
18CSD42
Hall Ticket Number:

IV/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

November, 2022 Computer Science and Engineering

Seventh Semester Big Data Analytics
Time: Three Hours Maximum: 50 Marks

Answer Question No.1 compulsorily. (10X1 = 10 Marks)

Answer ONE question from each unit. (4X10=40 Marks)

1. a) What is Big Data? CO1 L2

 b) Write the characteristics of big data. CO1 L1

 c) Name hadoop configuration files. CO1 L3

 d) What is the role of Jobtracker and Tasktracker in Map Reduce? CO2 L1

 e) List the features of Map Reduce. CO2 L2

 f) List the failures in classical Map Reduce. CO2 L4

 g) Define Hive. CO3 L1

 h) What is Pig? CO4 L2

 i) What is Sqoop? CO4 L2

 j) How many ways to run a Pig scritps? CO4 L3

 Unit -I

2. a) Identify the data storage problems and data analysis tasks problems prior to

hadoop’s file system.

CO1 L2 2M

 b) Explain the characteristics and applications of Big Data. CO1 L1 8M

 (OR)

3. a) Explain in detail about Hadoop along with its architecture. CO1 L4 5M

 b) Explain in details about Hadoop Ecosystem. CO1 L3 5M

 Unit -II

4. a) Discuss the steps involved in designing Hadoop Distributed File System and

Give the design of HDFS.

CO2 L1 5M

 b) Write in detial about reading data from HDFS. CO2 L1 5M

 (OR)

5. a) Demonstrate the HDFS architecture along with its components indetail with neat

sketch.

CO2 L3 5M

 b) Explain how HDFS write operation is performed with neat sketch CO2 L2 5M

 Unit -III
6.

Explain in details about anatomy of Map Reduce job run.
CO3 L2 10M

 (OR)
7. a) Explain briefly about shuffle and sort in Map Reduce . CO3 L2 5M

 b) Explain in detail about scheduling in YARN. CO3 L4 5M

 Unit -IV
8. a) Find Explain in detail about loading and storing the data in Pig with examples CO4 L1 5M

 b) Expl Explain Sqoop’s import process with a neat sketch. CO4 L3 5M

 (OR)

9. a) Demonstrate briefly about Hive services. CO4 L2 5M

 b) Write the difference between the Traditional Databases and Hive. CO4 L3 5M

a) What is Big Data?

“Big data” is high-volume, velocity, and variety information assets that demand cost-effective,

innovative forms of information processing for enhanced insight and decision making.”

b) Write the characteristics of big data.

1) volume

2) variety

3) velocity

4) veracity

5) value

c) Name hadoop configuration files.

 mapred-site.xml

 core-site.xml

 hdfs-site.xml

 hadoop-env.sh

d) What is the role of Job tracker and Task tracker in Map Reduce?

 The job tracker, which coordinates the job run. The job tracker is a Java application whose

main class is Job Tracker.

 The task trackers, which run the tasks that the job has been split into. Task trackers are Java

applications whose main class is Task Tracker.

e) List the features of Map Reduce.

 Highly scalable

 Versatile

 Affordability

 Secure

 Reliable

f) List the failures in classical Map Reduce.

 Task Failure

 Resource Manager Failure

 Application Master Failure

 Node Manager failure

g) Define Hive.

 Hive is a data warehouse infrastructure tool to process structured data in Hadoop.

 It resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.

h) What is Pig?

• Apache Pig is an abstraction over MapReduce.

• It is a tool/platform which is used to analyse larger sets of data representing them as data flows.

i) What is Sqoop?

• Sqoop occupies a place in the Hadoop ecosystem to provide feasible interaction between

relational database server and Hadoop’s HDFS.

j) How many ways to run a Pig scripts?

 Local mode

 Map Reduce Mode

Unit-1

2. a) Identify the data storage problems and data analysis tasks problems prior to hadoop’s file system.

 Issue with Small Files. Hadoop does not suit for small data. ...

 Slow Processing Speed. ...

 Support for Batch Processing only. ...

 No Real-time Data Processing. ...

 No Delta Iteration. ...

 Latency. ...

 Not Easy to Use. ...

 Security.

2. b) Explain the characteristics and applications of Big Data.

1. Volume: This refers to the data that is tremendously large. As you can see from the image, the

volume of data is rising exponentially. In 2016, the data created was only 8 ZB and it is expected

that, by 2020, the data would rise up to 40 ZB, which is extremely large.

