
Page | 1

18CS701
Hall Ticket Number:

IV/IV B.Tech (Regular\Supplementary) DEGREE EXAMINATION

November, 2022 Computer Science and Engineering

Seventh Semester Full Stack Development

Time: Three Hours Maximum: 50 Marks

Answer question 1 compulsory. (10X1 = 10Marks)

Answer one question from each unit. (4X10=40 Marks)

 CO BL 1 M

1 a) List the benefits of using Node.js? CO1 L1

 b) Write the uses of listen () method in Node.js with syntax. CO1 L4

 c) Define document in mongoDB. CO1 L2

 d) What is mongo shell? CO2 L4

 e) Define collection in MongoDB. Draw a collection hierarchy. CO2 L2

 f) What are NoSQL databases? What are the different types of NoSQL databases? CO2 L1

 g) What is MVC? CO3 L3

 h) Write the purpose of Angular CLI. CO3 L4

 i) List out the types of directives in Angular. CO4 L3

 j) Write the built-in services in Angular. CO4 L4

Unit-I
2 a) State the differences between Node.js and Express.js CO1 L2 5M

 b) Explain the differences between readFile and createReadStream in Node.js? CO1 L3 5M

 (OR)

3 a) Demonstrate the use of EventEmitter in Node.js? CO1 L1 5M
 b) Write about differences between setImmediate() and setTimeout()? CO1 L2 5M

Unit-II
4 a) Explain the procedure for creating cookie in Node.js with code. CO2 L4 5M

 b) Implement different collection operations in MongoDB. Give them example code. CO2 L1 5M

 (OR)
5 a) Write differences between RDBMD and MongoDB. CO2 L2 5M

 b) Explain the steps involved in Express application that connect to MongoDB database

with code.

CO2 L4 5M

Unit-III
6 a) List and explain the built-in types in Typescript CO3 L2 5M

 b) What is TypeScript and why would I use it in place of JavaScript? CO3 L3 5M

 (OR)
7 a) Illustrate the differences between AngularJS and Angular? CO3 L2 5M

 b) What is a template? How to use external templates in Angular? Explain with an example. CO3 L2 5M

Unit-IV
8 a) What is a data binding? Implement event-data binding with code in Angular. CO4 L1 5M

 b) Write the procedure for implement custom component in Angular with code. CO4 L4 5M

 (OR)

9 a) Explain how custom events are implemented in Angular with code. CO4 L4 5M

 b) How do you implement Angular Service application? Explain the procedure with code. CO4 L1 5M

Page | 2

IV/IV B.Tech (Regular) DEGREE EXAMINATION

November, 2022 Computer Science & Engineering

Seventh Semester Full Stack Development (18CS701)

Time: Three Hours Maximum : 50 Marks

SCHEME OF EVALUATION

__

 Prepared By : J.KUMARARAJA

 Assistant Professor,

 Dept. of CSE,

 BEC, BAPATLA.

 (Signature)

 Signature of the Faculty:

1. Dr. N. Sudhakar

 2. J.Kumararaja

 Signature of the External Faculty:

1.

 2.

Page | 3

SCHEME OF EVALUATION

Allocation of Marks

UNIT – I

2. a) State the differences between Node.js and Express.js

[Consider Any Five Differences] – 5 Marks

2. b) Explain the differences between readFile and createReadStream in Node.js?

Explanation – 3 Marks

Program(s) – 2 Marks

(or)

3. a) Demonstrate the use of EventEmitter in Node.js?

Explanation – 3 Marks

Program – 2 Marks

3. b) Write about differences between setImmediate() and setTimeout()?

Explanation – 3 Marks

Program(s) – 2 Marks

UNIT – II

4. a) Explain the procedure for creating cookie in Node.js with code.

Explanation – 3 Marks

Program(s) – 2 Marks

4. b) Implement different collection operations in MongoDB. Give them example code.

Explanation – 3 Marks

Program – 2 Marks

(or)

5. a) Write differences between RDBMD and MongoDB.

[Consider Any Five Differences] – 5 Marks

5. b) Explain the steps involved in Express application that connect to MongoDB database with code.

Explanation – 3 Marks

Diagram – 2 Marks

Page | 4

UNIT – III

6. a) List and explain the built-in types in Typescript

List Datatypes Names with explanation – 3 Marks

Program – 2 Marks

6. b) What is TypeScript and why would I use it in place of JavaScript?

Diagram – 2 Marks

Explanation – 3 Marks

 (or)

7. a) Illustrate the differences between AngularJS and Angular?

[Consider Any Five Differences] – 5 Marks

7. b) What is a template? How to use external templates in Angular? Explain with an example.

Definition & Explanations – 1+3 Marks

Program – 2 Marks

UNIT – IV

8. a) What is a data binding? Implement event-data binding with code in Angular.

Definition – 1 Mark

Explanation – 2 Marks

Program – 2 Marks

8. b) Write the procedure for implement custom component in Angular with code.

Listing Names – 1 Marks

Explanation – 2 Marks

Program – 2 Marks

 (or)

9. a) Explain how custom events are implemented in Angular with code.

Explanation – 3 Marks

Program – 2 Marks

9. b) How do you implement Angular Service application? Explain the procedure with code.

Explanation – 3 Marks

Program – 2 Marks

- - - - -

Page | 5

IV/IV B.Tech (Regular) DEGREE EXAMINATION

November,2022 Computer Science & Engineering

Seventh Semester Full Stack Development (18CS701)

Time: Three Hours Maximum : 50 Marks

SCHEME OF EVALUATION

__

Answer Questions No. 1 compulsorily (1 X 10 = 10 Marks)

Answer ONE question from each unit. (4 X 10 = 40 Marks)

__

1. Answer all questions (1 X 10 = 10 Marks)

a) List the benefits of using Node.js?

Node.js can be used for a wide variety of purposes. Because it is based on V8 and has highly optimized

code to handle HTTP traffic, the most common use is as a webserver.

However, Node.js can also be used for a variety of other web services such as:

 Web services APIs such as REST (Representational State Transfer)

 Real-time multiplayer games

 Backend web services such as cross-domain, server-side requests

 Web-based applications

 Multiclient communication such as IM (Instant Messaging)

b) Write the purpose of listen() method in Node.Js application.

listen() function is used to bind and listen the connections on the specified host and port.

listen() method of server object which was returned from createServer() method with port number, to start

listening to incoming requests on port 5000. You can specify any unused port here.

