merge these two sets into a single set residing

5 // in al[low : high). b[] is an auxiliary global array.
6
; {
8
9

h = low; i ;= low; j = mid + 1;
while ((h < mid) and (j < high)) do

10 if (e[h] < elj]) then

11

12 bli] := a[h]sh := h + 1;
13 }

14 else

15 {

16 bli] :=aljl; =4+ 1;
17

18 ti=1+1;

19 }

20 if (h > mid) then

21 for k := j to high do

22 {

23 bl] :=alk]; t:=12 + 13
24 }

25 else

26 for k := h to mid do

27 {

28 bif] :=alk];ti=¢+ 1
29 }

30 for k := low to high do alk] := b[k];
31 }

Algorithm 3.8 Merging two sorted subarrays using auxiliary storage

If the time for the merging operation is proportional to n, then the com-
puting time for merge sort is described by the recurrence relation

T(n) — n = 1,a a constant
(n 2T(n/2) +en n>1,c¢ aconstant

10

5.

When n is a power of 2, n = 25, we can solve this equation by successive
substitulions:

T(n) 22T (n/4) + en/2) + en
4T (n/4) + 2¢en
4(2T(n/8) + cn/4) + 2en

26T(1) + ken

an + cnlogn

It is easy to sce that if 28 < n < 28+, then T'(n) < T(2**'). Therefore

T(n) = O(nlogn)

(OR)

a) Solve the following greedy fractional knapsack problem.

Knapsack problem instance n = 4, Knapsack capacity m = 15, (P1, P2, P3, P4) = (10,
10,12, 18) and (W1, W2, W3, W4)=(2,4,6,9).

When one applies the greedy method to the solution of the knapsack problem, there are
different measures one can attempt to optimize when determining which object to include
next. Once an optimization measure has been chosen, the greedy method suggests choosing
objects for inclusion into the solution in such away that each choice optimizes the measure

at that time.

We design an algorithm to achieve a balance between the rate at which profit and the
rate at which capacity is used. At each step we include that object which has the maximum
profit per unit capacity used. This means that objects are considered in order of the ratio Pi/
Wi

fP1/ Wi>P2/ W22 > Pn / Wh, then greedy knapsack generates an optimal

solution to the given instance of the knapsack problem.

P/ Wy =102 =5
P,/ W, = 10/4 = 2.5
Ps/ W3 = 12/6 = 2
Ps/ W4 = 18/9 = 2

Arranging the object in descending order of unit cost i.e; Pi1/ Wi P2/ W2 P3/ W3 Pa/
Wi (5,2.5,2,2) then,

pp =10 10 12 18
Wi = 2 4 6 9
Xi = 1 1 1 3/9
The optimal solution is,
piX; = 10*1+10*1 +12*1 + 18*(3/9) = 38

Maximum profit is 38 and the solution vectoris (Xi, X2, X3,X4) = (1,1, 1,3/9).

cOo2 ™

11

b) Construct Minimum cost spanning tree using Prim’s algorithm. Co2 ™

e ~.A15
/5/ ~
—
L2 L2
P
~
8™ 20

(0, 1) be an edge of minimum cost in E;
Min-cost = 5;

tf1,11 = 0; 1,21 = 1;
Initial near| j] table

0|1 2|3
o1

i

near[0] = near[1] = X

fori:=2 ton-1

When i = 2

possibilities forj = 2,3 among these vertex 2 has minimum cost[2, near[2]]
tf2,1] = 2; tf2,2] =near[2] = 0;

min-cost = S+cost[2,near[2]] = S+cost[2,0] = 5+8 = 13;

near[2] = X;
Update near table.

0|1 2]3
EGYE

i

Partially constructed Spanning tree t

NS)
S

When i =3

possibilities forj = 3 vertex 3 has minimum cost[3, near[1]]

t[3,1] = 3; t[{3,2] =near[3] = 1;

min-cost = 13 +cost[3,near[3]] = 13+cost[3,1] = 13+15 = 28;
near[3] = X;

Update near table.

011123

KPP

Minimum cost of the Spanning tree t is 28 and the Minimum cost the Spanning tree t is

01
210
31

12

Unit —I11
6. a) Solve the following travelling sales person problem using Dynamic Programming. CO3 14M

doe i P s

il = b

= Pl O g i
L e R [N
L R R A=

Let G(V, E) be a directed graph with edge cost ¢ij. The variable cjj is defined such that

cij>0 foralliandjand cij=oc,if<i,j> ¢ E. Let |V| = n and assume n > 1.

e A tour of G is a directed simple cycle that includes every vertex in V.
e The cost of a tour is the sum of the costs of the edges on the tour.

e The traveling salesman problem is to find a tour of minimum cost.