2. Variety: A reason for this rapid growth of data volume is that the data is coming from different

Sources in various formats.

The data is categorized as follows:

a) Structured Data: Here, data is present in a structured schema, along with all the

required columns. It is in a structured or tabular format.

b) Semi-structured Data: In this form of data, the schema is not properly defined, i.e.,

both forms of data is present. So, basically semi-structured data has a structured form

but it isn’t defined, e.g., JSON, XML, CSV, TSV, and email.

c) Unstructured Data: In this data format, all the unstructured files such as video files,

log files, audio files, and image files are included. Any data which has an unfamiliar

model or structure is categorized as unstructured data. Since the size is large,

unstructured data possesses various challenges in terms of processing for deriving

value out of it.

d) Quasi-structured Data: This data format consists of textual data with inconsistent

data formats that can be formatted with effort and time, and with the help of several

tools. For example, web server logs, i.e., a log file that is automatically created and

maintained by some server which contains a list of activities.

 3. Velocity:

• The speed of data accumulation also plays a role in determining whether the data is

categorized into big data or normal data.

As can be seen from the image below, at first, mainframes were used wherein fewer

people used computers.

• Then came the client/server model and more and more computers were evolved. After

this, the web applications came into the picture and started increasing over the Internet.

• Then, everyone began using these applications.

• These applications were then used by more and more devices such as mobiles as they

were very easy to access. Hence, a lot of data!

 4. Value:

• How will the extraction of data work? Here, our fourth V comes in, which deals with a

mechanism to bring out the correct meaning out of data.

• First of all, you need to mine the data, i.e., a process to turn raw data into useful data. Then,

an analysis is done on the data that you have cleaned or retrieved out of the raw data.

• Then, you need to make sure whatever analysis you have done benefits your business such

as in finding out insights, results, etc. which were not possible earlier.

• You need to make sure that whatever raw data you are given, you have cleaned it to be

used for deriving business insights.

• After you have cleaned the data, a challenge pops up, i.e., during the process of dumping a

huge amount of data, some packages might have lost.

So for resolving this issue, our next V comes into the picture.

 5. Veracity:

• Since the packages get lost during the execution, we need to start again from the stage of

mining raw data in order to convert them into valuable data. And this process goes on.

• Also, there will be uncertainties and inconsistencies in the data.

• To overcome this, our last V comes into place, i.e., Veracity.

• Veracity means the trustworthiness and quality of data.

• It is necessary that the veracity of the data is maintained. For example, think about

Facebook posts, with hashtags, abbreviations, images, videos, etc., which make them

unreliable and hamper the quality of their content.

• Collecting loads and loads of data is of no use if the quality and trustworthiness of the data

is not up to the mark.

OR

3. a) Explain in detail about Hadoop along with its architecture.

Hadoop

• Apache Hadoop is an open source software framework which was developed in JAVA for

storage and large scale processing of data-sets on clusters of commodity hardware.

• Hadoop is an Apache top-level project being built and used by a global community of

contributors and users.

• It is licensed under the Apache License 2.0.

• Yahoo created Hadoop in the year 2006, and it started using this technology by 2007. It

was given to the Apache Software Foundation in 2008.

• In 2003, Doug Cutting had launched a project called Nutch. Nutch was created to handle

the indexing of numerous web pages and billions of online search.

The Apache Hadoop framework is composed of the following modules or components

• Hadoop Common: contains libraries and utilities needed by other Hadoop modules

• Hadoop Distributed File System (HDFS): a distributed file-system that stores data on the

commodity machines, providing very high aggregate bandwidth across the cluster

• Hadoop YARN: a resource-management platform responsible for managing compute

resources in clusters and using them for scheduling of users' applications.

• Hadoop MapReduce: a programming model for large scale data processing.

HADOOP ARCHITECTURE

• There are two primary components at the core of Apache Hadoop 1.x: Hadoop Distributed

File System (HDFS) and the MapReduce parallel processing framework.

• These are both open source projects, inspired by technologies created inside Google.

• As part of Hadoop 2.0, YARN takes the resource management capabilities that were in

MapReduce and packages them so they can be used by new engines. This also streamlines

MapReduce to do what it does best, process data.

• With YARN, you can now run multiple applications in Hadoop, all sharing a common

resource management. Many organizations are already building applications on YARN in

order to bring them IN to Hadoop.

3. b) Explain in details about Hadoop Ecosystem.

Hadoop Ecosystem has

– Pig

– Hive

– Flume

– Sqoop

– Oozie

 And so on..

