Hall Ticket Number:

r				

IV/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

November, 2022 **Computer Science and Engineering Seventh Semester Internet of Things Time:** Three Hours Maximum : 50 Marks Answer Question No.1 compulsorily. (1X10 = 10 Marks)Answer ONE question from each unit. (4X10=40Marks)List the applications of IoT 1. CO1 L2 1Ma) Smart Homes. Smart City. Self-driven Cars. IoT Retail Shops. Farming. Wearables. Smart Grids. **Industrial Internet** What is **REST**? CO1 L1 1Mb) Representational State Transfer (REST) is a set of architectural principles by which vou can design web services and web APIs that focus on a system's resources and how resource states are addressed and transferred. List the protocols used in the physical design of IoT. CO1 L2 1Mc) **Application Layer** Transport Layer Network Layer Link Layer d) Write the communication protocols used in IoT? CO₂ L1 1MApplication Services Security Management Communication Device CO2 L1 Differentiate sensor and actuator. 1Me) When input is a physical quantity and output electrical \rightarrow Sensor When input is electrical and output a physical quantity \rightarrow Actuator Define M2M. f) CO2 L1 1MM2M stands for Machine to Machine communication. It is a direct communication system between the devices using wired or wireless communications channels without any human interaction. What type of communication will be provided in M2M architecture? CO3 | L1 1M **g**) Point to point communication Write the history of Fog Computing. CO3 L1 1M h) The term fog computing was coined by Cisco in January 2014. This was because fog

18CSD43

		to the ground in the same way fog computing			
	was related to the nodes which are pr	resent near the nodes somewhere in between the			
		bring the computational capabilities of the			
		ter this gained a little popularity, IBM, in 2015,			
	coined a similar term called "Edge C				
i)	Write the significance of cloud in Io	Γ applications.	CO4	L2	1M
	IoT means massive data gene	ration. And when we need to deal with			
	data, an obvious question of d	lata security and privacy comes into			
		harnesses mobility. Hence, with cloud			
		ore preventive, corrective, and			
	· · ·	ctive authentication and encryption			
		sers with strong security measures.			
j)	List various cloud service providers	sers with strong security measures.	CO4	L2	1M
J	1. Amazon Web Service (AWS)	9. Rackspace	04	L2	1111
	2. ServerSpace	10. Red Hat			
	3. Microsoft Azure	11. Salesforce			
	4. Google Cloud Platform	12. Oracle Cloud			
	5. IBM Cloud Services	13. SAP			
	6. Adobe Creative Cloud	14. Verizon Cloud			
	7. Kamatera	15. Navisite			
	8. VMware	16. Dropbox			
		10. Diopoox			

		Unit - I			
2	a)	List and explain various IoT enabling technologies.	CO1	L1	5M
		IoT Enabling Technologies:			
		IoT is enabled by several technologies including wireless sensor networks, Cloud			
		Computing, Big Data Analytics, Embedded systems, security protocols and			
		architectures, communication protocols, web services, mobile internet, and semantic			
		search engines, etc.,			
		1. Wireless Sensor Network(WSN):			
		A WSN comprises distributed devices with sensors which are used to monitor the			
		environmental and physical conditions. A wireless sensor network consists of end			
		nodes, routers and coordinators. End nodes have several sensors attached to them			
		where the data is passed to a coordinator with the help of routers. The coordinator			
		also acts as the gateway that connects WSN to the internet.			
		Example –			
		1. Weather monitoring system			
		2. Indoor air quality monitoring system			
		3. Soil moisture monitoring system			
		4. Surveillance system			
		5. Health monitoring system			
		2. Cloud Computing :			
		It provides us the means by which we can access applications as utilities over the			
		internet. Cloud means something which is present in remote locations.			
		With Cloud computing, users can access any resources from anywhere like			
		databases, webservers, storage, any device, and any software over the internet.			
		Characteristics –			
		Broad network access			
		On demand self-services			
		Rapid scalability			
1		Measured service			
I		Pay-per-use			

