| Hall Ticket Number: |  |  |  |  |  |  |  |  |  |  |
|---------------------|--|--|--|--|--|--|--|--|--|--|
|                     |  |  |  |  |  |  |  |  |  |  |

# IV/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

| No  | vem    | iber 2022                                                            | Mechanical Engine                       | ering      |
|-----|--------|----------------------------------------------------------------------|-----------------------------------------|------------|
| Sev | ventl  | n Semester                                                           | <b>Operations Manag</b>                 | gement     |
| Tin | ne: Tl | nree Hours                                                           | Maximum: 50                             | ) Marks    |
| Ans | wer (  | Question No. 1 Compulsorily.                                         | (10X1 = 10)                             | Marks)     |
|     | -      | NY ONE question from each Unit.                                      | (4X10=40                                |            |
| 1.  | a)     | Define forecasting                                                   | CO1(BL1)                                | 1M         |
|     | b)     | List any two Aggregate Planning strategies                           | CO1(BL1)                                | 1M         |
|     | c)     | What is the difference between loading and scheduling                | CO1(BL1)                                | 1M         |
|     | d)     | List any two types of inventories                                    | CO2(BL1)                                | 1M         |
|     | e)     | What is P system in inventory management                             | CO2(BL1)                                | 1 <b>M</b> |
|     | f)     | List any two contemporary management techniques                      | CO2(BL1)                                | 1 <b>M</b> |
|     | g)     | What is the difference between assignable causes and chance causes   | CO3(BL1)                                | 1 <b>M</b> |
|     | h)     | What is the necessity of ISO 9000 2015 standards                     | CO3(BL1)                                | 1 <b>M</b> |
|     | i)     | Define artificial variable                                           | CO4(BL1)                                | 1 <b>M</b> |
|     | j)     | What is degeneracy in transportation method                          | CO4(BL1)                                | 1 <b>M</b> |
|     | J/     | Unit - I                                                             | · · · · ·                               |            |
| 2.  | a)     | Explain any two quantitative forecasting techniques                  | CO1(BL2)                                | 5M         |
|     | b)     | Write the basic features of Mass, Batch production systems.          | CO1(BL1)                                | 5M         |
|     | - /    | (OR)                                                                 | ( )                                     | -          |
| 3.  | a)     | What is the role of aggregate planning in operations management      | CO1(BL1)                                | 5M         |
|     | b)     | Explain the different scheduling policies                            | CO1(BL2)                                | 5M         |
|     |        | Unit - II                                                            | · · · · ·                               |            |
| 4.  | a)     | Explain the different types of inventories                           | CO2(BL2)                                | 5M         |
|     | b)     | Explain the problems in materials requirement planning               | CO2(BL2)                                | 5M         |
|     |        | (OR)                                                                 | · · · · ·                               |            |
| 5.  | a)     | Differentiate between P and Q systems                                | CO2(BL2)                                | 5M         |
|     | b)     | Explain the fundamental philosophy of JIT                            | CO2(BL2)                                | 5M         |
|     |        |                                                                      | · · · · ·                               |            |
|     |        | Unit - III                                                           |                                         |            |
| 6.  | a)     | Explain the Taguchi Principles with respect to quality management    | CO3(BL2)                                | 5M         |
|     | b)     | What do you mean by acceptance sampling? How acceptance sampling ope |                                         | 5M         |
|     | - /    | (OR)                                                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            |
| 7.  | a)     | Explain the important features of TQM                                | CO3(BL2)                                | 5M         |
|     | b)     | Describe the principles behind Six Sigma.                            | CO3(BL2)                                |            |
|     | - /    | Unit - IV                                                            | ( )                                     |            |
| 8.  |        | Solve the following LPP by using graphical method                    | CO4(BL3)                                | 10M        |
|     |        | Maximize $Z = 2x_1 + 3x_2$                                           | · · · · ·                               |            |
|     |        | Subjected to constraints                                             |                                         |            |
|     |        | $2\mathbf{x}_1 + \mathbf{x}_2 \leq 2$                                |                                         |            |
|     |        | $3x_1 + 4x_2 \ge 12$                                                 |                                         |            |
|     |        | $\mathbf{x}_1, \mathbf{x}_2 \ge 0$                                   |                                         |            |
|     |        |                                                                      |                                         |            |
|     |        |                                                                      |                                         |            |