• A set of machines running HDFS and MapReduce is known as Hadoop Cluster and individual

machines are known as nodes.

• A cluster can have as few as one node or as many as several thousands of nodes.

• As the number of nodes are increased performance will be increased.

• The other languages excepts java(C++, RubyOnRails, Python, Perl)that are supported by Hadoop are

called as Hadoop streaming.

Hadoop H/W & S/W requirements

• Hadoop usually runs on open source OS’(like Linux, Ubuntu etc)

– Community Enterprise Operating System(CENTOS)

– Red Hat Enterprise Linux Operating System(RHEL)

• If we have Windows it require virtualization s/w for running other OS on windows

– VM player/VM workstation/Virtual Box

• Java is prerequisite for Hadoop installation.

UNIT-2
4. a) Discuss the steps involved in designing Hadoop Distributed File System and Give the design of

HDFS.

HDFS::Introduction..

• A Master Node(high end configurations like dual power supply, dual n/w cards. Etc) called

the Name Node(a node which is running name node daemon) keeps track of which blocks

make up a file, and where those blocks are located , known as Meta Data.

• The Name Node keep track of the file metadata –which files are running in the system and

how each file is broken down into the Name Node to keep the metadata current.

HDFS is a Optimizer for

• Large files

• 100MB or more

• Streaming Data Access

• Once we are writing data into HDFS, we can read the data for any number of time

but we should not change the content of the file…

• Commodity Hardware

Five Daemons in HDFS

• NamedNode - Node that manages the Hadoop Distributed File System (HDFS).

• DataNode - Node where data is presented in advance before any processing takes place.

• Job Tracker - Schedules jobs and tracks the assign jobs to Task tracker.

• Task Tracker - Tracks the task and reports status to Job Tracker.

• MasterNode - Node where JobTracker runs and which accepts job requests from clients.

HDFS DESIGN:

• Apache HDFS or Hadoop Distributed File System is a block-structured file system where

each file is divided into blocks of a pre-determined size.

• These blocks are stored across a cluster of one or several machines. Apache Hadoop HDFS

Architecture follows a Master/Slave Architecture, where a cluster comprises of a single

NameNode (Master node) and all the other nodes are DataNodes (Slave nodes).

• Though one can run several DataNodes on a single machine, but in the practical world,

these DataNodes are spread across various machines.

NameNode:

• NameNode is the master node in the Apache Hadoop HDFS Architecture that maintains

and manages the blocks present on the DataNodes (slave nodes).

• NameNode is a very highly available server that manages the File System Namespace and

controls access to files by clients.

• The HDFS architecture is built in such a way that the user data never resides on the

NameNode. The data resides on DataNodes only.

Functions of NameNode:

• It is the master daemon that maintains and manages the DataNodes (slave nodes)

• It records the metadata of all the files stored in the cluster, e.g. The location of blocks

stored, the size of the files, permissions, hierarchy, etc. There are two files associated with

the metadata:

– FsImage: It contains the complete state of the file system namespace since the start

of the NameNode.

– EditLogs: It contains all the recent modifications made to the file system with

respect to the most recent FsImage.

DataNode:

• DataNodes are the slave nodes in HDFS.

• Unlike NameNode, DataNode is a commodity hardware, that is, a non-expensive system

which is not of high quality or high-availability.

Functions of DataNode:

• These are slave daemons or process which runs on each slave machine.

• The actual data is stored on DataNodes.

• The DataNodes perform the low-level read and write requests from the file system’s

clients.

• They send heartbeats to the NameNode periodically to report the overall health of HDFS,

by default, this frequency is set to 3 seconds.

Secondary NameNode:

• Apart from these two daemons, there is a third daemon or a process called Secondary

NameNode.

• The Secondary NameNode works concurrently with the primary NameNode as a helper

daemon. And don’t be confused about the Secondary NameNode being a backup

NameNode because it is not.

Functions of Secondary NameNode:

• The Secondary NameNode is one which constantly reads all the file systems and metadata

from the RAM of the NameNode and writes it into the hard disk or the file system.

• It is responsible for combining the EditLogs with FsImage from the NameNode.

• It downloads the EditLogs from the NameNode at regular intervals and applies to FsImage.

The new FsImage is copied back to the NameNode, which is used whenever the NameNode

is started the next time.

• Hence, Secondary NameNode performs regular checkpoints in HDFS. Therefore, it is also

called CheckpointNode.

b)

Write in detial about reading data from HDFS.

