
Page 1 of 20

20CS303/20CB303/20DS303/20IT303

Hall Ticket Number:

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

February, 2023 Common to CS/CB/DS/IT Branches

Third Semester Object Oriented Programming
Time: Three Hours Maximum:70 Marks

Answer Question No.1 compulsorily. (14X1 = 14 Marks)

Answer ONE question from each unit. (4X14=56 Marks)

1. a) What is byte code file in Java? CO1 L1 1M

 b) Define final keyword in Java. CO1 L1 1M

 c) Why ‘main ()’ method is declared as public static in JAVA programming? CO1 L1 1M

 d) Why multiple inheritance is not possible in Java with classes? CO2 L1 1M

 e) Differentiate StringBuffer and StringBuilder classes. CO2 L4 1M

 f) What is an Abstract class? CO2 L1 1M

 g) Define user defined Exception. CO3 L1 1M

 h) Draw the thread life cycle diagram. CO3 L1 1M

 i) What is the purpose of PrintWriter class? CO3 L1 1M

 j) Define Thread Synchronization. CO3 L1 1M

 k) Define Applet. CO4 L1 1M

 l) List any four AWT components. CO4 L1 1M

 m) What are the different Mouse Events? CO4 L2 1M

 n) What is JTree? CO4 L1 1M

 Unit – I

2. a) Define Polymorphism and Explain how to implement it with an example program. CO1 L1 7M

 b) When to use a Static variable in JAVA programming? Explain the importance of Static

variable with a JAVA program.

CO1 L3 7M

 (OR)

3. a) List and explain JAVA buzzwords. Which factors are making JAVA famous Language? CO1 L2 7M

 b) Explain the usage of "this" keyword in JAVA. CO1 L2 7M

 Unit - II

4. a) Explain Abstract classes and methods with suitable example. CO2 L2 7M

 b) Demonstrate the usage of Access Modifiers in JAVA Packages. CO2 L1 7M

 (OR)

5. a) Write a JAVA program to demonstrate String handling methods. CO2 L3 7M

 b) List and Explain any two Collection classes in JAVA. CO2 L1 7M

 Unit - III

6. a) Explain the difference between creating a thread by extending Thread class and

implementing Runnable interface with an example program.

CO3 L1 7M

 b) Write a Java program to demonstrate User defined Exceptions. CO3 L2 7M

 (OR)

7. a) Write a JAVA program to copy the contents of one file to another file. CO3 L4 7M

 b) Explain multi-threading. Write the purpose of isAlive() and join() functions in JAVA.

Explain the same with an example.

CO3 L2 7M

 Unit - IV

8. a) Discuss various AWT containers with examples. CO4 L3 7M

 b) Write a short note on the following

i) JTextArea ii) JTable

CO4 L2 7M

 (OR)

9. a) Explain key events with an example program. CO4 L2 7M

 b) Write a program to demonstrate any Layout Manager. CO4 L3 7M

Page 2 of 20

1. a) What is byte code file in Java?

Bytecode file contains an intermediate code generated by the compiler after the

compilation of source code

1M

 b) Define final keyword in Java.

The final keyword used to declare constants and to prevent inheritance and method

overriding.

1M

 c) Why ‘main ()’ method is declared as public static in JAVA programming?

• The main method is public in Java because it has to be invoked by the JVM.

So, if main() is not public in Java, the JVM won’t call it.

• The main() method is declared static so that JVM can call it without creating

an instance of the class containing the main() method.

1M

 d) Why multiple inheritance is not possible in Java with classes?

In java, multiple inheritance is not supported because of ambiguity problem.

1M

 e) Differentiate StringBuffer and StringBuilder classes.

StringBuffer StringBuilder

Thread safe Not Thread safe

Synchronized Non-Synchronized

Slower Faster

1M

 f) What is an Abstract class?

Abstract classes are classes that contain one or more abstracted behaviors or

methods.

1M

 g) Define user defined Exception.