o c E d S I I V 4 T t t n c A I I I I I I I I I I I I I I I I	 b. Big Data Analytics : t refers to the method of studying massive volumes of data or big data. Collection of data whose volume, velocity or variety is simply too massive and tough to store, sontrol, process and examine the data using traditional databases. Big data is gathered from a variety of sources including social network videos, tigital images, sensors and sales transaction records. Several steps involved in analyzing big data – Data cleaning Munging Processing Visualization b. Communications Protocols : Chey are the backbone of IoT systems and enable network connectivity and linking o applications. Communication protocols allow devices to exchange data over the letwork. Multiple protocols often describe different aspects of a single communication. A group of protocols designed to work together is known as a protocol suite; when mplemented in software they are a protocol stack. Chey are used in Data encoding and Addressing schemes. 5. Embedded Systems : t is a combination of hardware and software used to perform special tasks. t includes microcontroller and microprocessor memory, networking units (Ethernet Wi-Fi adapters), input output units (display keyword etc.) and storage devices (flash nemory). t collects the data and sends it to the internet. Embedded systems used in Examples – Digital camera DVD player, music player ndustrial robots 			
1 F tl • r	Explain the IoT communication protocols used in logical design of IoT. A. Request-Response communication model: Request-Response is a communication model in which the client sends requests to the server and the server responds to the requests. When the server receives a request, it decides how to respond, fetches the data, etrieves resource representations, prepares the response, and then sends the seponse to the client. Client Request Request Request Request Request Request Request Request Request Request Request Request Request Request Request Request Request Resources	CO1	L1	5M
	Response requests, looks up/fetches resources, prepares response and sends response to client			

3. Push-Pull communication model:

Push-Pull is a communication model in which the data producers push the data to queues and the consumers pull the data from the queues. Producers do not need to be aware of the consumers.

• Queues help in decoupling the messaging between the producers and consumers.

• Queues also act as a buffer which helps in situations when there is a mismatch between the rate at which the producers push data and the rate rate at which the consumers pull data.

4. Exclusive Pair communication model:

Exclusive Pair is a bidirectional, fully duplex communication model that uses a persistent connection between the client and server.

• Once the connection is setup it remains open until the client sends a request to close the connection.

• Client and server can send messages to each other after connection setup.

5. REST-based Communication APIs:

Representational State Transfer (REST) is a set of architectural principles by which you can design web services and web APIs that focus on a system's resources and how resource states are addressed and transferred.

• REST APIs follow the request response communication model.

• The REST architectural constraints apply to the components, connectors, and data elements, within a distributed hypermedia system.

IoT Level-4:

• A level-4 IoT system has multiple nodes that perform local analysis. Data is stored in the cloud and application is cloud-based.

• Level-4 contains local and cloud based observer nodes which cansubscribe to and receive information collected in the cloud from IoT devices.

• Level-4 IoT systems are suitable for solutions where multiple nodes are required, the data involved is big and the analysis requirements are computationally intensive.

b)	Write the characteristics of IoT.	CO1	L2	41
	Dynamic & Self-Adapting			
	• Self-Configuring			
	Interoperable Communication Protocols			
	• Unique Identity			
	Integrated into Information Network			

		Unit – II			
4	a)	 What is a Sensor? Explain the working of IR sensor with an example. Sensor is a device that when exposed to a physical phenomenon (temperature, displacement, force, etc.) produces a proportional output signal (electrical, mechanical, magnetic, etc.). Sensor is a device that detects and responds to some type of input from the physical environment. Input could be light, heat, motion, moisture, force, pressure, displacement, etc. It produces a proportional output signal (electrical, mechanical, magnetic, etc.). Human beings are equipped with 5 different types of sensors. Eyes detect light energy, ears detect acoustic energy, a tongue and a nose detect certain chemicals, and skin detects pressures and temperatures. The eyes, ears, tongue, nose, and skin receive these signals then send messages to the brain which outputs a response. 	CO2	L3	6M
		IR SENSOR The IR sensor or infrared sensor is one kind of electronic component, used to detect specific characteristics in its surroundings through emitting or detecting IR radiation. These sensors can also be used to detect or measure the heat of a target and its motion. In many electronic devices, the IR sensor circuit is a very essential module. This kind of sensor is similar to human's visionary senses to detect obstacles.			
		The sensor which simply measures IR radiation instead of emitting is called PIR or passive infrared. Generally in the IR spectrum, the radiation of all the targets radiation and some kind of thermal radiation are not visible to the eyes but can be sensed through IR sensors.			
		In this sensor, an IR LED is used as an emitter whereas the photodiode is used as a detector. Once an infrared light drops on the photodiode, the output voltage & resistance will be changed in proportion to the received IR light magnitude.			