 Sample Code:

c) Define document in mongoDB.

Documents

MongoDB stores data records as BSON documents, which are simply called documents.

A document is a set of field-and-value pairs with the following structure:

// App listening on the below port

app.listen(PORT, function(err){

 if (err) console.log(err);

 console.log("Server listening on PORT", PORT);

});

Page | 6

d) What is mongo shell?

MongoDB Shell is the quickest way to connect, configure, query, and work with your MongoDB

database. It acts as a command-line client of the MongoDB server.

The MongoDB Shell is a standalone, open-source product and developed separately from the

MongoDB Server under the Apache 2 license. It is a fully functional JavaScript and Node.js 14.x

REPL for interacting with MongoDB servers.

e) Define collection in MongoDB. Draw a collection hierarchy.

Collection: Its group of MongoDB documents. This can be thought like a table in RDBMS like Oracle,

MySQL. This collection doesn’t enforce any structure. Hence schema-less MongoDB is so popular.

• Document: Document is referred to as a record in MongoDB collection.

Collection hierarchy

f) What are NoSQL databases? What are the different types of NoSQL databases?

NoSQL is a non-relational database that is used to store the data in the nontabular form. NoSQL stands for Not
only SQL. The main types are documents, key-value, wide-column, and graphs.

Types of NoSQL Database:

- Document-based databases.

- Key-value stores.
- Column-oriented databases.

- Graph-based databases

g) What is MVC?

The Model-View-Controller (MVC) is an architectural pattern that separates an application into three

main logical components: the model, the view, and the controller. Each of these components are built to

handle specific development aspects of an application. MVC is one of the most frequently used

industry-standard web development framework to create scalable and extensible projects.

{

 field_name1: value1,

 field_name2: value2,

 field_name3: value3,

 ...

}});

Page | 7

Following are the components of MVC −

h) Write the purpose of Angular CLI.

Angular CLI is basically a Command Line Interface that provides the capability to utilize the

Command Window to execute and build the basic Angular application structure just by writing down

the CLI Commands which Angular understands and interprets the action to be taken on each

command. Angular CLI is compatible with all higher and major versions of Angular (NOT

AngularJS).

i) List out the types of directives in Angular.

The Angular Directives are the elements which are basically used to change the behaviour or appearance or

layout of the DOM (Document Object Model) element.

Types of Directives in Angular:

The Directives are classified into three types based on their behaviour. Please have a look at the following image

for a better understanding of the directive’s classification.

j) Write the built-in services in Angular.

Angular services are injectable object injected using dependency injection (DI) mechanism of Angular. The

AngularJS services can be used to organize and share code across your app.

Here is a list of Angular built in Services with description.

$cookies , $parse, $timeout, $interval

Page | 8

UNIT – I

2. a) State the differences between Node.js and Express.js

S.No Feature Node.js Express.js

1.

Usage

It is used to build server-

side,

input-output, event-driven

apps.

It is used to build web-

apps

using approaches and

principles of Node.js.

2.

Framework/Platform

Run-time platform or

environment designed for

server-side execution of

JavaScript.

Framework based on

Node.js.

3.

Controllers

Controllers are not

provided.

Controllers are provided.

4.

Routing

Routing is not provided Routing is provided.

5.

Middleware

Doesn’t use such a

provision.

Uses middleware for the

arrangement of functions

systematically server-side.

6.

Coding time

It requires more coding

time.

It requires less coding

time.

7.

Level of features

Fewer features. More features than

Node.js.

8.

Written in

Written in JavaScript C JavaScript

2. b) Explain the differences between readFile and createReadStream in Node.js?

readFile: fs module contains the readFile method. It is used to read a file by bringing it into the

buffer. It is an asynchronous method and due to this, it reads the file without blocking the execution

of the code.

First, we bring the fs module into our app then use the readFile method inside it.

Syntax:

fs.readFile(filename, encoding, callback_function)

Example: In this example, we are reading the file using the readFile method, File to be read is

output.txt.

output.txt file: This is an output file read from readFile method.

Page | 9

createReadStream: fs module contains the inbuilt API(Application programming interface)

 createReadStream. It allows us to open a file/stream and reads the data present inside it.

Syntax:

fs.createReadStream(path, options)

Example: In this example, We are reading file name output.txt by createReadStream.on method.

Output.txt file: This is an output file read from createReadStream method.

3. a) Demonstrate the use of EventEmitter in Node.js?

 Events in Node.js

Node.js has a built-in module, called "Events", where you can create-, fire-, and listen for- your own

events.

Every action on a computer is an event. Like when a connection is made or a file is opened.

Node.js allows us to create and handle custom events easily by using events module.

Node.js events module has only one class to handle events which is EventEmitter class. It contains

all required functions to take care of generating events.

Objects in Node.js can fire events, like the readStream object fires events when opening and closing

a file:

var fs = require('fs');

var rs = fs.createReadStream('TestFile.txt');

rs.on('open', function () {

 console.log('The file is open');

});

Page | 10

EventEmitter Responsibility

EventEmitter class is responsible to generate events. Generating events is also known as Emitting.

That’s why this class is named as EventEmitter.

We can understand this Process through the given Diagram

To include the built-in Events module use the require() method. In addition, all event properties and

methods are an instance of an EventEmitter object. To be able to access these properties and

methods, create an EventEmitter object:

// Import events module
var events = require('events');

// Create an eventEmitter object
var eventEmitter = new events.EventEmitter();

Program:

In the above example, we first import the 'events' module and then create an object of EventEmitter

class. We then specify event handler function using on() function. The on() method requires name

of the event to handle and callback function which is called when an event is raised.

// get the reference of EventEmitter class of events module

var events = require('events');

//create an object of EventEmitter class by using above

reference

var em = new events.EventEmitter();

//Subscribe for FirstEvent

em.on('FirstEvent', function (data) {

 console.log('First subscriber: ' + data);

});

//Raising

FirstEvent

em.emit('FirstEvent', 'This is my first Node.js event emitter

example.');

Page | 11

3. b) Write about differences between setImmediate() and setTimeout()?