Java user-defined exception is a custom exception created and throws that exception

using a keyword 'throw'. It is done by extending a class 'Exception'.

1M

 h) Draw the thread life cycle diagram.

1M

Page 3 of 20

 i)
What is the purpose of PrintWriter class?

Prints formatted representations of objects to a text-output stream

1M

 j)
Define Thread Synchronization.

Synchronization in Java is the capability to control the access of multiple threads to

any shared resource.

1M

 k)
Define Applet.

Applets are small applications that are accessed on an Internet server, transported

over the Internet, automatically installed, and run as part of a web document.

1M

 l)
List any four AWT components.

TextField

Label

Button

Panel

Note: Give full marks for any 4 correct AWT components.

1M

 m)
What are the different Mouse Events?

MOUSE_CLICKED

MOUSE_ENTERED

MOUSE_EXITED

MOUSE_PRESSED

MOUSE_RELEASED

MOUSE_MOVED

MOUSE_DRAGGED

1M

 n)
What is JTree?

The JTree class is used to display the tree structured data or hierarchical data.

1M

UNIT – I

2. a) Define Polymorphism and Explain how to implement it with an example

program.

Polymorphism means method having more than one form. (or) The same method

can perform different operations in different scenarios.

In Java polymorphism can be achieved in two ways:

1. Method Overriding

2. Method Overloading

7M

Page 4 of 20

Method Overloading:

class Adder{

 static int add(int a,int b){

 return a+b;

 }

 static int add(int a,int b,int c){

 return a+b+c;

 }

}

class Overloading{

 public static void main(String[] args){

 System.out.println(Adder.add(11,11));

 System.out.println(Adder.add(11,11,11));

 }

}

Note: Give full marks for any other correct example program.

Method Overriding:

class Parent {

 void show()

 {

 System.out.println("Parent's show()");

 }

}

class Child extends Parent {

 void show()

 {

 System.out.println("Child's show()");

 }

}

class Main {

 public static void main(String[] args)

 {

 Parent obj1 = new Parent();

 obj1.show();

 Parent obj2 = new Child();

 obj2.show();

 }

}

Note: Give full marks for any other correct example program.

Page 5 of 20

 b) When to use a Static variable in JAVA programming? Explain the importance

of Static variable with a JAVA program.

The static variable can be used to refer to the common property of all objects (which

is not unique for each object). The advantage of static variable is the static variable

gets memory only once in the class area at the time of class loading and all the

objects of that class will use same memory location.

Example Program:

class StaticDemo1 {

 int nsv = 0;

 static int sv = 0;

 public static void main(String[] args){

 StaticDemo1 sd[] = new StaticDemo1[5];

 for(int i=0;i<5;i++){

 sd[i] = new StaticDemo1();

 sd[i].nsv++;

 sd[i].sv++;

 System.out.print("Object "+(i+1)+":\t");

 System.out.println("NSV = "+sd[i].nsv+"\tSV="+sd[i].sv);

 }

 }

}

Output:

Note: Give full marks for any other correct example program.

7M

(OR)

3. a) List and explain JAVA buzzwords. Which factors are making JAVA famous

Language?

• Simple

• Secure

• Portable

• Object-oriented

7M

Page 6 of 20

• Robust

• Multithreaded

• Architecture-neutral

• Interpreted

• High performance

• Distributed

• Dynamic

Simple

Java was designed to be easy for the professional programmer to learn and use

effectively. Assuming that you have some programming experience, you will not

find Java hard to master. If you already understand the basic concepts of object-

oriented programming, learning Java will be even easier. Best of all, if you are an

experienced C++ programmer, moving to Java will require very little effort. Because

Java inherits the C/C++ syntax and many of the object-oriented features of C++,

most programmers have little trouble learning Java.