	IR Sensor Module			
	<pre>int IRSensor = 2; // connect ir sensor to arduino pin 2 int LED = 13; // conect Led to arduino pin 13 void setup() { pinMode (IRSensor, INPUT); // sensor pin INPUT pinMode (LED, OUTPUT); // Led pin OUTPUT } void loop() { int statusSensor = digitalRead (IRSensor); if (statusSensor = 1) digitalWrite(LED, LOW); // LED LOW } else { digitalWrite(LED, HIGH); // LED High } </pre>			
b)	 Features: Superior software implementation. 64-bit Quad-core processor. Large RAM (latest Raspberry Pi 4 Model B Board has up to 8G of RAM). Processor speed- 700MHz- 1.5GHz. Raspberry Pi has 40 input/output pins. It can be connected to the Internet. It can run all kinds of applications (including MS Office and Email). It contains everything- CPU (Central Processing Unit), GPU (Graphics Processing Unit), Ethernet port, GPIO (General-purpose Input/Output) pins, and power source connector. 	CO2	L1	4M

		OR			
5	a)	Explain the communication protocol(Bluetooth) used in IoT.	CO2	L2	7M
		Bluetooth is a network technology that connects mobile devices wirelessly over a			
		short-range to form a personal area network (PAN).			
		It is a wireless technology based on mobile computing technology.			
		A cable replacement technology.			
		Developed by Ericsson-1994.			
		Range 10+ meters			
		It is also known as IEEE 802.15 Standard.			
		The data can send or receive at a certain distance i.e., it uses a band of 2.4 to			
		2.485GHz.			
		• It is a significant protocol for IoT applications.			
		• The developing unit of this technology is a group of 5 companies called a			
		special interest group which was formed in 1998. The companies are			
		Ericson, Intel, IBM, Nokia, and Toshiba.			
		• The range of bluetooth technology over which data can be exchanged is			
		lessthan 10mts, but the latest version Bluetooth 5.0 can exchange data in a			
		range of $40 - 400$ mtrs.			
		• The speed at which data transmission occurs is around 1MBPS.			
		Key features: (Advantages)			
		Robustness			
		low complexity			
		• low power, and			
		• low cost.			
		Disadvantages:			
		Low bandwidth			
		Data transmission range is very less			
		Applications:			
		• Wireless Keyboard and Mouse.			
		Bluetooth earphones and speakers			
		Bluetooth Architecture:			
		Bluetooth architecture defines two types of networks.			
		1. Piconet			
		2. Scatternet			
		Pickonet:			
		> It is a bluetooth network that consists of 1 primary (master) node and 7			
		Secondary(slave) nodes.			
		> Maximum it consists of 8nodes(1Master + 7 Slave nodes)			
		> Maximum no.of devices can be paired are $2^8 - 1 = 255$			
		> No.of devices can be parked are infinite.			
		> A parked node is a node which is ready to connect and standby node is a			
		node which can either became a slave or parked or either remains			
		idle/disconnected.			
		De Company			
		Jecondaru			

Structure	The structure of Ardus below	ino programming contains of two parts as shown		
	void setup()	//Preparation function used to declare variables		
	{	//First function that runs only one in the program		
	Statement(s);	//used to set pins for serial communication		
	void loop()	//Execution block where instructions are executed repeatedly		
	{	//this is the core of the Arduino programming		
	Statements();	//Functionalities involve reading inputs, triggering outputs etc.		
	}			

		Unit – III			
6	a)	Describe the steps in IoT design methodology in detail.	CO3	L1	6M
		Designing IoT systems can be a complex and challenging task as these systems			
		involve interactions between various components such as IoT devices and network			
		resources, web services, analytics components, application and database servers.			
		IoT system designers often tend to design IoT systems keeping specific			
		products/services in mind.			
		So that designs are tied to specific product/service choices made. But it make			
		updating the system design to add new features or replacing a particular			
		product/service choice for a component becomes very complex, and in many cases			
		may require complete re- design of the system.			