The setImmediate() function is used to execute a function right after the current event loop

finishes. In simple terms, the function functionToExecute() is called after all the statements

in the script are executed. It is the same as calling the setTimeout() function with zero

delays. The setImmediate() function can be found in the Timers module of Node.js.

setImmediate(functionToExecute, [, ...args])

It is followed by an optional list of parameters passed onto functionToExecute() as input

parameters.

If the first parameter, i.e., functionToExecute() is not a function, then a TypeError will be

thrown

Immediate timers are created using the setImmediate(callback,[args]) method built into

Node.js. When you call setImmediate(), the callback function is placed on the event queue

and popped off once for each iteration through the event queue loop after I/O events have a

chance to be called. For example, the following schedules myFunc() to execute on the next

cycle through the event queue:

setImmediate(myFunc(), 1000);

The setImmediate() function returns a timer object ID. You can pass this ID to

clearImmediate(immediateId) at any time before it is picked up off the event queue. For

example:

var myImmediate = setImmediate(myFunc);

… clearImmediate(myImmediate);

We can see that the function inside the setImmediate() function is executed after all the statements in

script have finished executing.

Program:

function myFunction(platform){

 console.log("Hi, Welcome to " + platform);

}

console.log("Before the setImmediate call")

let timerID = setImmediate(myFunction, "BEC");

console.log("After the setImmediate call")

for(let i=0; i<10; i++){

 console.log("Iteration of loop: "+i);

}

In the above example, an argument is passed to myFunction through the setImmediate() function.

The function passed to setImmediate() is called after all the statements in the script are executed.

Page | 12

Delaying Work with Timeouts

Timeout timers are used to delay work for a specific amount of time. When that time

expires, the callback function is executed and the timer goes away. Use timeouts for work

that only needs to be performed once.

Timeout timers are created using the setTimeout(callback, delayMilliSeconds, [args]) method

built into Node.js. When you call setTimeout(), the callback function is executed after

delayMilliSeconds expires.

For example, the following executes myFunc() after 1 second:

setTimeout(myFunc, 1000);

The setTimeout() function returns a timer object ID. You can pass this ID to

clearTimeout(timeoutId) at any time before the delayMilliSeconds expires to cancel the timeout

function. For example:

myTimeout = setTimeout(myFunc, 100000);

… clearTimeout(myTimeout);

Below program implements a series of simple timeouts that call the simpleTimeout()

function, which outputs the number of milliseconds since the timeout was scheduled. Notice

that it doesn’t matter which order setTimeout() is called; the results, shown in as shown in

Output below, are in the order that the delay expires.

Implementing a series of timeouts at various intervals

simple_timer.js:

, to recognize user.

function simpleTimeout(consoleTimer){

 console.timeEnd(consoleTimer);

}

 console.time("twoSecond");

 setTimeout(simpleTimeout, 2000, "twoSecond");

 console.time("oneSecond");

 setTimeout(simpleTimeout, 1000, "oneSecond");

 console.time("fiveSecond");

 setTimeout(simpleTimeout, 5000, "fiveSecond");

 console.time("50MilliSecond");

 setTimeout(simpleTimeout, 50, "50MilliSecond");

Page | 13

Install cookie

You have to acquire cookie abilities in Express.js. So, install cookie-parser middleware through npm by using the

following command:

npm install --save cookie-parser

Import cookie-parser into your app.

Define a route:

Cookie-parser parses Cookie header and populate req.cookies with an object keyed by the cookie names.

Let's define a new route in your express app like set a new cookie:

Browser sends back that cookie to the server, every time when it requests that website.

Express.js Cookies Example File: cookies_example.js

var express = require('express');

var cookieParser = require('cookie-parser');

var app = express();

app.use(cookieParser());

app.get('/cookie',function(req, res){

res.cookie('cookie_name' , 'cookie_value').send('Cookie is set');

 });

app.get('/', function(req, res) {

console.log("Cookies : ", req.cookies);

});

var express = require('express');

var cookieParser = require('cookie-parser');

var app = express();

app.use(cookieParser());

app.get('/cookieset',function(req, res){

res.cookie('cookie_name', 'cookie_value');

res.cookie('college', 'BEC');

res.cookie('name', 'KUMAR');

res.status(200).send('Cookie is set');

});

app.get('/cookieget', function(req, res) {

res.status(200).send(req.cookies);

});

Page | 14

Open the page http://127.0.0.1:8000/ on your browser to see output.

Set cookie:

Now open http://127.0.0.1:8000/cookieset to set the cookie:

Get cookie:

Now open http://127.0.0.1:8000/cookieget to get the cookie.

4. b) Implement different collection operations in MongoDB. Give them example code.

Basic CRUD operations

The following section shows you how to create (C), read (R), update (U), and delete (D) a document. These

operations are often referred to as CRUD operations.

Create

To add a document to a collection, you use the insertOne() method of the collection.

The following command adds a new document (or a new book) to the books collection:

db.books.insertOne({

 title: "MongoDB Tutorial",

 published_year: 2020

})

app.get('/', function (req, res) {

res.status(200).send('Welcome to BEC,BAPATLA');

});

var server = app.listen(8000, function () {

var host = server.address().address;

var port = server.address().port;

console.log('Example app listening at http://%s:%s', host,

port);

});

Page | 15

Output:

{

 "acknowledged" : true,

 "insertedId" : ObjectId("5f2f39fb82f5c7bd6c9375a8")

}

Once you press enter, the mongo shell sends the command to the MongoDB server.

If the command is valid, MongoDB inserts the document and returns the result. In this case, it returns an

object that has two keys acknowledged and insertedId.

The value of the insertedId is the value of the _id field in the document.

When you add a document to a collection without specifying the _id field, MongoDB automatically assigns a

unique ObjectId value to the _id field and add it to the document. MongoDB uses the _id field to uniquely

identify the document in the collection.

Read

To select documents in a collection, you use the findOne() method:

db.books.findOne()

Output:

{

 _id: ObjectId("62143f34cca1c7af0ad1d126"),

 title: 'MongoDB Tutorial',

 published_year: 2020

}

Code language: CSS (css)

To format the output, you use the pretty() method like this:

db.b().pretty()ooks.find

Code language: CSS (css)

Output:

{

 "_id" : ObjectId("5f2f3d8882f5c7bd6c9375ab"),

 "title" : "MongoDB Tutorial",

 "published_year" : 2020

}

As you can see clearly from the output, MongoDB added the _id field together with other field-and-value

pairs to the document.