Without loss of generality, regard a tour to be a simple path that starts and ends at
vertex 1.
e Every tour consists of an edge < 1, k> for some k € V- { 1 } and a path from
vertex k to vertex 1.
e The path from vertex k to vertex 1 goes through each vertex in V - { 1, k }

exactly once.
Let g(1, S) be the length of a shortest path starting at vertex i, going through all
vertices in S, and terminating at vertex 1.

The function g(1, V - { 1 }) is the length of an optimal sales person tour. From the
principle of optimality it follows that,

g(LV-{1}) = min {cy + g(kV - {Lk})} (1)
Generalizing equation (1), we obtain (fori & S)

g(i,$) = minfc; +9(j,S — (i1} -(2)

Equation (1) can be solved for g(1, V- { 1 }) if we know g(k, V- { 1,k }) for all
choices of k. The g values can be obtained by using equation (2).

Clearly, g(1, @) = ¢;4,1 =i = n. Hence we can use equation (2) to obtain g(i, S)

for all S of size 1. Then we can obtain g(i, S) for |S| = 2, and so on.

e When |S| < n — 1, the values of i and S for which g(i, S) is needed are such that
1#1,1¢ Sandi & S.

13

Initially, g(1,©) = ¢i1 for 1 <i<n
g(l,0)=¢cn1=0
g(2,0) =ca=4

1

9(3,9) = Ca
3

g(4,0) = Ca

Next, we compute g(i, S) with |S| = 1, i#1,1¢ Sandi € S.

9(2,{3}) = e+ g(3,0) = 2+1 =3
9(2,{4}) = cutg(40) = 1+3 =4
9(3,{2}) = cntg(2,0) = 2+4 =6
9(3,{4}) = Ccutg(40) = 5+3 =38
9(4,{2}) = cutg(2,0) = 1+4 =5
9(4,{3}) = cistg(3,0) = 5+1 =6

Next, we compute g(i, S) with |S| = 2, i#1,1¢ Sandi & S.
o(2,{3,4}) = minfes +9G, (43), e + 904 (33))

= min{2 +8, 1+ 6}
jE34

min{ 10, 7}

j€3.4

7 (whenj=4)

9(3’{254}) = jlgizl}ll{CBZ + 9(2, {4}), C34 + 9(4; {2})}

= min{2 +4, 5+5}
jEZ4

= i 6, 10
min{6, 10}

=6 (whenj=2)

9(4,{2,3}) = jlgizng{cu + 92, {3}), s + 9@, {2})]
= min{1 +3, 5+6}
JEZ3

= j12121}3{ 4, 11}

=4 (whenj=2)

14

Finally, from equation (1) we obtain

g(1’ { 29 3’ 4 })= jlélzi,lgl,q.{clz + Q(ZJ{3: 4}), ClB + 9(3,{2,4}), Cl4 + 9(4; {2:3})}

= min {4 +7,1+6, 3+4}

j€234

= jlélzl,%,4{ 11, 7, 7}

=17 (whenj=3and4)
An optimal tour of the graph has length 7.

A tour of this length can be constructed if we retain with each g(i, S) the value of j that

minimizes the right hand side of the equation (2). Let J(1, S) be this value.

When J(1, { 2, 3,4 }) = 3. Thus the tour starts from 1 and goes to 3. The remaining
tour may be obtained from g(3, { 2,4 }). SoJ(3, {2,4}) = 2. Thus the next edge is
(3, 2). The remaining tour is for g(2, { 4 }). SoJ(2, {4 }) = 4. The optimal tour is

1-3—-2—>4—>1.

When J(1, {2, 3,4 }) = 4. Thus the tour starts from 1 and goes to 4. The remaining
tour may be obtained from g(4, { 2,3 }).SoJ(4, {2,3}) = 2. Thus the next edge is
(4, 2). The remaining tour is for g(2, { 3 }). So J(2, { 3 }) = 3. The optimal tour is

1-4—-2—-3-—1.

(OR)
What is meant by connected component? What is Bi- connected graph? Find Bi-
connected components for the given graph.

© (&
a'e

If G 18 a connected undirected graph, then all vertices of G will get visited
on the first call to BFS (Algorithm 6.5). If G is not connected, then at

least two calls to BFS will be needed. Hence, BFS can be used to determine
whether G is connected. Furthermore, all newly visited vertices on a call to
BFS from BFT represent the vertices in a connected component of . Hence
the connected components of a graph can be obtained using BFT. For this,
BFS can be modified so that all newly visited vertices are put onto a list.
Then the subgraph formed by the vertices on this list make up a connected
component. Hence, if adjacency lists are used, a breadth first traversal will
obtain the connected components in ©(n + €) time.