# (**OR**)

9. Solve the following transportation problem

|        | F1 | F2 | F3 | Supply |
|--------|----|----|----|--------|
| W1     | 2  | 7  | 4  | 5      |
| W2     | 3  | 3  | 1  | 8      |
| W3     | 5  | 4  | 7  | 7      |
| W4     | 1  | 6  | 2  | 14     |
| Demand | 7  | 9  | 18 |        |

CO4(BL3) 10M

### Sub: OPERATIONS MANAGEMENT [18ME702]

Scheme of valuation cum Solution set

1

1 x 10 = 10 M

- a) Define forecasting Forecasts are estimates of occurrence, timing or magnitude of future events.
- b) List any two Aggregate Planning strategies Types of implementing Aggregate planning strategies:
  - 1. Pure strategy
  - 2. Mixed strategy
- c) What is the difference between loading and scheduling Loading - assignment of jobs to process centers. Loading is a type of scheduling that loads or packs work into available work time.
   scheduling : determining the order in which jobs will be processed
- d) List any two types of inventories
  - i. Raw materials inventory as input to manufacturing system.
  - ii. Bought-out-parts inventory which directly go to the assembly of product as it is.
  - iii. Work-in-progress or work-in-process inventory
  - iv. Finished goods inventory for supporting the distribution to the customers.
  - v. Indirect Inventories like maintenance, repair, and operating supplies.
- e) What is P system in inventory management
  - The stock status is periodically reviewed under this policy after a fixed time interval (T).



- f) List any two contemporary management techniques Lean, JIT, ERP and Supply chain Management.
- g) What is the difference between assignable causes and chance causes
   Chance causes of variability' are the common, inherent and naturally occurring variability of a process. It can be simply termed as the 'background noise' of the process.
   "An assignable cause can be defined as a source of variation that is intermittent, not predictable". It is mentioned as a special cause.
- h) What is the necessity of ISO 9000 2015 standards ISO 9000:2015 specifies the terms and definitions that apply to all quality management and quality management system standards developed by ISO/TC 176.
- i) Define artificial variable The artificial variable refers to the kind of variable which is introduced in the linear program model to obtain the initial basic feasible solution
- j) What is degeneracy in transportation method
   In a transportation problem, if a basic feasible solution with m origins and n destinations has less than m +n -1
   positive Xij i.e. occupied cells, then the problem is said to be a degenerate transportation problem.

2.

3.

|    | <ol> <li>Naive approach</li> <li>Moving averages</li> <li>Free protection and the protection of the protecti</li></ol> | } time-series models                                                                                                                                                                                             |          |    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|
|    | <ol> <li>Exponential smoothing</li> <li>Trend projection</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  |          |    |
|    | 5. Linear regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | > associative model                                                                                                                                                                                              |          |    |
|    | of minour rollingoordin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                  |          |    |
|    | Explanation of any two technique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es with formulae and examples.                                                                                                                                                                                   |          |    |
| b) | Write the basic features of Mass,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Batch production systems.                                                                                                                                                                                        | CO1(BL1) | 5M |
|    | <ol> <li>When there is shorter producti</li> <li>When plant and machinery are</li> <li>When plant and machinery set<br/>change of set up is required for p</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e flexible.<br>up is used for the production of item in a batch and                                                                                                                                              |          |    |
|    | <ul><li>output rates.</li><li>3. Large volume of products.</li><li>4. Shorter cycle time of production</li><li>5. Lower in process inventory.</li><li>6. Perfectly balanced production</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I process sequence.<br>chines having higher production capacities and<br>on.<br>lines.<br>s and parts is continuous and without any back<br>ol is easy.                                                          |          |    |
| a) | production process, in advance of<br>to what quantity of materials an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tional activity which gives an overall plan for the<br>of 2 to 18 months, to give an idea to management as<br>d other resources are to be procured and when, so<br>tion is kept to the minimum over that period. | CO1(BL1) | 5M |
|    | 1. It facilitates fully loaded<br>keeps production cost lov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | facilities <mark>and</mark> minimises overloading <mark>and</mark> underloading <mark>and</mark><br>v.                                                                                                           |          |    |
|    | 2. Adequate production cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | acity is provided to meet expected aggregate demand.                                                                                                                                                             |          |    |
|    | <ol> <li>Orderly and systematic tra-<br/>of expected customers der</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ansition <mark>of</mark> production capacity to meet the peaks <mark>and</mark> valleys nand is facilitated.                                                                                                     |          |    |
|    | <ol> <li>In times of scarce product<br/>resources is enhanced.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion resources, getting the maximum output for the amount of                                                                                                                                                      |          |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |          |    |

5. To manage change in production/operations management by planning for resources that adopt to the changes in customer demands.