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-code

compatible with any other language. This allowed the Java team the freedom to

design with a blank slate. One outcome of this was a clean, usable, pragmatic

approach to objects. Borrowing liberally from many seminal object-software

environments of the last few decades, Java manages to strike a balance between the

purist’s “everything is an object” paradigm and the pragmatist’s “stay out of my

way” model. The object model in Java is simple and easy to extend, while primitive

types, such as integers, are kept as high-performance nonobjects.

Robust

The multiplatformed environment of the Web places extraordinary demands on a

program, because the program must execute reliably in a variety of systems. Thus,

the ability to create robust programs was given a high priority in the design of Java.

To gain reliability, Java restricts you in a few key areas to force you to find your

mistakes early in program development. At the same time, Java frees you from

having to worry about many of the most common causes of programming errors.

Because Java is a strictly typed language, it checks your code at compile time.

However, it also checks your code at run time. Many hard-to-track-down bugs that

often turn up in hard-to-reproduce run-time situations are simply impossible to

create in Java. Knowing that what you have written will behave in a predictable way

under diverse conditions is a key feature of Java. To better understand how Java is

robust, consider two of the main reasons for program failure: memory management

mistakes and mishandled exceptional conditions (that is, run-time errors). Memory

management can be a difficult, tedious task in traditional programming

environments.

Page 7 of 20

Multithreaded

Java was designed to meet the real-world requirement of creating interactive,

networked programs. To accomplish this, Java supports multithreaded

programming, which allows you to write programs that do many things

simultaneously. The Java run-time system comes with an elegant yet sophisticated

solution for multiprocess synchronization that enables you to construct smoothly

running interactive systems. Java’s easy-to-use approach to multithreading allows

you to think about the specific behavior of your program, not the multitasking

subsystem.

Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. At

the time of Java’s creation, one of the main problems facing programmers was that

no guarantee existed that if you wrote a program today, it would run tomorrow—

even on the same machine. Operating system upgrades, processor upgrades, and

changes in core system resources can all combine to make a program malfunction.

The Java designers made several hard decisions in the Java language and the Java

Virtual Machine in an attempt to alter this situation. Their goal was “write once; run

anywhere, any time, forever.” To a great extent, this goal was accomplished.

Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by

compiling into an intermediate representation called Java bytecode. This code can be

executed on any system that implements the Java Virtual Machine. Most previous

attempts at cross-platform solutions have done so at the expense of performance. As

explained earlier, the Java bytecode was carefully designed so that it would be easy

to translate directly into native machine code for very high performance by using a

just-in-time compiler. Java run-time systems that provide this feature lose none of

the benefits of the platform-independent code.

Distributed

Java is designed for the distributed environment of the Internet because it handles

TCP/IP protocols. In fact, accessing a resource using a URL is not much different

from accessing a file. Java also supports Remote Method Invocation (RMI). This

feature enables a program to invoke methods across a network.

Dynamic

Java programs carry with them substantial amounts of run-time type information

that is used to verify and resolve accesses to objects at run time. This makes it

possible to dynamically link code in a safe and expedient manner. This is crucial to

the robustness of the Java environment, in which small fragments of bytecode may

be dynamically updated on a running system.

Security and Portability are the two significant factors that make java a popular

language.

Page 8 of 20

 b) Explain the usage of "this" keyword in JAVA.

The “this” keyword refers to the current object in a method or constructor.

The most common use of the “this” keyword is to eliminate the confusion between

class attributes and parameters with the same name (because a class attribute is

shadowed by a method or constructor parameter).

this can also be used to:

• Invoke current class constructor

• Invoke current class method

• Return the current class object

• Pass an argument in the method call

• Pass an argument in the constructor call

Example Program:

public class Main {

 int x;

 public Main(int x) {

 this.x = x;

 }

 public static void main(String[] args) {

 Main myObj = new Main(5);

 System.out.println("Value of x = " + myObj.x);

 }

}

Note: Give full marks for any other correct example program.

7M

UNIT – II

4. a) Explain Abstract classes and methods with suitable example.