CO3 7™M

15

In this section, by “graph” we always mean an undirected graph. A vertex
v in a connected graph & is an arficulation point if and only if the deletion
of vertex v together with all edges incident to » disconnects the graph into
two or more nonempty components.

A graph (G is biconnected if and only if it contains no articulation points.

b) What are the graph traversal techniques? Explain BFS with an example. Co3 ™

Graph traversal techniques
e Breadth first traversal

e Depth first traversal

Breadth first search

* In Breadth first search we start at vertex v and mark it as having been reached. The vertex
v at this time is said to be unexplored.

* A vertex is said to have been explored by an algorithm when the algorithm has visited all

16

vertices adjacent from it.

 All unvisited vertices adjacent from v are visited next. There are new unexplored vertices.
Vertex v has now been explored.

* The newly visited vertices have not been explored and are put onto the end of the list of
unexplored vertices. The first vertex on this list is the next to be explored.

» Exploration continues until no unexplored vertex is left. The list of unexplored vertices
acts as a queue and can be represented using any of the standard queue representations.

Algorithm BFS(v)

//' A breadth first search of ‘G’ is carried out. Beginning at vertex v; For any node
/1, visit. if ‘1” has already been visited. The graph ‘v’ and array visited [] are

// global; visited [] initialized to zero.

{
u:=v; // q is a queue of unexplored
visited[v] := 1;
repeat
{
for all vertices w adjacent from u do
{
if (visited[w] = 0) then
{
Add w to q;
visited[w | == 1;
¥
¥
if q is empty then return;
delete u from q;
} until (false)
¥

o If BFS is used on a connected undirected graph G, then all vertices in G get visited and
the graph is traversed. However, if G is not connected, then at least one vertex of G is not
visited. A complete traversal of the graph can be made by repeatedly calling BFS each
time with a new unvisited starting vertex. The resulting traversal algorithm is known as
breath first traversal.

Algorithm BFT(G, n)

{
fori:=1tondo
visited[1] = 0;
fori:=1tondo
if (visited[1] =0) then BFS(1)
¥

17

(b) Directed graph
(a) Undirected graph G

Example 6.1 Let us try out the algorithm on the undirected graph of Fig-
ure 6.4(a). If the graph is represented by its adjacency lists as in Figure
6.4(c), then the vertices get visited in the order 1, 2, 3, 4, 5, 6, 7, 8. A
breadth first search of the directed graph of Figure 6.4(b) starting at vertex
1 results in only the vertices 1, 2, and 3 being visited. Vertex 4 cannot be
reached from 1. O

Unit -1V
8. a) Let m =31 and weights W(7, 11, 13, 24) draw a portion of state space tree using an CO4 7M

algorithm of sum of subsets in backtracking approach?

s, n, r
0,1,55
x(1)=/ \((1)=0
7.2.48 0.2.48
x(2)/ x(2)=0 x(2)7l/ x(2)=0
18.3.37 7.3.37 11.3.37 0.3.37
=1
x(3)= x(3)=1 x(3=0 x(3)=0 x(3)= x(3)=
31,4,24 18,4,24 20,4,24 7,4,24 11,4,24 13,4,24 0,4,24
x(4) x(4)#1
° x(4)= x(4)=0
o
° 18,5,0 31,5,0 10,5,0

lst

solutionis (1, 1, 1, 0)

2" solutionis (1, 0, 0, 1)

18

b) Explain the backtracking solution to the 4-queens problem and draw a portion of the CO4
tree that is generated during backtracking?
The n-queens problem is place n-queens on an n x n chessboard so that no two queens
attack i.e., no two queens are on the same row, or column, or diagonal.
If we imagine the squares of the chessboard being numbered as the indices of the two
dimensional array a[1 : n, 1 : n], then we observe that every element on the same diagonal
which runs from the upper left to the lower right has the same "row — column" value. Also,
every element on the same diagonal which goes from the upper right to the lower left has
the same "row + column" value. Suppose two queens are placed at positions (1, j) and (k,
1). Then by the above they are on the same diagonal only if
i—j = k-1 or itj] = k+l1
The first equation implies
j—1 = 1=k
The second equation implies

j—1 = k-i
Therefore two queens lie on the same diagonal if and only if | j-1 |= | i-k |.
All solutions to n-queens problem can therefore be represented as n-tuples (X1,, Xn),
where xi is the column on which queen i is placed.
Explicit constraints S;={ 1, 2, 3,4, ,n},1<i<n
Implicit constraints for this problem are that

e No two x;’s can be the same and

e No two queens can be on the same diagonal

Example: 4-queens.