- b) Explain the different scheduling policies Scheduling policies:
  - FCFS First Come, First Served
  - SPT Shortest Processing Time
  - EDD Earliest Due Date
  - LPT Longest Processing Time
  - LS Least Slack
  - Rush emergency

Explanation of above policies briefly

- Unit II
- 4. a) Explain the different types of inventories
  - Inventory is a usable but idle resource having some future economic value
     It is a physical resource that a firm holds in stock with the intent of selling
    - It is a physical resource that a firm holds in stock with the intent of selling it or transforming it into a more valuable state.
  - It is stocked to ensure uninterrupted supplies
  - Acts as cushion between estimated and actual demand of materials



Types of inventories:

(a) Raw materials inventory as input to manufacturing system.

(b) Bought-out-parts inventory which directly go to the assembly of product as it is.

(c) Work-in-progress or work-in-process inventory

(d) Finished goods inventory for supporting the distribution to the customers.

(e) Indirect Inventories like maintenance, repair, and operating supplies. These include spare parts, indirect materials, consumables and all other sundry items required for production/service systems.

b) Explain the problems in materials requirement planning

CO2(BL2) 5M



CO2(BL2) 5M

#### Distinction between 'Q' and 'P' system

| Point of Difference                 | Q System                                                            | P System                                                   |  |
|-------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|--|
| 1. Initiation of order              | Stock on hand reaches to reorder point                              | Based on fixed review period<br>and not on stock level     |  |
| 2. Period of order                  | Any time when stock level reaches to reorder point                  | Only after the predetermined period                        |  |
| 3. Record Keeping                   | Continuously each time a withdrawal or addition is made             | Only at the review period                                  |  |
| 4. Order Quantity                   | Constant, the same quantity ordered each time                       | Quantity of order varies each time order is placed         |  |
| 5. Size of Inventory                | Less than the 'P' system                                            | More than the 'Q' system                                   |  |
| 6. Time to maintain                 | Higher due to perpetual record<br>keeping                           | Less time due to only at the review period.                |  |
| 7. Useful                           | Where financial resources are abundant and/or available at any time | Where financial resources are available at fixed intervals |  |
| 8. Advantageous                     | Where stock-out costs are high                                      | For joint production/<br>transportation buying             |  |
| 9. Cycle period and reorder period  | Vary                                                                | Constant                                                   |  |
| 10. Cycle period and reorder period | Not equal                                                           | equal                                                      |  |

Any 5 points

b) Explain the fundamental philosophy of JIT

CO2(BL2) 5M

#### Just-in-time (JIT):

A highly coordinated processing system in which goods move through the system, and services are performed, just as they are needed.

Schonberger defines the JIT system as to :

"Produce and deliver finished goods just in time to be sold, sub-assemblies just in time to be assembled into finished goods, and purchased materials just in time to be transformed into fabricated parts".

Meet demand instantaneously: products and services are delivered (both to production & to the customer) only as and when they are needed...

...With the best appropriate quality, and no waste!

The ultimate goal of JIT is a balanced system. Achieves a smooth, rapid flow of materials through the system

Just-in-time (JIT) is an inventory strategy that strives to improve a business's return on investment by reducing in-process inventory and associated carrying costs.

The just-in-time inventory system focus is having "the right material, at the right time, at the right place, and in the exact amount", without the safety net of inventory.

The philosophy of JIT is simple: inventory is waste. JIT inventory systems expose hidden causes of inventory keeping, and are therefore not a simple solution for a company to adopt. The company must follow an array of new methods to manage the consequences of the change. The ideas in this way of working come from many different disciplines including statistics, industrial engineering, production management, and behavioral science. The JIT inventory philosophy defines how inventory is viewed and how it relates to management.