Update

To update a single document, you use the updateOne() method.

The updateOne() method takes at least two arguments:

Page | 16

 The first argument identifies the document to update.

 The second argument represents the updates that you want to make.

The following shows how to update the published_year of the document whose title is "MongoDB Tutorial":

db.books.updateOne(

 { title: "MongoDB Tutorial"},

 { $set: { published_year: 2019 }}

)

Output:

{

 acknowledged: true,

 insertedId: null,

 matchedCount: 1,

 modifiedCount: 1,

 upsertedCount: 0

}

How it works.

The first argument identifies which document to update. In this case, it will update the first document that

has the title "MongoDB tutorial":

{title: "MongoDB Tutorial"}

The second argument is an object that specifies which fields in the document to update:

{

 $set: {

 published_year: 2019

 }

}

The $set is an operator that replaces a field value with a specified value. In this example, it updates

the published_year of the document to 2019.

Delete

To delete a document from a collection, you use the deleteOne() method. The deleteOne() method takes one

argument that identifies the document that you want to delete.

The following example uses the deleteOne() method to delete a document in the books collection:

db.books.deleteOne({title: "MongoDB Tutorial"});

Output:

{

 "acknowledged": true,

 "deletedCount": 1

}

Page | 17

The output shows that one document has been deleted successfully via the deletedCount field.

To show all collections of the current database, you use the show collections command:

show collections

5. a) Write differences between RDBMD and MongoDB.

RDBMS MongoDB

It is a relational database.

It is a non-relational and document-

oriented database.

Not suitable for hierarchical data

storage. Suitable for hierarchical data storage.

It is vertically scalable i.e increasing

RAM.

It is horizontally scalable i.e we can add

more servers.

It has a predefined schema. It has a dynamic schema.

It is quite vulnerable to SQL injection. It is not affected by SQL injection.

It centers around ACID properties

(Atomicity, Consistency, Isolation, and

Durability).

It centers around the CAP theorem

(Consistency, Availability, and Partition

tolerance).

It is row-based. It is document-based.

It is slower in comparison with
MongoDB.

It is almost 100 times faster than
RDBMS.

Supports complex joins. No support for complex joins.

It is column-based. It is field based.

It does not provide JavaScript client for
querying.

It provides a JavaScript client for
querying.

It supports SQL query language only.

It supports JSON query language along

with SQL.

Page | 18

5. b) Explain the steps involved in Express application that connect to MongoDB database with code.

Step-1: create a directory and navigate to it.

$ mkdir express-mongodb

$ cd express-mongodb

Step-2 : Initialise npm on the directory and install the necessary

 modules. Also, create the index file.

 $ npm init

 $ npm install express

 $ npm install ejs

 $ touch index.js

 $ npm install mongodb

 Step 3: Initialize the express app and make it listen to a port on localhost and create a

connection to mongodb.

Index.js

const express = require('express')

const {MongoClient, ObjectId} = require("mongodb")

const userPosts = require('./posts')

var app = express();

var col

app.set('viewengine', 'ejs')

app.set('views', 'my_views')

app.use(express.static('public'))

app.get('/', (req, res) => {

 var URI = "mongodb://ACS482:ACS482@10.2.2.22:27017/ACS482"

 var client = new MongoClient(URI)

 await client.connect()

 var db = client.db()

 col = db.collection("posts")

 var doc = col.find()

 var docarray = await.doc.toArray()

 res.render('displayposts',{userposts:docArray})

})

Page | 19

app.listen(3000, () => {

 console.log('server started on port 3000')

})

Step-4 : create a displayform to display the list of documents

Displayposts.ejs

<!DOCTYPE html>

<html>

<head>

 <title>Posts</title>

 <link rel='stylesheet' href="style.css">

</head>

<body>

 <table border="2px">

 create

 <input type="button" align="center" value="createpost">

 <h2>User posts</h2>

 <thead>

 <th>UserId</th>

 <th>Id</th>

 <th>title</th>

 <th>body</th>

 </thead>

 <% for (var i=0 ; i<userposts.length;i++){ % >

 <tr>

 <td> <% = userposts[i].userId %></td>

 <td> <% = userposts[i].id %></td>

 <td> <% = userposts[i].title %></td>

 <td> <% = userposts[i].body %></td>

Page | 20

 </tr>

 <% } %>

 </table>

 </body>

</html>

6. a) List and explain the built-in types in Typescript

TypeScript Type

The TypeScript language supports different types of values. It provides data types for the JavaScript to

transform it into a strongly typed programing language. JavaScript doesn't support data types, but with the

help of TypeScript, we can use the data types feature in JavaScript. TypeScript plays an important role when

the object-oriented programmer wants to use the type feature in any scripting language or object-oriented

programming language. The Type System checks the validity of the given values before the program uses

them. It ensures that the code behaves as expected.

TypeScript provides data types as an optional Type System. We can classify the TypeScript data type as

following.

1. Static Types

In the context of type systems, static types mean "at compile time" or "without running a program." In a

statically typed language, variables, parameters, and objects have types that the compiler knows at compile

time. The compiler used this information to perform the type checking.

Static types can be further divided into two sub-categories:

Built-in or Primitive Type

The TypeScript has five built-in data types, which are given below.

Page | 21

Number

Like JavaScript, all the numbers in TypeScript are stored as floating-point values. These numeric values are

treated like a number data type. The numeric data type can be used to represents both integers and fractions.

TypeScript also supports Binary(Base 2), Octal(Base 8), Decimal(Base 10), and Hexadecimal(Base 16)

literals.

Syntax:

1. let identifier: number = value;

Examples:-

1. let first: number = 12.0; // number

2. let second: number = 0x37CF; // hexadecimal

3. let third: number = 0o377 ; // octal

4. let fourth: number = 0b111001; // binary

5.

6. console.log(first); // 123

7. console.log(second); // 14287

8. console.log(third); // 255

9. console.log(fourth); // 57

String

We will use the string data type to represents the text in TypeScript. String type work with textual data. We

include string literals in our scripts by enclosing them in single or double quotation marks. It also represents

a sequence of Unicode characters. It embedded the expressions in the form of $ {expr}.