The Client interacts with HDFS NameNode

• As the NameNode stores the block’s metadata for the file “File.txt’, the client will reach out to

NameNode asking locations of DataNodes containing data blocks.

• The NameNode first checks for required privileges, and if the client has sufficient privileges, the

NameNode sends the locations of DataNodes containing blocks (A and B). NameNode also gives

a security token to the client, which they need to show to the DataNodes for authentication. Let the

NameNode provide the following list of IPs for block A and B – for block A, location of DataNodes

D2, D5, D7, and for block B, location of DataNodes D3, D9, D11.

• To perform various HDFS operations (read, write, copy, move, change permission, etc.)

The client interacts with HDFS DataNode

• After receiving the addresses of the DataNodes, the client directly interacts with the DataNodes. The

client will send a request to the closest DataNodes (D2 for block A and D3 for block B) through

the FSDataInputstream object. The DFSInputstream manages the interaction between client and

DataNode.

• The client will show the security tokens provided by NameNode to the DataNodes and start reading

data from the DataNode. The data will flow directly from the DataNode to the client.

• After reading all the required file blocks, the client calls close() method on

the FSDataInputStream object.

https://hadoop.apache.org/docs/r3.0.2/api/org/apache/hadoop/fs/FSDataInputStream.html

•
In order to open the required file, the client calls the open() method on the FileSystem object, which

for HDFS is an instance of DistributedFilesystem.

• DistributedFileSystem then calls the NameNode using RPC to get the locations of the first few

blocks of a file.

• For each data block, NameNode returns the addresses of Datanodes that contain a copy of that block.

Furthermore, the DataNodes are sorted based on their proximity to the client.

• The DistributedFileSystem returns an FSDataInputStream to the client from where the client can

read the data. FSDataInputStream in succession wraps a DFSInputStream. DFSInputStream manages

the I/O of DataNode and NameNode.

• Then the client calls the read() method on the FSDataInputStream object.

• The DFSInputStream, which contains the addresses for the first few blocks in the file, connects to

the closest DataNode to read the first block in the file. Then, the data flows from DataNode to the

client, which calls read() repeatedly on the FSDataInputStream.

• Upon reaching the end of the file, DFSInputStream closes the connection with that DataNode and

finds the best suited DataNode for the next block.

• If the DFSInputStream during reading, faces an error while communicating with a DataNode, it will

try the other closest DataNode for that block.

• Also, the DFSInputStream verifies checksums for the data transferred to it from the DataNode.

• If it finds any corrupt block, it reports this to the NameNode and reads a copy of the block from

another DataNode.

• When the client has finished reading the data, it calls close() on the FSDataInputStream.

OR

https://data-flair.training/blogs/data-block/

5) a) Demonstrate the HDFS architecture along with its components indetail with neat sketch.

HDFS ARCHITECTURE:

• Apache HDFS or Hadoop Distributed File System is a block-structured file system where each file is

divided into blocks of a pre-determined size.

• These blocks are stored across a cluster of one or several machines. Apache Hadoop HDFS

Architecture follows a Master/Slave Architecture, where a cluster comprises of a single NameNode

(Master node) and all the other nodes are DataNodes (Slave nodes).

• Though one can run several DataNodes on a single machine, but in the practical world, these

DataNodes are spread across various machines.

NameNode:

• NameNode is the master node in the Apache Hadoop HDFS Architecture that maintains and

manages the blocks present on the DataNodes (slave nodes).

• NameNode is a very highly available server that manages the File System Namespace and controls

access to files by clients.

• The HDFS architecture is built in such a way that the user data never resides on the NameNode. The

data resides on DataNodes only.

Functions of NameNode:

• It is the master daemon that maintains and manages the DataNodes (slave nodes)

• It records the metadata of all the files stored in the cluster, e.g. The location of blocks

stored, the size of the files, permissions, hierarchy, etc. There are two files associated with the

metadata:

– FsImage: It contains the complete state of the file system namespace since the start of the

NameNode.

– EditLogs: It contains all the recent modifications made to the file system with respect to the

most recent FsImage.

• It records each change that takes place to the file system metadata. For example, if a file is deleted in

HDFS, the NameNode will immediately record this in the EditLog.

• It regularly receives a Heartbeat and a block report from all the DataNodes in the cluster to ensure

that the DataNodes are live.

• It keeps a record of all the blocks in HDFS and in which nodes these blocks are located.

• The NameNode is also responsible to take care of the replication factor of all the blocks which

In case of the DataNode failure, the NameNode chooses new DataNodes for new

replicas,balance disk usage and manages the communication traffic to the DataNodes.