Abstract classes are classes that contain one or more abstracted behaviors or

methods.

Abstract method can only be used in an abstract class, and it does not have a body.

Example Program:

abstract class Multiply {

 public abstract int MultiplyTwo (int n1, int n2);

 public abstract int MultiplyThree (int n1, int n2, int n3);

 public void show() {

 System.out.println ("Method of abstract class Multiply");

 }

}

7M

Page 9 of 20

class AbstractMethodEx1 extends Multiply {

 public int MultiplyTwo (int num1, int num2) {

 return num1 * num2;

 }

 public int MultiplyThree (int num1, int num2, int num3) {

 return num1 * num2 * num3;

 }

 public static void main (String args[]) {

 Multiply obj = new AbstractMethodEx1();

 System.out.println ("Multiplication of 2 numbers: " +

 obj.MultiplyTwo (10, 50));

 System.out.println ("Multiplication of 3 numbers: " +

 obj.MultiplyThree (5, 8, 10));

 obj.show();

 }

}

Note: Give full marks for any other correct example program.

 b) Demonstrate the usage of Access Modifiers in JAVA Packages.

There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It

cannot be accessed from outside the class.

2. Default: The access level of a default modifier is only within the package. It

cannot be accessed from outside the package. If you do not specify any

access level, it will be the default.

3. Protected: The access level of a protected modifier is within the package

and outside the package through child class. If you do not make the child

class, it cannot be accessed from outside the package.

4. Public: The access level of a public modifier is everywhere. It can be

accessed from within the class, outside the class, within the package and

outside the package.

The summary of access modifiers is shown in below table.

7M

(OR)

Page 10 of 20

5. a) Write a JAVA program to demonstrate String handling methods.

Program:

class StringDemo{

 public String toString(){

 return "String class methods";

 }

 public static void main(String[] args){

 String s1 = "Bapatla";

 String s2 = "Bapatla";

 String s3 = new String(s1);

 System.out.println("s1="+s1+"\ts1.length="+s1.length());

 String s4 = "Hello, "+s1;

 System.out.println("s4="+s4+"\ts4.length="+s4.length());

 System.out.println("s1.compareTo(s4)="+s1.compareTo(s4));

 System.out.println("s4.regionMatches(7,s1,0,7)="+

 s4.regionMatches(7,s1,0,7));

 System.out.println("s1.charAt(2):"+s1.charAt(2));

 char[] chars = new char[s4.length()];

 s4.getChars(0,s4.length(),chars,0);

 for(char ch:chars){

 System.out.print(ch+"\t");

 }

 System.out.println();

 StringDemo sd = new StringDemo();

 System.out.println("StringDemo.toString()"+sd.toString());

 }

}

Note: Give full marks for any 10 methods.

7M

 b) List and explain any two Collection classes in JAVA.

Any group of individual objects which are represented as a single unit is known as

the collection of the objects. In Java, a separate framework named the “Collection

Framework” has been defined in JDK 1.2 which holds all the collection classes and

interface in it.

7M

Page 11 of 20

ArrayList Class:

The ArrayList class extends AbstractList and implements the List interface.

Constructors

• ArrayList()

• ArrayList(Collection<? extends E> c)

• ArrayList(int capacity)

Methods

• void ensureCapacity(int cap)

• void trimToSize()

• object[] toArray()

• <T> T[] toArray(T array[])

• boolean add(Object o)

• boolean contains(Object o)

• void add (int index, Object element)

• void addFirst(Object o)

• void addLast(Object o)

• int size()

• boolean remove(Object o)

• int indexOf(Object element)

• int lastIndexOf(Object element)

LinkedList Class:

The LinkedList class extends AbstractSequentialList and implements the List,

Deque, and Queue interfaces.