Syntax

let identifier: string = " ";

 Or

let identifier: string = ' ';

Examples

1. let empName: string = "Rohan";

2. let empDept: string = "IT";

3.

4. // Before-ES6

5. let output1: string = empName + " works in the " + empDept + " department.";

6. // After-ES6

7. let output2: string = `${empName} works in the ${empDept} department.`;

8. console.log(output1);//Rohan works in the IT department.

9. console.log(output2);//Rohan works in the IT department.

Page | 22

Boolean

The string and numeric data types can have an unlimited number of different values, whereas the Boolean

data type can have only two values. They are "true" and "false." A Boolean value is a truth value which

specifies whether the condition is true or not.

Syntax

1. let identifier: boolean = Boolean value;

Examples

1. let isDone: boolean = false;

void

A void is a return type of the functions which do not return any type of value. It is used where no data type

is available. A variable of type void is not useful because we can only assign undefined or null to them. An

undefined data type denotes uninitialized variable, whereas null represents a variable whose value is

undefined.

Syntax

1. let unusable: void = undefined;

Examples

 function helloUser(): void {

 alert("This is a welcome message");

 }

 let tempNum: void = undefined;

 tempNum = null;

 tempNum = 123; //Error

Null

Null represents a variable whose value is undefined. Much like the void, it is not extremely useful on its

own. The Null accepts the only one value, which is null. The Null keyword is used to define the Null type in

TypeScript, but it is not useful because we can only assign a null value to it.

Examples

let num: number = null;

let bool: boolean = null;

let str: string = null;

Page | 23

Undefined

The Undefined primitive type denotes all uninitialized variables in TypeScript and JavaScript. It has only

one value, which is undefined. The undefined keyword defines the undefined type in TypeScript, but it is not

useful because we can only assign an undefined value to it.

Example

let num: number = undefined;

let bool: boolean = undefined;

let str: string = undefined;

Any Type

It is the "super type" of all data type in TypeScript. It is used to represents any JavaScript value. It allows us

to opt-in and opt-out of type-checking during compilation. If a variable cannot be represented in any of the

basic data types, then it can be declared using "Any" data type. Any type is useful when we do not know

about the type of value (which might come from an API or 3rd party library), and we want to skip the type-

checking on compile time.

Syntax

let identifier: any = value;

Examples

let val: any = 'Hi';

 val = 555; // OK

 val = true; // OK

 function ProcessData(x: any, y: any) {

 return x + y;

 }

let result: any;

result = ProcessData("Hello ", "Any!"); //Hello Any!

result = ProcessData(2, 3); //5

6. b) What is TypeScript and why would I use it in place of JavaScript?

 The TypeScript language supports different types of values. It provides data types for the JavaScript

to transform it into a strongly typed programing language. JavaScript doesn't support data types, but with the

help of TypeScript, we can use the data types feature in JavaScript. TypeScript plays an important role when

the object-oriented programmer wants to use the type feature in any scripting language or object-oriented

programming language. The Type System checks the validity of the given values before the program uses

them. It ensures that the code behaves as expected.

Page | 24

Advantage of TypeScript over JavaScript

o TypeScript always highlights errors at compilation time during the time of development, whereas JavaScript

points out errors at the runtime.

o TypeScript supports strongly typed or static typing, whereas this is not in JavaScript.

o TypeScript runs on any browser or JavaScript engine.

o Great tooling supports with IntelliSense which provides active hints as the code is added.

o It has a namespace concept by defining a module.

//Defining a Student class.

class Student {

 //defining fields

 id: number;

 name:string;

 constructor(id: number, name: string) {

 this.id = id;

 this.name = name;

 }

//creating method or function

 display():void {

 console.log("Student ID is: "+this.id)

 console.log("Student ID is: "+this.name)

 }

 }

//Creating an object or instance

let obj = new Student(101,"Virat Kohli");

 //obj.id = 101;

 //obj.name = "Virat Kohli";

 obj.display();

Page | 25

7. a) Illustrate the differences between AngularJS and Angular?

Category Angular JS Angular

Architecture

It supports the Model-View-Controller

design. The view processes the

information available in the model to

generate the output.

It uses components and directives.

Components are the directives with a

template.

Written

Language
Written in JavaScript.

Written in Microsoft’s TypeScript

language, which is a superset

of ECMAScript 6 (ES6).

Mobile

support
It does not support mobile browsers.

Angular is supported by all the popular

mobile browsers.

Expression

Syntax

ng-bind is used to bind data from view

to model and vice versa.

Properties enclosed in “()” and “[]” are

used to bind data between view and

model.

Dependency

Injection
It does not use Dependency Injection.

Angular is supported by all the popular

mobile browsers.

Supported

Languages
It only supports JavaScript.

It provides support for TypeScript and

JavaScript.

Routing

AngularJS uses $routeprovider.when()

for routing configuration.

Angular uses @Route Config{(…)} for

routing configuration.

Structure

It is less manageable in comparison to

Angular.

It has a better structure compared to

AngularJS, easier to create and maintain

for large applications but behind

AngularJS in the case of small

applications.

CLI
It does not come with a CLI tool. It comes with the Angular CLI tool.

Examples

Application

iStock, Netflix, and Angular JS official

website. Upwork, Gmail, and Wikiwand.

Page | 26

7. b) What is a template? How to use external templates in Angular? Explain with an example.

Templates in Angular represents a view whose role is to display data and change the data whenever

an event occurs. It's default language for templates is HTML.

Templates separate view layer from the rest of the framework so we can change the view layer

without breaking the application.

Elements of Templates

1. HTML

2. Interpolation

3. Template Expressions

4. Template Statements

Let's start with the explanation of each one of the template elements

HTML

Angular uses HTML as a template language.

Interpolation

Interpolation is one of the forms of data binding where we can access a component’s data in a template. For

interpolation, we use double curly braces {{ }}.

Template Expressions

The text inside {{ }} is called as template expression.

Ex,

1. {{Expression}}

Angular first evaluates the expression and returns the result as a string. The scope of a template expression is

a component instance. That means, if we write {{ Name }}, Name should be the property of the component

to which this template is bound to.

Template Statements

Template Statements are the statements which respond to a user event.