(a) (b) (c) (d)

1 » 1 l 14‘ B :

.'w

N

(e) & (g) (h)

Figure 7.5 Example of a backtrack solution to the 4-queens problem

™

19

9.

x, =1 - X = —2
(2) (18)
: (\\ /\.’i\
x,=2 " 3 Xo=4 e
"‘;\/ - f2_3 . \/\\ //\,/’ ‘ \\>\\
(3) (8) 13 (19} (24 29)
B s \ ; "\ B/ B V
/,/ \ VAR l x3=1
o AN AN AR Pz
(&) (L) (14) (18) 39
B B B e
4=
1 s
!‘\lé/l 5‘_1/,/)
B

Figure 7.6 Portion of the tree of Figure 7.2 that is generated during back-
tracking
Two possible solutions are
Solutin-1:(2,4,1,3)

Solution2:(3,1,4,2)

(OR)

a) Draw a portion of the state space tree generated by LCBB for the following Knapsack CO4

problem? Where n =4, m = 15, (P1, P2, P3, P4) = (10, 10,12,18), (W1, W2, W3, W4,

WS) = (2,4,6,9) Clearly show the solutions obtained?

-, -38
=32
1 AN
-38 / \ =32
—32° 2L
e 2\ 3
38 < . =36
-32° ,, LS 22
e 4\\ 5
_38 {/\/ [\ 38
328 =38
6 //C/
// \
"38 H ‘\ &\ _20
—38 ' K 5
8 9

Upper number = ¢
Lower number = u

Figure 8.8 LC branch-and-bound tree for Example 8.2

20

14M

The computation of u(1) and ¢(1) is done as follows. The bound u(1) has a
value UBound(0,0,0, 15). UBound scans through the objects from left to right
starting from j; it addq these objects into the knapsack until the first object
that doesn’t fit is encountered. At this time, the negation of the total profit
of all the objects in the knapsack plus cw is returned. In Function UBound,
¢ and b start with a value of zero. For ¢ = 1,2, and 3, ¢ gets incremented
by 2,4, and 6, respectively. The variable b albo gets decremented by 10, 10,
and 12 respectively. When i = 4, the test (¢ + w[i] < m) fails and hence
the value returned is —32. Functmn Bound is similar to UBound, except that
it also considers a fraction of the first object that doesn’t fit the knapsack.
For example, in computing ¢(1), the first object that doesn’t fit is 4 whose
weight 18 9. The total weight of the objects 1, 2, and 3 is 12. So, Bound
considers a fraction 2 5 of the object 4 and hence returns —32 — é *x18 = —38.

Since node 1 is not a solution node, LCBB sets ans = 0 and upper = —32
(ens being a variable to store intermediate answer nodes). The E-node is
expanded and its two children, nodes 2 and 3, generated. The cost ¢(2) =
—38, ¢(3) = —32, u(2) = =32, and u(3) = —27. Both nodes are put onto
the list of live nodes. Node 2 is the next F-node. It is expanded and nodes
4 and 5 generated. Both nodes get added to the list of live nodes. Node
4 is the live node with least ¢ value and becomes the next £-node. Nodes
6 and 7 are generated. Assuming node 6 is generated first, it is added to
the list of live nodes. Next, node 7 joins this list and upper is updated to
—38. The next E-node will be one of nodes 6 and 7. Let us assume it is
node 7. Its two children are nodes 8§ and 9. Node 8 is a solution node.
Then upper is updated to —38 and node 8 is put onto the live nodes list.
Node 9 has ¢(9) > upper and is killed immediately. Nodes 6 and 8 are
two live nodes with least ¢. Regardless of which becomes the next F-node,
¢(E) > upper and the search terminates with node 8 the answer node. At
this time, the value —38 together with the path 8, 7, 4, 2, 1 is printed out
and the algorithm terminates. From the path one cannot figure out the
assignment of values to the z;’s such that 3" p;z; = upper. Hence, a proper
implementation of LCBB has to keep additional information from which the
values of the z;’s can be extracted. One way is to associate with eacli node a
one bit field, tag. The sequence of tag bits from the answer node to the root
give the z; values. Thus, we have tag(2) = tag(4) = tag(6) = tag(8) =1
and tag(3) = tag(5) = tag(7) = tag(9) = 0. The tag sequence for the path
8, 7,4,2,1is1011landsoxyg=1,24=0,z0o=1, and ; = 1. |

Maximum profit is 38 and the solution vectoris (X1, X2, X3,X4) = (1,1,0,1).

HOD, CSE

21