DataNode:

• DataNodes are the slave nodes in HDFS.

• Unlike NameNode, DataNode is a commodity hardware, that is, a non-expensive system which is not

of high quality or high-availability.

Functions of DataNode:

• These are slave daemons or process which runs on each slave machine.

• The actual data is stored on DataNodes.

• The DataNodes perform the low-level read and write requests from the file system’s clients.

• They send heartbeats to the NameNode periodically to report the overall health of HDFS, by default,

this frequency is set to 3 seconds.

Secondary NameNode:

• Apart from these two daemons, there is a third daemon or a process called Secondary NameNode.

• The Secondary NameNode works concurrently with the primary NameNode as a helper

daemon. And don’t be confused about the Secondary NameNode being a backup NameNode because

it is not.

Functions of Secondary NameNode:

• The Secondary NameNode is one which constantly reads all the file systems and metadata from the

RAM of the NameNode and writes it into the hard disk or the file system.

• It is responsible for combining the EditLogs with FsImage from the NameNode.

• It downloads the EditLogs from the NameNode at regular intervals and applies to FsImage. The new

FsImage is copied back to the NameNode, which is used whenever the NameNode is started the next

time.

• Hence, Secondary NameNode performs regular checkpoints in HDFS. Therefore, it is also called

CheckpointNode.

5) b) Explain how HDFS write operation is performed with neat sketch

• To write data in HDFS, the client first interacts with the NameNode to get permission to

write data and to get IPs of DataNodes where the client writes the data.

• The client then directly interacts with the DataNodes for writing data.

• The DataNode then creates a replica of the data block to other DataNodes in the pipeline

based on the replication factor.

• To write a file inside the HDFS, the client first interacts with the NameNode.

The client interacts with HDFS NameNode

• NameNode first checks for the client privileges to write a file. If the client has sufficient

privilege and there is no file existing with the same name, NameNode then creates a record

of a new file.

• NameNode then provides the address of all DataNodes, where the client can write its data.

• It also provides a security token to the client, which they need to present to the DataNodes

before writing the block.

• If the file already exists in the HDFS, then file creation fails, and the client receives an IO

Exception.

The client interacts with HDFS DataNode

• After receiving the list of the DataNodes and file write permission, the client starts writing

data directly to the first DataNode in the list. As the client finishes writing data to the first

DataNode, the DataNode starts making replicas of a block to other DataNodes depending

on the replication factor.

• If the replication factor is 3, then there will be a minimum of 3 copies of blocks created in

different DataNodes, and after creating required replicas, it sends an acknowledgment to

the client.

• Thus it leads to the creation of a pipeline, and data replication to the desired value, in the

cluster.

• The client creates the file by calling create() on DistributedFileSystem(step 1).

• DistributedFileSystem makes an RPC call to the name node to create a new file in the file

system's namespace, with no blocks associated with it (step 2).

• The name node performs various checks to make sure the file doesn’t already exist and that

the client has the right permissions to create the file.

• If these checks pass, the name node makes a record of the new file; otherwise, file creation

fails and the client is thrown an IOException.

• The DistributedFileSystem returns an FSDataOutputStream for the client to start writing

data to.

• Just as in the read case, FSDataOutputStream wraps a DFSOutputStream, which handles

communication with the data nodes and name node.

• As the client writes data (step 3), the DFSOutputStream splits it into packets, which it

writes to an internal queue called the data queue.

• The data queue is consumed by the Data Streamer, which is responsible for asking the

name node to allocate new blocks by picking a list of suitable data nodes to store the

replicas.

• The list of data nodes forms a pipeline, and here we’ll assume the replication level is three,

so there are three nodes in the pipeline.

• The Data Streamer streams the packets to the first data node in the pipeline, which

stores each packet and forwards it to the second data node in the pipeline.

• Similarly, the second data node stores the packet and forwards it to the third (and last) data node in

the pipeline (step 4).

• The DFSOutputStream also maintains an internal queue of packets that are waiting to be

acknowledged by data nodes, called the ack queue.

• A packet is removed from the ack queue only when it has been acknowledged by all the data nodes in

the pipeline (step 5).

• If any data node fails while data is being written to it, then the following actions are taken, which are

transparent to the client writing the data.

• First, the pipeline is closed, and any packets in the ack queue are added to the front of the data queue

so that data nodes that are downstream from the failed node will not miss any packets.

