20CS305/20CB305/20DS305/201T305

Hall Ticket Number:

February, 2023

Third Semester
Time: 3 Hours

11/1V B.Tech (Regular\Supplementary) DEGREE EXAMINATION

Common to CSE/CB/DS & IT Branches

Computer Organization
Maximum Marks:70

1.

Answer question 1 compulsory.
Answer one question from each unit.

a)
b)
c)
d)
e)
f)
9)
h)
i)

a)

b)

Convert (F3)16 into decimal.
State the formulas for (r-1)’s Complement and r’s Complement
What is register transfer language?
Name any four logic microoperations.
Define instruction code and operation code.
List out the memory-reference instructions.
How to represent control variables?
Show the microinstruction format for the control memory.
State the operations on a stack.
What are the most common fields found in instruction format?
Expand RISC and CISC.
When is status command used?
Define bootstrap loader.
Show the connection of 1/0O bus to input-output devices.
Unit -
Draw the arithmetic logic shift unit and show the function table for arithmetic
logic shift unit.
What are the number systems conversions available? Explain with an example.
(OR)
What are the different ways to implement a common bus system and explain
with a neat sketch
Label the diagram for 4-bit binary adder and 4-bit adder-subtracter.
Unit -1
Name the registers for the basic computer with number of bits used and describe
their functionality.
Interpret the symbols and binary code used for microinstruction fields.
(OR)
State the phases of an instruction cycle? Design the flowchart for instruction
cycle
Show the block diagram of the microprogram sequencer and discuss.
Unit -1
Examine the procedure involved in reverse polish notation with an example.
Inspect the hardware for signed-magnitude addition and subtraction.
(OR)
List out any seven addressing modes and interpret each addressing mode with
syntax.
Display the flowchart for Booth multiplication operation and discuss the
operations performed.
Unit -1V
Examine the working of associate memory with a neat diagram.
Illustrate the mapping procedures while considering the organization of cache
memory.
(OR)
Analyse the various modes of data transfer to and from peripherals

COo1
COo1
COo1
COo1
CO2
CO2
CO2
CO2
CO3
CO3
COs3
CO4
CO4
CO4

Co1

Co1

Co1

Co1

CO2

CO2

CO2

CO2

COo3
COo3

CO3

CO3

CO4
CO4

CO4

(14X1 = 14 Marks)
(4X14=56 Marks)

L2
L1
L1
L1
L1
L1
L2
L1
L1
L1
L3
L2
L1
L3

L1

L2

L2

L3

L3

L2

L1

L2

L3
L2

L2

L4

L2
L3

L2

1M
1M
1M
1M
1M
1M
1M
1M
1M
1M
1M
1M
1M

™

™

™

™

™

™

™

™

™
™

™

™

™
™

14M

SCHEME
11/1V B.Tech (Regular\Supplementary) DEGREE EXAMINATION
February, 2023 Common to CSE/CB/DS & IT Branches
Third Semester Computer Organization
Maximum Marks:70

Time: 3 Hours
(14X1 = 14 Marks)
(4X14=56 Marks)

Answer question 1 compulsory.
Answer one question from each unit.

1. a) Convert (F3)1sinto decimal. COl L2 1M
(F3)16 = (243)10

b) State the formulas for (r-1)’s Complement and r’s Complement CO1l L1 1M

r’s Complement of N = r"-N
(r-1)’s Complement of N = (1"-1)-N

N : given number

r . base
n : digit number

c) What is register transfer language? CO1 L1 1M
The Register Transfer Language is the symbolic representation of notations used to specify the

Sequence of micro-operations.
COo1 L1 M

d) Name any four logic microoperations.

AND (A), OR (v), XOR (@), Complement/NOT.
Define instruction code and operation code. CO2 L1 1M

€)
Instruction code is a group of bits that tells the computer to perform a specific operation part.
The operation code of an instruction is a group of bits that define operations such as add, subtract,
Multiply, shift and compliment.
f) List out the memory-reference instructions. CO2 L1 1M
AND, ADD, LDA, STA, BUN, BSA, I1SZ
g) How to represent control variables? CO2 L2 1M

Binary variables specify micro operations

h) Show the microinstruction format for the control memory. CO2 L1 1M

CD BR AD

F1 F2 F3
3 bits 2 bits 2 bits 7 bits

3bits 3 bits

F1, F2, F3: Micro operation fields
CD: Condition for branching

BR: Branch field

AD: Address field
CO3 L1 1M

i) State the operations on a stack.