#### Unit - III

6. a) Explain the Taguchi Principles with respect to quality management Taguchi Method:

CO3(BL2) 5M

Taguchi Method is a new engineering design optimization methodology that

improves the quality of existing products and processes and simultaneously reduces their costs very rapidly, with minimum engineering resources and development manhours. The Taguchi Method achieves this by making the product or process performance "insensitive" to variations in factors such as materials, manufacturing equipment, workmanship and operating conditions. Taguchi method makes the product or process robust and therefore is also called as ROBUST DESIGN Taguchi's principle contributions to statistics are:

- ➤ Taguchi loss-function
- > The philosophy of offline quality control
- Innovations in the design of experiments

Taguchi loss-function:

Adopted R A Fishers's methodology to improve mean outcome of process.

Excessive variation lay at the root of poor manufactured quality.

Involved cost to society with cost of quality.

Industrial experiments seek to maximize an appropriate signal to noise ratio representing the magnitude of the mean of a process as compared to its variation.

The philosophy of off-line quality control: The best opportunity to eliminate variation is during design of a product and its manufacturing process

Innovations in the design of experiments: Outer arrays. An orthogonal array that seeks deliberately to emulate the sources of variation that a product would encounter in reality.

b) What do you mean by acceptance sampling? How acceptance sampling operates?

products) based on inspection of a sample of products in the lot

Acceptance Sampling: Accept or reject a lot (input components or finished

CO3(BL1) 5M

- Tool for Quality Assurance
- Statistical quality control technique, where a random sample is taken from a lot, and upon the results of the sample taken the lot will either be rejected or accepted.
- Trend today is toward developing testing methods that are so quick, effective, and inexpensive that products are submitted to <u>100%</u> inspection/testing
- Every product shipped to customers is inspected and tested to determine if it meets customer expectations
- But there are situations where this is either impractical, impossible or uneconomical
  - Destructive tests, where no products survive test
- In these situations, acceptance plans are sensible
- An <u>acceptance plan</u> is the overall scheme for either accepting or rejecting a lot based on information gained from samples.
- The acceptance plan identifies the:
  - Size of samples, n
    - Type of samples
  - Decision criterion, c, used to either accept or reject the lot
- Samples may be single, double, or sequential.

#### (**OR**)

7. a) Explain the important features of TQM.

### TQM Philosophy

- TQM Focuses on identifying quality problem root causes
- · Encompasses the entire organization
- Involves the technical as well as people
- · Relies on seven basic concepts of
- Customer focus
- Continuous improvement
- Employee empowerment
- Use of quality tools
- Product design
- Process management
- Managing supplier quality

Explanation of above points briefly.

b) Describe the principles behind Six Sigma.

CO3(BL2)

5M

Six Sigma seeks to improve the quality of process outputs by identifying and removing the causes of defects. Six Sigma approach is a collection of managerial and statistical concept and techniques that focuses on reducing variation in processes and preventing deficiencies in product. The concept of Variation states "NO two items will be perfectly identical." In a process that has achieved six sigma capability, the variation is small compared to the range of specification limit. •A six sigma process is one in which 99.9999966% of the products manufactured are statistically expected to be free of defects (3.4 defects per million). Six Sigma is a very clever way of branding and packaging many aspects of Total Quality Management (TQM). (TQM is a management a mark to ong-texh suc customer satisfaction.) Manufacturing methods of six sigma are used in Batch produce Job production & Mass production.

#### Unit - IV

Solve the following LPP by using graphical method Maximize  $Z = 2x_1 + 3x_2$ Subjected to constraints  $2x_1+x_2 \le 2$ 

8.

 $3x_1 + 4x_2 \ge 12$  $x_1, x_2 \ge 0$ 

Solution The following graph gives the regions represented by the constraints.



# Fig. 2.12

From the graph we find that there is no common region between the two. That is to say that there is no point  $(x_1, x_2)$  which satisfies both the constraints. Hence there is no fe asible solution. Thus the given LPP has no solution.