1. (event) = {{Statement}}

Ex : lets create an click event - Add changename() method inside hi.component.ts file as below,
1. import { Component, OnInit } from '@angular/core';
2.
3. @Component({
4. selector: 'app-hi',
5. templateUrl: `./hi.component.html`,
6. styleUrls: ['./hi.component.css']
7. })
8. export class HiComponent implements OnInit {
9. Name : string = "XYZ";
10. changeName() {

Page | 27

11. this.Name = "ABC";
12. }
13. constructor() { }
14. ngOnInit(): void {
15. }
16. }

Now open hi.component.html and add the below line of code inside it,
1. <h1>Hello</h1>
2. <h2>Name : {{Name}}</h2>
3. <p (click)="changeName()">Click here to change</p>

Here, changeName() method is bound to click event which will be invoked on click at run time. This is

called event binding

Now observe the output screen in the browser,

Output after clicking. When user clicks on the paragraph, course name will be changed to 'ABC'

Page | 28

8. a) What is a data binding? Implement event-data binding with code in Angular.

In Angular, Data Binding means to bind the data (Component’s filed) with the View (HTML

Content). That is whenever you want to display dynamic data on a view (HTML) from the

component then you need to use the concept Data binding.

Data Binding is a process that creates a connection to communicate and synchronize between the

user interface and the data. In order words, we can say that Data Binding means to interact with the

data and view. So, the interaction between the templates (View) and the business logic is called data

binding.

Angular Event Binding with Examples

Event Binding

When a user interacts with an application in the form of a keyboard movement, button click, mouse over,

selecting from a drop-down list, typing in a textbox, etc. it generates an event. These events need to be

handled to perform some kind of action. This is where event binding comes into the picture and in Angular

Application, we can use event binding to get notified when these events occur.

Event Binding work in Angular

The following image shows the syntax for binding to the click event of a button. Within parentheses on the

left-hand side of the equal sign, we have the target event, (click in this case) and on the right-hand side, we

have the template statement such as Component properties or methods. In this case, it is the component

method i.e. onClick() method which is going to be called when the button click event occurs.

With event binding, you can also use the on- prefix alternative as shown in the image below. This is known

as the canonical form. It’s up to you which approach you follow. Behind the scene, they are going to

perform the same task.

Angular Event Binding Example:

Let us understand Angular Event Binding with an example. Please modify the app.component.ts file as

shown below.

Now, run the application and launch the browser developer tools by pressing the F12 key. Once you open

Another Example:

When the page loads for the first time, we want to display only the First Name and Last Name of the

student. We also display the “Show Details” button as shown in the below image.

Page | 29

When the user clicks on the “Show Details” button, we want to display the “Gender“, “Age“, “Mobile”,

and “Branch” as well. The text on the button should be changed to “Hide Details” as shown in the below

image and when the user clicks on the “Hide Details” button, then the “Gender“, “Age“, “Mobile”, and

“Branch” should be hidden and the button text should be changed to “Show Details”.

We can achieve this very easily in angular with the help of event binding. Here we will make use of one of

the angular directives i.e. “ngIf“.

Modify app.component.ts file:

Notice we have introduced “ShowDetails” boolean property. The default value is false, so when the page

loads for the first time, we will have “Gender”, “Age”, “Mobile”, and “Branch” hidden. We also have a

method, ToggleDetails(), which will toggle the value of ShowDetails. The ngIf directive conditionally adds

or removes content from the DOM based on whether or not an expression is true or false. If “ShowDetails”

is true, “Gender”, “Branch”, “Mobile” and “Age” <tr> elements are added to the DOM, else removed.

import { Component, OnInit } from '@angular/core';

@Component({

 selector: 'app-eventbind',

 templateUrl: './eventbind.component.html',

 styleUrls: ['./eventbind.component.css']

})

export class EventbindComponent implements OnInit {

 constructor() { }

 ngOnInit(): void {

 }

 ColumnSpan: number = 2;

 FirstName: string = 'Khumaini';

 LastName: string = "Shaik";

 Branch : String = "CSE";

 Mobile: number = 24589;

 Gender: string = "Male";

 Age: number = 21;

 ShowDetails: boolean = false;

 ToggleDetails(): void {

 this.ShowDetails = !this.ShowDetails;

 }

}

Page | 30

Modify app.component.html file:

Notice the click event of the button element is bounded to ToggleDetails() method. To dynamically change the

text on the button, we are using a ternary operator:

 {{ShowDetails ? ‘Hide’ : ‘Show’}} Details

We used ngIf structural directive on “Gender”, “Branch”, “Mobile” and “Age” <tr> elements. The * prefix

before a directive indicates, it is a structural directive.

The ngIf directive conditionally adds or removes content from the DOM based on whether or not an expression is

true or false. If “ShowDetails” is true, “Gender”, “Branch”, “Mobile” and “Age” <tr> elements are added to the

DOM, else removed.

<table>

 <thead>

 <tr>

 <th attr.colspan="{{ColumnSpan}}">

 Student Details

 </th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>First Name</td>

 <td>{{FirstName}}</td>

 </tr>

 <tr>

 <td>Last Name</td>

 <td>{{LastName}}</td>

 </tr>

 <tr *ngIf='ShowDetails'>

 <td>Branch</td>

 <td>{{Branch}}</td>

 </tr>

 <tr *ngIf='ShowDetails'>

 <td>Mobile</td>

 <td>{{Mobile}}</td>

 </tr>

 <tr *ngIf='ShowDetails'>

 <td>Gender</td>

 <td>{{Gender}}</td>

 </tr>

 <tr *ngIf='ShowDetails'>

 <td>Age</td>

 <td>{{Age}}</td>

 </tr>

 </tbody>

</table>

<button (click)='ToggleDetails()'>

 {{ShowDetails ? 'Hide' : 'Show'}} Details

</button>

Page | 31

Modify app.component.css file:

Modify the app.component.css file as shown below.

Now run the application and you will see everything is working as expected as per our requirement.

8. b) Write the procedure for implement custom component in Angular with code.

Angular Component

Angular is a SPA framework, and a view is made of one or more component. An Angular

component represents a portion of a view.

Generally, an interactive web page is made of HTML, CSS, and JavaScript. Angular component

is no different.

Angular Component = HTML Template + Component Class + Component Metadata

HTML Template

HTML template is nothing but a regular HTML code with additional Angular specific syntax to

communicate with the component class.