		[I
Purpose & Requirements			
Define Purpose & Requirements of IoT system			
Decose Model Specification			
Process Model Specification Define the use cases			
Define the use cases			
Domain Model Specification			
Define Physical Entities, Virtual Entities, Devices, Resources and Services in the IoT system			
Information Model Specification			
Define the structure (e.g. relations, attributes) of all the information in the IoT system			
Service Specifications			
Map Process and Information Model to services and define service specifications			
IoT Level Specification Define the IoT level for the system			
Define the for level for the system			
Functional View Specification			
Map IoT Level to functional groups			
Operational View Specification			
Define communication options, service hosting options, storage options, device options			
Device & Component Integration			
Integrate devices, develop and integrate the components			
Application Development			
Application Development Develop Applications			
b) Write the steps in IoT design methodology for Smart Parking application.	CO3	L3	4M
Steps involved in this project:			
 Making three devices in Artik Cloud Platform Making one application in Artik Cloud 			
3. Making one rule in Artik Cloud			
4. Preparing & Programming Arduino			
5. Connecting the Sensors to Arduino			
6. Preparing Raspberry Pi			
7. Preparing Intel Edison			
8. Developing Web Application			
9. Developing Android Application			
10. Completing the Project.			
OR	I	1	

a)		ntrol Logistics/fleet management		CO3	L1	5M
b)	Write the differences	between M2M and IoT.	M2M	CO3	L2	5M
	Abbreviation	IoT stands for the Internet of Things.	M2M stands for Machine-to- Machine communication.			
	Intelligence	Devices include objects that are	In M2M, there is a limited amount of			
		responsible for decision-making processes.	intelligence observed.			
	Communication Protocol Used	responsible for decision-making				
		responsible for decision-making processes. IoT has used internet protocols like FTP, Telnet, and HTTP.	intelligence observed. Communication technology and Traditional protocols are uses in M2M technology. M2M uses a point to point			

	Internet protocol network.	through mobile or any other network.
Open API Support	IoT technology supports Open API integrations.	In M2M technology, there is no Open API support.

- 1					
		network bandwidth.			
		3. Reduces the response time of the system.			
		4. It improves the overall security of the system as the data resides close to the host.			
		5. It provides better privacy as industries can perform analysis on their data locally.			
		Disadvantages of fog computing			
		1. Congestion may occur between the host and the fog node due to increased traffic			
		(heavy data flow).			
		2. Power consumption increases when another layer is placed between the host and			
		the cloud.			
		3. Scheduling tasks between host and fog nodes along with fog nodes and the cloud is difficult.			
		4. Data management becomes tedious as along with the data stored and computed,			
		the transmission of data involves encryption-decryption too which in turn release data.			
		Applications of fog computing			
		1. It can be used to monitor and analyze the patients' condition. In case of			
		emergency, doctors can be alerted.			
		2. It can be used for real-time rail monitoring as for high-speed trains we want as			
		little latency as possible.			
		3. It can be used for gas and oils pipeline optimization. It generates a huge amount			
		of data and it is inefficient to store all data into the cloud for analysis.			
	1-)	White a short water an environment of Classical all the same	CO4	1.0	414
	b)	Write a short note on various IoT Cloud platforms. IaaS (Infrastructure-as-a-Service):	CO4	L2	4M
		Taas (Infrastructure-as-a-service).			
		It was provided by the Cloud Service providers which help the customer to access			
		and monitor things like computer, networking, and other services.			
		In IaaS, the customer can purchase resources on demand rather than buying			
		hardware which is costly and hard to maintain.			
		Amazon Web Services (AWS) is an example of IaaS, allowing businesses to use its			
		storage space, computing tools, and analytical functionalities on a pay-as-you-go			
		basis.			
		PaaS (Platform-as-a-Service):			
		It is a framework for the developer where they can create an application for			
		customizing the previously built application. This service also provided through the			
		means of internet and here all the management is done by the enterprise or any third			
		party provider.			
		Oracle Cloud is an examples of PaaS, where it allows developers to customize the			
		functionalities for their already-existing application through JavaScript language.			
		SaaS (Software-as-a-Service):			
		Software as a service, a cloud service provided by the cloud company. In SaaS, a			
		customer provides software which can be either for a particular amount of time or			
		for the lifetime. SaaS utilizes the internet and delivers the application to the			
		customer.			
		Google Cloud is an example of SaaS, where, through subscriptions, it allows			
		enterprises to link their IoT devices and store their data on its cloud.			
		OR			
9	a)	List and explain various challenges to select a Cloud Service provider for IoT			
-	,	applications.	CO4	L2	3M
		The main challenges of adopting an IoT cloud are as follows:			
					·