Constructors

• LinkedList()

• LinkedList(Collection<? extends E> c)

Methods

• boolean add(Object o)

• boolean contains(Object o)

• void add (int index, Object element)

• void addFirst(Object o)

• void addLast(Object o)

• int size()

• boolean remove(Object o)

• int indexOf(Object element)

• int lastIndexOf(Object element)

• addFirst() or offerFirst()

Page 12 of 20

• addLast() or offerLast()

• getFirst() or peekFirst()

• getLast() or peekLast()

• removeFirst() or pollFirst()

• removeLast() or pollLast()

UNIT – III

6. a) Explain the difference between creating a thread by extending Thread class

and implementing Runnable interface with an example program.

The Thread class defines several methods that can be overridden by a derived class.

Of these methods, the only one that must be overridden is run(). This is, of course,

the same method required when you implement Runnable. Many Java programmers

feel that classes should be extended only when they are being enhanced or modified

in some way. So, if you will not be overriding any of Thread’s other methods, it is

probably best simply to implement Runnable. Also, by implementing Runnable,

your thread class does not need to inherit Thread, making it free to inherit a different

class.

Example Program:

import java.io.*;

class EvenThread extends Thread{

 public void run(){

 try{

 PrintWriter out = new PrintWriter("./Even.txt");

 for(int i = 1; i < 500000; i++){

 if(i % 2 == 0)

 out.println("Even Number:"+i);

 }

 out.close();

 }catch(FileNotFoundException e){}

 }

}

class OddThread implements Runnable{

 public void run(){

 for(int i = 1; i < 500000; i++){

 if(i % 2 == 1)

 System.out.println("Odd Number:"+i);

 }

 }

}

7M

Page 13 of 20

class MTDemo{

 public static void main(String[] args){

 long tbe = System.currentTimeMillis();

 Thread et = new Thread(new EvenThread(),"Even Number Printer

 Thread");

 Thread ot = new Thread(new OddThread(),"Odd Number Printer

 Thread");

 et.start();

 ot.start();

 try{

 et.join();

 ot.join();

 }catch(InterruptedException e){}

 long tae = System.currentTimeMillis();

 System.out.println("Time to complete execution: "+(tae-tbe));

 }

}

Note: Give full marks for any other correct example program.

 b) Write a Java program to demonstrate User defined Exceptions.

Program:

class StackOverflowException extends Exception{

 StackOverflowException(String desc){

 super(desc);

 }

}

class StackUnderflowException extends Exception{

 StackUnderflowException(String desc){

 super(desc);

 }

}

class _Stack{

 int stk[];

 int tos, size;

 _Stack(){

 size = 10;

 stk = new int[size];

 tos = -1;

 }

 _Stack(int size){

 this.size = size;

 stk = new int[this.size];

7M

Page 14 of 20

 tos = -1;

 }

 void push(int ele){

 try{

 if(tos >= size - 1)

 throw new

 StackOverflowException("StackOverflow");

 stk[++tos] = ele;

 }catch(StackOverflowException e){

 System.out.println("Stack Overflow: "+e);

 }

 }

 int pop(){

 try{

 if(tos == -1){

 throw new

 StackUnderflowException("StackUnderflow");

 }

 }catch(StackUnderflowException e){

 System.out.println("Stack Underflow: "+e);

 System.exit(0);

 }

 return stk[tos--];

 }

 void print(){

 System.out.println("Stack Contents are: ");

 for(int i=tos; i>=0;i--){

 System.out.print(stk[i]+"\t");

 }

 System.out.println();

 }

}

class _StackDemo{

 public static void main(String[] args){

 _Stack s = new _Stack(4);

 for(int i=0;i<10;i++)

 s.push(i+1);

 s.print();

 for(int i=0;i<10;i++)

 System.out.println("Current tos element:"+s.pop());

 }

}

Note: Give full marks for any other correct example program.

Page 15 of 20

(OR)

7. a) Write a JAVA program to copy the contents of one file to another file.