Class

Essentially, a component class is a TypeScript class that includes properties and methods.

Properties store data and methods include the logic for the component. Eventually, this class will

be compiled into JavaScript.

 Note:

table {

 color: #369;

 font-family: Arial, Helvetica, sans-serif;

 font-size:large;

 border-collapse: collapse;

}

td {

 border: 1px solid black;

}

thead{

 border: 1px solid black;

}

https://www.tutorialsteacher.com/Content/images/angular/angular-component.png

Page | 32

TypeScript is an open-source, object-oriented language developed and maintained by Microsoft. It

is a typed superset of JavaScript that compiles to plain JavaScript.

Metadata

Metadata is some extra data for a component used by Angular API to execute the component,

such as the location of HTML and CSS files of the component, selector, providers, etc.

Generate Angular Component using Angular CLI

You can create files for a component manually or using the Angular CLI command. Angular CLI

reduces the development time. So, let's use Angular CLI to create a new component.

Use the following CLI command to generate a component.

ng generate component <component name>

All Angular CLI command starts with ng, generate or g is a command, component is an argument

and then the name of the component.

The following executes the ng g command to generate the greet component in VS Code.

The above command will create a new "greet" folder and app folder and create four files, as

shown below.

Component Files

Above, greet.component.css is a CSS file for the component, greet.component.html is an HTML

file for the component where we will write HTML for a component, greet.component.spec.ts is a

test file where we can write unit tests for a component, and greet.component.ts is the class file for

a component.

https://www.tutorialsteacher.com/Content/images/angular/create-component.png
https://www.tutorialsteacher.com/Content/images/angular/component-files.png

Page | 33

Note:

A component can have a single file or multiple files. A single TypeScript file can include an HTML

template, component class, and component metadata.

The following figure illustrates the important part of the component class.

The greet.component.ts includes the following parts:

Component Class: GreetComponent is the component class. It contains properties and methods

to interact with the view through an Angular API. It implements the OnInit interface, which is a

lifecycle hook.

Component Metadata: The @Component is a decorator used to specify the metadata for the

component class defined immediately below it. It is a function and can include different configs

for the component. It instructs Angular where to get required files for the component, create and

render component. All Angular components must have @Component decorator above the

component class.

The import statement gets the required feature from the Angular or other libraries. Import allows

us to use exported members from external modules. For example, @Component decorator

and OnInit interface are contained in @angular/core library. So, we can use them after importing

it.

Now, let's add a property and method in the component class, as shown below.

Example: Add Properties and Methods in the Component Class

export class GreetComponent implements OnInit {

 constructor() { }

 ngOnInit(): void {

 }

 name: string = "Steve";

 greet(): void {

 alert("Hello " + this.name);

 };

 }

Page | 34

Above, we have added the name property and the greet method in the component class. Let's use

these in the HTML template.

Open greet.component.html file, remove existing code and add the following code.

greet.component.ts

In the above HTML template, we used name property in the {{ }} interpolation to display its

value and greet() function as click event. Lean more about it in event binding section.

Bootstrapping Component

Now, it's time to load our component, but before that, we need to host our application and load

the root component. This process is called bootstrapping.

Angular is a single page application (SPA) framework. So, we need to host our application

in index.html, and then we need to define a root module to bootstrap our root

component. Index.html will be the only web page in an Angular application, and that's why it is

called SPA.

When you generate Angular application using Angular CLI, it automatically creates index.html,

root component app.component.ts, root module app.module.ts, and HTML

template app.component.html for you. The AppComponent class in app.component.ts is a root

component, and the AppModule class in app.module.ts is a root module.

Here, we will load our greet component into the root component in two steps.

1. Declare a component in the root module.

We want to load our new GreetComponent into the root component. So, the root module must

know about it. We can do it by adding the GreetComponent in the declarations array

in app.module.ts, as shown below.

Example: Add Component in the root module app.module.ts

<div>

 Enter Your Name: <input type="text" value={{name}} />

 <button (click)="greet()">Greet Me!</button>

</div>

Page | 35

2. Add component tag in the root HTML template.

After adding a component declaration, use component tag <app-greet></app-greet> in the HTML

file of the root component, which is app.component.html, as shown below.

app.component.html

 <div>

 <app-greet></app-greet>

 </div>

We can also create a single component file greet.component.ts if the HTML code of a component

is less. Use the template parameter in the @Component decorator to include HTML of the

component. The following greet component gives the same result as above.

Example: Component Class with HTML Template

import { Component } from '@angular/core';

@Component({

 selector: "app-greet",

 template: `<div>

 Enter Your Name: <input type="text" value={{name}} />

 <button (click)="greet()">Greet Me!</button>

 </div>`

})

export class GreetComponent {

 name: string = "Steve";

 greet(): void {

 alert("Hello " + this.name);

 };

}

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { GreetComponent } from './greet/greet.component';

//import GreetComponent

@NgModule({

 declarations: [

 AppComponent,

 GreetComponent // <- include GreetComponent in

declarations

],

 imports: [

 BrowserModule,

 AppRoutingModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Page | 36

9. a) Explain how custom events are implemented in Angular with code.

Sometimes the DOM events are not enough and there is a need to raise custom events. For example, a child

component may need to emit an event and tell the parent component that it has updated itself. The parent

component then listens to this event and may need to update itself. The flow of data in this case is one way,

that is from the child component to parent component.

In Angular we can raise custom events. Our custom events can pass data according to our requirement.

Custom event is a way of communication between components.

Usually the custom events are generated by directives and are used to communicate from child component to

parent component. The steps to emit custom events and its use are:

 Step 1: Declare a property of type EventEmitter in child or the component who will emit the event.

@Output() customMessageEvent = new EventEmitter();

Decorate the property with @Output() decorator.

 Step 2: Emit the event with data using the emit method.

this.customMessageEvent.emit('This message is sent from child');

 Step 3: Use the custom event property in the HTML using event binding syntax, i.e., enclosed in

parentheses and define the template expression to be called when event is emitted.

<app (customMessageEvent)="changeMessageInParent($event)"></app-child>

 When custom event is emitted, changeMessageInParent method of parent component will be called.

Example of custom events with EventEmitter

In this example, we’ll do the following:

1. Create two components, parent and child. Child component is used in parent component and

thus two components have parent-child relationship.