	Data breaches and security: Security challenges and data breaches are estimated to be the topmost concern with cloud computing. If there is a bug within the cloud computing provider's network, there is the possibility of hackers getting access not only to your data, but to all other subscribers' information. Internet connectivity: You need internet connectivity to have access to the cloud. If there is an internet outage, you will not be able to access your data. Migration: Whether you are transitioning toward cloud computing, or you are migrating from one cloud provider to another, transferring huge amount of data can be time-consuming, and prone to human error. However, businesses can leverage automation solutions such as RPA bots or workload automation to automate data migration processes and avoid human intervention and errors.			
b)	 Explain the case studies on Smart Lighting and Weather Monitoring System. In general, IoT architecture can be structured into three-layered model: perception (sensing), network, and applications layer 1st layer—perception layer Internet-enabled devices from wireless sensors, Radio-frequency identification (RFID), Global Positioning System (GPS), to mobile devices and automobiles are what makes up the perception layer. It is essentially an eco-system of devices that can collect, detect, and exchange information with other devices through different communication networks. 2nd layer—network layer The role of the network layer acts as an intermediary between the perception layer and the application of the network layer acts as an intermediary between the perception layer and the application of the network layer acts as an intermediary between the perception layer and the application of the network layer acts as an intermediary between the perception acts acts acts acts acts acts acts acts	CO4	L3	7M
	 and the application layer. It transports the raw information gathered, via a combination of short-range (ZigBee and Bluetooth) and long-range communication technologies (PLC, Wi-Fi, 3G, 4G, 5G), all dependent on the device's network capability, otherwise known as middleware technology. 3rd layer—application layer Finally, the application layer is the most important for the user as this is where the raw data is received, analyzed and processed to display real time feedback (Talari et al. 2017). Depending on the design of the system, artificial intelligence can provide automated services based on the information given. These systems play an important role in smart cities, to enhance standards of living by incorporating it into services such as, transportation, traffic management and streetlights. 			
	1st stage— perceptio n layerWireless Sensor Networks (WSNs) to monitor data on the environment • Light sensors to monitor the light level • Rain gauge to measure precipitation 			

2nd stage— network layer	WSN's able to receive and retransmit data from gateways, ZigBee/WLAN based communication protocol used to communicate between neighboring WSN's, creating a mesh network WSN communicates to other gateways creating a larger network The use of Wi-Fi and GPS to transmit data from a base station to the cloud which can be accessed by a central control and monitoring system	
3rd stage— applicatio n layer	 Responsive measures can be taken based on the data gathered Alerting authorities if water level is high Dimming of streetlights if surrounding level is high Monitoring traffic based on air pollution levels Monitor air levels for any toxic gas present and will alert authorities if present 	
 The system conditions at world. The techno efficient solution world of thir The system like temperar 	onitoring System: a proposed is an advanced solution for monitoring the weather it a particular place and make the information visible anywhere in the logy behind this is Internet of Things (IoT), which is an advanced and attion for connecting the things to the internet and to connect the entire logs in a network. a deals with monitoring and controlling the environmental conditions ture, relative humidity, light intensity and CO level with sensors and formation to the web page and then plot the sensor data as graphical	