Program:

import java.io.*;

class FileCopy{

 public static void main(String[] args) throws IOException{

 if(args.length != 2){

 System.out.println("Need to pass Two File names as

 command line arguments");

 System.out.println(">java FileCopy File1 File2");

 System.exit(-1);

 }

 FileInputStream fis = null;

 FileOutputStream fos = null;

 try{

 fis = new FileInputStream(args[0]);

 fos = new FileOutputStream(args[1]);

 }catch(FileNotFoundException e){}

 int ch;

 while((ch = fis.read()) != -1){

 fos.write((char)ch);

 }

 fis.close();

 fos.close();

 }

}

Note: Give full marks for any other correct example program.

7M

 b) Explain multi-threading. Write the purpose of isAlive() and join() functions in

JAVA. Explain the same with an example.

Multithreading is a Java feature that allows concurrent execution of two or more

parts of a program for maximum utilization of CPU.

Sometimes one thread needs to know when other thread is terminating. In java,

isAlive() and join() are two different methods that are used to check whether a

thread has finished its execution or not.

The isAlive() method returns true if the thread upon which it is called is still running

otherwise it returns false. But, join() method is used more commonly than isAlive().

This method waits until the thread on which it is called terminates.

7M

Page 16 of 20

Program:

public class MyThread extends Thread {

 public void run() {

 System.out.println("r1 ");

 try {

 Thread.sleep(500);

 }

 catch(InterruptedException ie) {

 }

 System.out.println("r2 ");

 }

 public static void main(String[] args) {

 MyThread t1=new MyThread();

 MyThread t2=new MyThread();

 t1.start();

 try{

 t1.join();

 }catch(InterruptedException ie){}

 t2.start();

 System.out.println(t1.isAlive());

 System.out.println(t2.isAlive());

 }

}

Note: Give full marks for any other correct example program.

UNIT – IV

8. a) Discuss various AWT containers with examples.

Containers are integral part of AWT GUI components. A container provides a space

where a component can be located. A Container in AWT is a component itself and it

adds the capability to add component to itself. Following are noticable points to be

considered.

• Sub classes of Container are called as Containter. For example Panel,

Frame and Window.

• Container can add only Component to itself.

• A default layout is present in each container which can be overridden

using setLayout method.

Container: It is a generic container object which can contain other AWT

components.

Commonly used Container Classes:

Panel

Panel is the simplest container. It provides space in which any other component can

be placed, including other panels.

7M

https://www.tutorialspoint.com/awt/awt_panel.htm

Page 17 of 20

Frame

A Frame is a top-level window with a title and a border

Window

A Window object is a top-level window with no borders and no menubar.

 b) Write a short note on the following

i) JTextArea ii) JTable

JTextArea:

JTextArea allows editing of multiple lines of text. JTextArea can be used in

conjunction with class JScrollPane to achieve scrolling. The underlying JScrollPane

can be forced to always or never have either the vertical or horizontal scrollbar.

Creating and Setting or Obtaining Contents

Method or Constructor Purpose

JTextArea()

JTextArea(String)

JTextArea(String, int, int)

JTextArea(int, int)

Creates a text area. When present, the String

argument contains the initial text. The int

arguments specify the desired width in columns

and height in rows, respectively.

void setText(String)

String getText()
Sets or obtains the text displayed by the text area.

Fine Tuning the Text Area's Appearance

Method Purpose

void setEditable(boolean)

boolean isEditable()

Sets or indicates whether the user can edit the text in

the text area.

void setColumns(int);

int getColumns()

Sets or obtains the number of columns displayed by

the text area. This is really just a hint for computing

the area's preferred width.

void setRows(int);

int getRows()

Sets or obtains the number of rows displayed by the

text area. This is a hint for computing the area's

preferred height.