• The failed data node is removed from the pipeline, and a new pipeline is constructed from the two

good data nodes.

• The remainder of the block’s data is written to the good data nodes in the pipeline.

• The name node notices that the block is under-replicated, and it arranges for a further replica to be

created on another node.

• Subsequent blocks are then treated as normal.

• It’s possible, but unlikely, for multiple data nodes to fail while a block is being written.

• As long as dfs.namenode.replication.min replicas (which defaults to 1) are written , the write will

succeed, and the block will be asynchronously replicated across the cluster until its target replication

factor is reached (dfs.replication, which defaults to 3).

• When the client has finished writing data, it calls close() on the stream (step 6).

• This action flushes all the remaining packets to the datanode pipeline and waits for acknowledgments

before contacting the namenode to signal that the file is complete (step 7).

• The namenode already knows which blocks the file is made up of (because Data Streamer asks for

block allocations), so it only has to wait for blocks to be minimally replicated before returning

successfully.

UNIT-3

6) Explain in details about anatomy of Map Reduce job run.

ANATOMY OF MAPREDUCE RUN

• You can run a MapReduce job with a single method call: submit() on a Job object.

• You can also call waitForCompletion(), which submits the job if it hasn’t been submitted already,

then waits for it to finish.

At the highest level, there are Five Independent Entities:

• The client, which submits the MapReduce job.

• The YARN resource manager, which coordinates the allocation of compute resources on the

cluster.

• The YARN node managers, which launch and monitor the compute containers on machines in the

cluster.

• The MapReduce application master, which coordinates the tasks running the Map‐Reduce job.

The application master and the MapReduce tasks run in containers that are scheduled by the resource

manager and managed by the node managers.

• The distributed file system (normally HDFS), which is used for sharing job files between the other

entities.

How Hadoop runs a MapReduce job

• Job Submission

• Job Initialization

• Task Assignment

• Task Execution

• Progress and Updates

• Job Completion

• Failures

Job Submission

• The submit() method on Job creates an internal Job Submitter instance and calls submit Job

Internal() on it.

• Having submitted the job, waitForCompletion() polls the job’s progress once per second and

reports the progress to the console if it has changed since the last report.

• When the job completes successfully, the job counters are displayed.

• Otherwise, the error that caused the job to fail is logged to the console.

• The job submission process implemented by JobSubmitter does the following:

1. Asks the resource manager for a new application ID, used for the MapReduce jobID (step 2).

2. Checks the output specification of the job. For example, if the output directory has not been

specified or it already exists, the job is not submitted and an error is thrown to the MapReduce

program.

3. Computes the input splits for the job. If the splits cannot be computed (because the input paths

don’t exist, for example), the job is not submitted and an error is thrown to the MapReduce program.

4. Copies the resources needed to run the job, including the job JAR file, the configuration file, and

the computed input splits, to the shared filesystem in a directory named after the job ID (step 3).

5. The job JAR is copied with a high replication factor ,so that there are lots of copies across the cluster

for the node managers to access when they run tasks for the job.

6. Submits the job by calling submitApplication() on the resource manager(step 4).

Job Initialization

o The application master must decide how to run the tasks that make up the MapReduce job. If the job

is small, the application master may choose to run the tasks in the same JVM as itself.

• Such a job is said to be uberized, or run as an uber task.

• What qualifies as a small job? By default, a small job is one that has less than 10 mappers, only one

reducer, and an input size that is less than the size of one HDFS block.

• Finally, before any tasks can be run, the application master calls the setupJob() method on the

OutputCommitter.

Task Assignment

• If the job does not qualify for running as an uber task, then the application master requests containers

for all the map and reduce tasks in the job from the resource manager(step 8).

• Requests for map tasks are made first and with a higher priority than those for reduce tasks, since all

the map tasks must complete before the sort phase of the reduce can start.

• Requests for reduce tasks are not made until 5% of map tasks have completed.

• Reduce tasks can run anywhere in the cluster, but requests for map tasks have data locality

constraints that the scheduler tries to honor.

• Requests also specify memory requirements and CPUs for tasks.

• By default, each map and reduce task is allocated 1,024 MB of memory and one virtual core.

•

TASK EXECUTION

• Once a task has been assigned,resources for a container on a particular node by the resource

manager’s scheduler, the application master starts the container by contacting the node manager

(steps 9a and 9b).

• The task is executed by a Java application whose main class is YarnChild.

• Before it can run the task, it localizes the resources that the task needs, including the job

configuration and JAR file, and any files from the distributed cache .