2. When we click a button in child component, the child component will emit an event to the

parent component with a message.

3. The parent component will listen to that event and will show the message received from the

child component.

parent.component.html

<div style="border: 1px solid black">

<h1>This is parent Component</h1>

Page | 37

Message received from child component: {{ messageFromChild

}}

<app-child (customMessageEvent)="changeMessageInParent($event)"></app-

child>

</div>

 parent.component.ts

import { Component, OnInit } from '@angular/core';

@Component({

selector: 'app-parent',

templateUrl: './parent.component.html',

styleUrls: ['./parent.component.css'],

})

export class ParentComponent implements OnInit {

messageFromChild: string = '';

constructor() {}

ngOnInit(): void {}

changeMessageInParent(event: string) {

this.messageFromChild = event;

}

}

child.component.html

<div style="border: 1px solid black; width: 50%; margin: 10px 10px 10px

10px">

<h2>This is child component</h2>

<button type="button" (click)="sendMessageToParent()">Send

message</button>

</div>

child.component.ts

import { Component, EventEmitter, OnInit, Output } from '@angular/core';

@Component({

selector: 'app-child',

templateUrl: './child.component.html',

styleUrls: ['./child.component.css'],

})

export class ChildComponent implements OnInit {

@Output() customMessageEvent = new EventEmitter<string>();

ngOnInit(): void {}

sendMessageToParent() {

this.customMessageEvent.emit('This message is sent from child');

}

Page | 38

}

Let us now understand the example.

1. We have exposed a property customeMessageEvent in child component

with @Output decorator. This property is of type EventEmitter. Our custom event emitter emits

data of type string.

2. When the button is clicked in child component, we are calling sendMessageToParent method.

3. sendMessageToParent method emits custom event with data as string message This message is

sent from child.

4. In parent component, we are using child component with our custom event property.

<app-child (customMessageEvent)="changeMessageInParent($event)"></app-child>

5. Whenever custom event is emitted, changeMessageInParent method of parent component is

called with event object $event. This event object contains the message received from the child

component.

6. changeMessageInParent receives the data from event and set the messageFromChild property of

parent. This messageFromChild property is then use to show message from the child on screen.

9. b) How do you implement Angular Service application? Explain the procedure with code.

The Angular Services are the piece of code or logic that are used to perform some specific task. A

service can contain a value or function or combination of both. The Services in angular are injected

into the application using the dependency injection mechanism.

Let us Angular Service step by step with an example.

First we will understand how to create angular service and then we will discuss how to use angular

service within a component.

Step1: Creating Angular Service

The angular service is composed of three things. You need to create an export class and you

need to decorate that class with @Injectable decorator and you need to import the Injectable

decorator from the angular core library. The syntax to create angular service is given below.

Page | 39

Let say you want to create an angular service for fetching the student details and this student details

is going to be used by many components. So, open terminal and type ng generate service

Student and press enter as shown below.

Once you press the enter button it will create two files within the app folder as shown below.

Modifying student.service.ts file:

Open student.service.ts file and then copy and paste the following code in it. At the moment we

have hard-coded the student data, later in this article series we will discuss how to get this data from

restful APIs. Here, you need to focus on two things. The @Injectable decorator and

the getStudents method which returns the student data. As with all other angular decorators, we

preceded the name with an @ symbol, and we do not add a semicolon (;) at the end.

Code:

Note: The @Injectable() decorator in angular is used to inject other dependencies into the service.

At the moment our service does not have any other dependencies, so, you can remove

the @Injectable() decorator and the service should works. However, the Angular Team

recommends to always use @Injectable() decorator to ensures consistency.

- - - - -

import { Injectable } from '@angular/core';

@Injectable()

export class StudentService {

getStudents(): any[] {

return [

 {

ID: 'std101', FirstName: 'Preety', LastName: 'Tiwary',

Branch: 'CSE', DOB: '29/02/1988', Gender: 'Female'

},

 {

ID: 'std102', FirstName: 'Anurag', LastName: 'Mohanty',

Branch: 'ETC', DOB: '23/05/1989', Gender: 'Male'

 },

 {

ID: 'std103', FirstName: 'Priyanka', LastName: 'Dewangan',

Branch: 'CSE', DOB: '24/07/1992', Gender: 'Female'

 },

 {

ID: 'std104', FirstName: 'Hina', LastName: 'Sharma',

Branch: 'ETC', DOB: '19/08/1990', Gender: 'Female'

 },

 {

ID: 'std105', FirstName: 'Sambit', LastName: 'Satapathy',

Branch: 'CSE', DOB: '12/94/1991', Gender: 'Male'

 }

];

 }

}

	Documents
	Types of Directives in Angular:
	Events in Node.js
	Node.js has a built-in module, called "Events", where you can create-, fire-, and listen for- your own events.
	Every action on a computer is an event. Like when a connection is made or a file is opened.
	Node.js allows us to create and handle custom events easily by using events module.
	Node.js events module has only one class to handle events which is EventEmitter class. It contains all required functions to take care of generating events.
	Objects in Node.js can fire events, like the readStream object fires events when opening and closing a file:
	EventEmitter Responsibility
	To include the built-in Events module use the require() method. In addition, all event properties and methods are an instance of an EventEmitter object. To be able to access these properties and methods, create an EventEmitter object:
	// Import events module
	var events = require('events');
	// Create an eventEmitter object
	var eventEmitter = new events.EventEmitter();
	Delaying Work with Timeouts
	Implementing a series of timeouts at various intervals
	simple_timer.js:

	Install cookie
	Import cookie-parser into your app.
	Define a route:
	Express.js Cookies Example File: cookies_example.js
	Basic CRUD operations
	Create
	Read
	Update
	Delete

	1. Static Types
	Built-in or Primitive Type
	Number
	String
	Boolean
	void
	Null

	Undefined
	Any Type

	Advantage of TypeScript over JavaScript
	Angular Event Binding with Examples
	Event Binding
	Event Binding work in Angular
	Angular Event Binding Example:
	Another Example:
	Modify app.component.ts file:
	Modify app.component.html file:
	Modify app.component.css file:

	Angular Component
	HTML Template
	Class
	Metadata
	Generate Angular Component using Angular CLI
	Bootstrapping Component
	Example of custom events with EventEmitter