7M

https://www.tutorialspoint.com/awt/awt_frame.htm
https://www.tutorialspoint.com/awt/awt_window.htm
http://download.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html#JTextArea%28%29
http://download.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html#JTextArea%28java.lang.String%29
http://download.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html#JTextArea%28java.lang.String,%20int,%20int%29
http://download.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html#JTextArea%28int,%20int%29
http://download.oracle.com/javase/7/docs/api/javax/swing/text/JTextComponent.html#setText%28java.lang.String%29
http://download.oracle.com/javase/7/docs/api/javax/swing/text/JTextComponent.html#getText%28%29
http://download.oracle.com/javase/7/docs/api/javax/swing/text/JTextComponent.html#setEditable%28boolean%29
http://download.oracle.com/javase/7/docs/api/javax/swing/text/JTextComponent.html#isEditable%28%29
http://download.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html#setColumns%28int%29
http://download.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html#getColumns%28%29
http://download.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html#setRows%28int%29
http://download.oracle.com/javase/7/docs/api/javax/swing/JTextArea.html#getRows%28%29

Page 18 of 20

JTable:

With the JTable class you can display tables of data, optionally allowing the user to

edit the data. JTable does not contain or cache data; it is simply a view of your data.

Here is a picture of a typical table displayed within a scroll pane:

Creating and Setting Up a JTable

Constructor or Method Purpose

JTable()

JTable(int numRows, int numColumns)

JTable(Object[][] data, Object[] colHeads)

Create a JTable. data is a two-

dimensional array of the information

to be presented, and colHeads is a

one-dimensional array with the

column headings.

void addColumn(String) Add a column to table.

void addRow(String[]) Add A row to Table.

(OR)

9. a) Explain key events with an example program.

Program:

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

public class KeyEventsDemo extends Applet implements KeyListener{

 char ch;

 int x = 250, y = 250;

 public void init(){

 setFocusable(true);

 this.addKeyListener(this);

 }

 public void paint(Graphics g){

 g.drawString("KeyReleased:"+ch,20,20);

 g.fillOval(x,y,30,30);

 }

 public void keyTyped(KeyEvent ke){

 showStatus("Key Typed"+ke.getKeyChar());

 }

7M

http://download.oracle.com/javase/7/docs/api/javax/swing/JTable.html
http://download.oracle.com/javase/6/docs/api/javax/swing/JTable.html#JTable%28%29
http://download.oracle.com/javase/6/docs/api/javax/swing/JTable.html#JTable%28int,%20int%29
http://download.oracle.com/javase/6/docs/api/javax/swing/JTable.html#JTable%28java.lang.Object[][],%20java.lang.Object[]%29
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html

Page 19 of 20

 public void keyPressed(KeyEvent ke){

 int keycode = ke.getKeyCode();

 if(keycode == ke.VK_UP){

 y -= 2;

 repaint();

 }

 else if(keycode == ke.VK_DOWN){

 y += 2;

 repaint();

 }

 else if(keycode == ke.VK_LEFT){

 x -= 2;

 repaint();

 }

 else if(keycode == ke.VK_RIGHT){

 x += 2;

 repaint();

 }

 }

 public void keyReleased(KeyEvent ke){

 ch=ke.getKeyChar();

 repaint();

 }

}

/*<applet code=KeyEventsDemo height=500 width=500></applet>*/

Note: Give full marks for any other correct example program.

 b) Write a program to demonstrate any Layout Manager.

Program:

import java.awt.*;

import javax.swing.*;

public class Griddemo extends Frame {

 Griddemo() {

 JButton btn1 = new JButton("Button 1");

 JButton btn2 = new JButton("Button 2");

 JButton btn3 = new JButton("Button 3");

 JButton btn4 = new JButton("Button 4");

 JButton btn5 = new JButton("Button 5");

 JPanel panel = new JPanel(new GridLayout(3, 2, 10, 10));

 panel.add(btn1);

 panel.add(btn2);

 panel.add(btn3);

7M

Page 20 of 20

 panel.add(btn4);

 panel.add(btn5);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setSize(300, 150);

 add(panel);

 setVisible(true);

 }

 public static void main(String[] args) {

 Griddemo();

 }

}

Note: Give full marks for any other correct example program.