• Finally, it runs the map or reduce task (step 11).

• The YarnChild runs in a dedicated JVM, so that any bugs in the user-defined map and reduce

functions don’t affect the node manager—by causing it to crash or hang.

• Streaming

• Streaming runs special map and reduce tasks for the purpose of launching the user supplied

executable and communicating with it.

•

Progress and Status Updates

• MapReduce jobs are long-running batch jobs, taking anything from tens of seconds to hours to run.

• A job and each of its tasks have a status, which includes such things as the state of the job or task

,the progress of maps and reduces, the values of the job’s counters, and a status message or

description.

• When a task is running, it keeps track of its progress.

• For map tasks, this is the proportion of the input that has been processed.

• For reduce tasks, it’s a little more complex.

Job Completion

• When the application master receives a notification that the last task for a job is complete, it changes

the status for the job to “successful.”

• when the Job polls for status, it learns that the job has completed successfully, so it prints a message

to tell the user and then returns from the waitForCompletion() method.

• Job statistics and counters are printed to the console at this point.

• Finally, on job completion, the application master and the task containers clean up their working

state (so intermediate output is deleted).

Failures

• In the real world, user code is buggy, processes crash, and machines fail.

• One of the major benefits of using Hadoop is its ability to handle such failures and allow your job to

complete successfully.

We need to consider the failure of any of the following entities:

 The task

 The application master

 The node manager

 The resource manager.

OR

7. a) Explain briefly about shuffle and sort in Map Reduce.

In Hadoop, the process by which the intermediate output from mappers is transferred to the reducer is called

Shuffling. Reducer gets 1 or more keys and associated values on the basis of reducers. Intermediated key-
value generated by mapper is sorted automatically by key. In this blog, we will discuss in detail about

shuffling and Sorting in Hadoop MapReduce.

Here we will learn what is sorting in Hadoop, what is shuffling in Hadoop, what is the purpose of Shuffling
and sorting phase in MapReduce, how MapReduce shuffle works and how MapReduce sort works.

Shuffling in MapReduce
The process of transferring data from the mappers to reducers is known as shuffling i.e. the process by

which the system performs the sort and transfers the map output to the reducer as input. So, MapReduce

shuffle phase is necessary for the reducers, otherwise, they would not have any input (or input from every
mapper). As shuffling can start even before the map phase has finished so this saves some time and

completes the tasks in lesser time.

Sorting in MapReduce
The keys generated by the mapper are automatically sorted by MapReduce Framework, i.e. Before starting

of reducer, all intermediate key-value pairs in MapReduce that are generated by mapper get sorted by key

and not by value. Values passed to each reducer are not sorted; they can be in any order.

Sorting in Hadoop helps reducer to easily distinguish when a new reduce task should start. This saves time

for the reducer. Reducer starts a new reduce task when the next key in the sorted input data is different than

the previous. Each reduce task takes key-value pairs as input and generates key-value pair as output.

Note that shuffling and sorting in Hadoop MapReduce is not performed at all if you specify zero reducers

(setNumReduceTasks(0)). Then, the MapReduce job stops at the map phase, and the map phase does not
include any kind of sorting (so even the map phase is faster).

b)

Explain in detail about scheduling in YARN.

Scheduling in YARN

The ResourceManager (RM) tracks resources on a cluster, and assigns them to applications that need them.

The scheduler is that part of the RM that does this matching honoring organizational policies on sharing
resources. Please note that:

YARN uses queues to share resources among multiple tenants. This will be covered in more detail in

“Introducing Queues” below.
The ApplicationMaster (AM) tracks each task’s resource requirements and coordinates container requests.

This approach allows better scaling since the RM/scheduler doesn’t need to track all containers running on

the cluster.
Fair Scheduler

Fair Hadoop scheduler

FairScheduler allows YARN applications to fairly share resources in large Hadoop clusters. With

FairScheduler, there is no need for reserving a set amount of capacity because it will dynamically balance

resources between all running applications.

It assigns resources to applications in such a way that all applications get, on average, an equal amount of

resources over time.

The FairScheduler, by default, takes scheduling fairness decisions only on the basis of memory. We can

configure it to schedule with both memory and CPU.

When the single application is running, then that app uses the entire cluster resources. When other

applications are submitted, the free up resources are assigned to the new apps so that every app eventually

gets roughly the same amount of resources. FairScheduler enables short apps to finish in a reasonable time
without starving the long-lived apps.