CO4(BL3) 10M

9. Solve the following transportation problem

|        | F1 | F2 | F3 | Supply |
|--------|----|----|----|--------|
| W1     | 2  | 7  | 4  | 5      |
| W2     | 3  | 3  | 1  | 8      |
| W3     | 5  | 4  | 7  | 7      |
| W4     | 1  | 6  | 2  | 14     |
| Demand | 7  | 9  | 18 |        |

Initial feasible solution is

|                       | $F_1$           | $F_2$                 | F <sub>3</sub>     | Supply | Row Penalty           |
|-----------------------|-----------------|-----------------------|--------------------|--------|-----------------------|
| W <sub>1</sub>        | 2 <b>(3)</b>    | 7 <b>(2)</b>          | 4                  | 5      | 2   2   5   5   7     |
| <i>W</i> <sub>2</sub> | 3               | 3                     | 1(8)               | 8      | 2                     |
| W <sub>3</sub>        | 5               | 4(7)                  | 7                  | 7      | 1   1   1   1   4   4 |
| W <sub>4</sub>        | 1 <b>(4)</b>    | 6                     | 2 <b>(10)</b>      | 14     | 1   1   5             |
| Demand                | 7               | 9                     | 18                 |        |                       |
| Column<br>Penalty     | 1<br>1<br>3<br> | 1<br>2<br>3<br>3<br>4 | 1<br>2<br><br><br> |        |                       |

The minimum total transportation cost =  $2 \times 3 + 7 \times 2 + 1 \times 8 + 4 \times 7 + 1 \times 4 + 2 \times 10 = 80$ 

### Optimality test using modi method... Allocation Table is

|                       | F <sub>1</sub> | $F_2$        | F <sub>3</sub> | Supply |
|-----------------------|----------------|--------------|----------------|--------|
| W <sub>1</sub>        | 2 <b>(3)</b>   | 7 <b>(2)</b> | 4              | 5      |
| <i>W</i> <sub>2</sub> | 3              | 3            | 1 <b>(8)</b>   | 8      |
| W <sub>3</sub>        | 5              | 4 (7)        | 7              | 7      |
| W <sub>4</sub>        | 1 <b>(4)</b>   | 6            | 2 <b>(10)</b>  | 14     |
| Demand                | 7              | 9            | 18             |        |

10M

|                | F <sub>1</sub> | $F_2$        | <i>F</i> <sub>3</sub> | Supply | u <sub>i</sub>            |
|----------------|----------------|--------------|-----------------------|--------|---------------------------|
| W <sub>1</sub> | 2 <b>(5)</b>   | 7 [2]        | 4 [1]                 | 5      | $u_1 = 2$                 |
| W2             | 3 [3]          | 3 <b>(2)</b> | 1 <b>(6)</b>          | 8      | $u_2 = 0$                 |
| W3             | 5 [4]          | 4 (7)        | 7 [5]                 | 7      | <i>u</i> <sub>3</sub> = 1 |
| W <sub>4</sub> | 1 <b>(2)</b>   | 6 [2]        | 2 <b>(12)</b>         | 14     | $u_4 = 1$                 |
| Demand         | 7              | 9            | 18                    |        |                           |
| vj             | $v_1 = 0$      | $v_2 = 3$    | $v_3 = 1$             |        |                           |

Since all  $d_{ij} \ge 0$ .

So final optimal solution is arrived.

|                | $F_1$        | $F_2$        | F <sub>3</sub> | Supply |
|----------------|--------------|--------------|----------------|--------|
| W <sub>1</sub> | 2 <b>(5)</b> | 7            | 4              | 5      |
| W2             | 3            | 3 <b>(2)</b> | 1 <b>(6)</b>   | 8      |
| W <sub>3</sub> | 5            | 4 (7)        | 7              | 7      |
| W <sub>4</sub> | 1 <b>(2)</b> | 6            | 2 <b>(12)</b>  | 14     |
| Demand         | 7            | 9            | 18             |        |

The minimum total transportation cost =  $2 \times 5 + 3 \times 2 + 1 \times 6 + 4 \times 7 + 1 \times 2 + 2 \times 12 = 76$ 

\*\*\*\*THE END\*\*\*\*

Prepared by

# Dr. B. Iftekhar Hussain

B.E, M.B.A, PGDIM, PGDMM, M.Tech., Ph.D, MRPSI, MAMSI, MISTE, MIAENG, Associate Professor, Dept. of Mechanical Engg., Bapatla Engineering College, Bapatla-522102, Andhra Pradesh, India. E mail: <u>iftekharhussain.b@becbapatla.ac.in</u> Cell: 9966673866