Similar to CapacityScheduler, the FairScheduler supports hierarchical queue to reflect the structure of the
long shared cluster.

Apart from fair scheduling, the FairScheduler allows for assigning minimum shares to queues for ensuring

that certain users, production, or group applications always get sufficient resources. When an app is present
in the queue, then the app gets its minimum share, but when the queue doesn’t need its full guaranteed

share, then the excess share is split between other running applications.

UNIT-4

8. a) Find Explain in detail about loading and storing the data in Pig with examples.

LOAD

To load the data from the file system in to a relation.

• Basically, Load Operator loads data from the file system.

• LOAD 'data' [USING function] [AS schema];

• 1 2 3

4 2 1

8 3 4

• A = LOAD 'file1.txt';

• A = LOAD 'file1.txt' USING PigStorage('\t');

• DUMP A;

• (1,2,3)

(4,2,1)

(8,3,4)

• A = LOAD 'file1.txt' AS (f1:int, f2:int, f3:int); A = LOAD 'file1.txt' USING

PigStorage(‘\t’) AS (f1:int, f2:int, f3:int);

• DESCRIBE A;

• a: {f1: int,f2: int,f3: int}

• ILLUSTRATE A;

STORE

To save a relation to the file system.

• Basically, STORE operator, Stores or saves results to the file system.

• STORE alias INTO 'directory' [USING function];

• A = LOAD 'data' AS (a1:int,a2:int,a3:int);

• DUMP A;

• (1,2,3)

(4,2,1)

(8,3,4)

(4,3,3)

(7,2,5)

(8,4,3)

• STORE A INTO 'output1' USING PigStorage ('*');

• CAT output1;

• 1*2*3

4*2*1

8*3*4

4*3*3

7*2*5

8*4*3

 b) Explain Sqoop’s import process with a neat sketch.

• The ‘Import tool’ imports individual tables from RDBMS to HDFS. Each row in a table is

treated as a record in HDFS. All records are stored as text data in the text files or as binary

data in Avro and Sequence files.

• Syntax

• The following syntax is used to import data into HDFS.

• $ sqoop import (generic-args) (import-args)

• Importing a Table

• Sqoop tool ‘import’ is used to import table data from the table to the Hadoop file

 system as a text file or a binary file.

• Import a subset of data:

 sqoop import \ --connect jdbc:mysql://mysql.example.com/sqoop \

 --username sqoop \

 --password sqoop \

 --table cities \

 --where "country = 'USA'"

• IMPORT-ALL-TABLES

• The following syntax is used to import all tables.

 $ sqoop import-all-tables (generic-args) (import-args)

 $ sqoop-import-all-tables (generic-args) (import-args)

• The following command is used to import all the tables from the userdb database.

 $ sqoop import \

 --connect jdbc:mysql://localhost/userdb \

 --username root

• The following command is used to verify all the table data to the userdb database in HDFS.

 $ $HADOOP_HOME/bin/hadoop fs –ls

OR

9. a) Demonstrate briefly about Hive services.

Hive provides various services like the Hive server2, Beeline, etc. The various services offered by

Hive are:

1. Beeline

The Beeline is a command shell supported by HiveServer2, where the user can submit its queries

and command to the system. It is a JDBC client that is based on SQLLINE CLI (pure Java-

console-based utility for connecting with relational databases and executing SQL queries).

2. Hive Server 2

HiveServer2 is the successor of HiveServer1. HiveServer2 enables clients to execute queries

against the Hive. It allows multiple clients to submit requests to Hive and retrieve the final results.

It is basically designed to provide the best support for open API clients like JDBC and ODBC.

3. Hive Driver

The Hive driver receives the HiveQL statements submitted by the user through the command shell.

It creates the session handles for the query and sends the query to the compiler.

4. Hive Compiler

Hive compiler parses the query. It performs semantic analysis and type-checking on the different

query blocks and query expressions by using the metadata stored in metastore and generates an

execution plan. The execution plan created by the compiler is the DAG(Directed Acyclic Graph),

where each stage is a map/reduce job, operation on HDFS, a metadata operation.

5. Optimizer

Optimizer performs the transformation operations on the execution plan and splits the task to

improve efficiency and scalability.

6. Execution Engine

Execution engine, after the compilation and optimization steps, executes the execution plan created

by the compiler in order of their dependencies using Hadoop.

7. Metastore

Metastore is a central repository that stores the metadata information about the structure of tables

and partitions, including column and column type information.

 b) Write the difference between the Traditional Databases and Hive.