Push & Pop
What are the most common fields found in instruction format? CO3 L1 1M

)

The most common fields are:-

Operation field: - specifies the operation to be performed like addition.
Address field: - which contains the location of the operand, i.e., register or memory location.

Mode field: - which specifies how operand is to be founded.

k) Expand RISC and CISC. CO3 L3 1M

RISC (reduced instruction set computer) and CISC (complex instruction set computer).

I) When is status command used? CO4 L2 1M
A status command is used to test various status conditions in the interface and the peripheral.
For example, the computer may wish to check the status of the peripheral before a transfer is initiated.

During the transfer, one or more errors may occur which are detected by the interface.
These errors are designated by setting bits in a status register that the processor can read at certain intervals

m) Define bootstrap loader. CO4 L1 1M

Bootstrap loader is a program that resides in the computer's EPROM, ROM, or another non-volatile
memory. It is automatically executed by the processor when turning on the computer. The bootstrap loader
reads the hard drives boot sector to continue to load the computer's operating system.

https://www.computerhope.com/jargon/p/program.htm
https://www.computerhope.com/jargon/e/eprom.htm
https://www.computerhope.com/jargon/r/rom.htm
https://www.computerhope.com/jargon/m/memory.htm
https://www.computerhope.com/jargon/m/memory.htm
https://www.computerhope.com/jargon/h/harddriv.htm
https://www.computerhope.com/jargon/o/os.htm

n)

2.

Show the connection of 1/0 bus to input-output devices. CoO4
A Dats
Processor Address
Control

|intertace] |interface] |interface| [interface]

Key
and Magnetic
splay Printer “‘r‘“"k tape

Unit —I

arithmetic logic shift unit.

ARITHMETIC LOGIC SHIFT UNIT 50

Instead of having individual registers performing the
microoperations directly, computer systems employ a number of
storage registers connected to a common operational unit called
an arithmetic logic unit, abbreviated ALLL

To perform o micooperation, the contents of specified registers
are placed in the inputs of the common ALU.

The ALU performs an operation and the result of the operation is
then transferred to a destination register.

The ALU is a combinational circuit so that the entire register
transfer operation from the socurce registers through the ALU and
into the destination register can be performed during one clock
pulse period.

The shift microoperations are often performed in a separate unit,
but sometimes the shift unit is made part of the overall ALU.

Gompuiar Drganeatian UHIT-1 DATA AEFRE SEHTATION amd FEGISTER TRAMSFER LAMGUAGE AHD MICACOPERATIONS

L3

a) Draw the arithmetic logic shift unit and show the function table for COl1 L1

1M

™

ARITHMETIC LOGIC SHIFT UNIT

53

52

Sl Micmeparaneng

al

C
£
S0 'I'I
-]
A rinh iy .
One stage —
)) i)) I Selec
af an arithmetic lagic thift it —1% axy —"
Lt L r.t:m
1
| X
e E.
Lagie :
i' Circult
. b
Ay 4
Ak thi
81 53 &1 54 Cin n Function
1] o o0 o 1] F=a Tramshfer A
a o 0 q 1 F=a+1 Increment A
a oo A a F=a+H Additon
1] o o0 1 1 F=a+B+1 | Add with ¢
a o 1 0 a Fea+B Subtract with barrow
1] (I 1] 1 F=a+BE+1 | Sublraction
0 1 1 0 F=a-1 Decrament A
a o1 1 1 F=4 Transferd
1] i 0 0 X F=a B AND
1] i 0 1 X F=awvH OR
a 1 1 0 X F=A@B XOR
0 i1 1 X F=& Complemant A
1 0 X X X F=shra Ehift right A inta F
1 1 X X X F=shlA Shift left A into F

ompuierDrganizatian UHIT-1 DTk REFRE SENTATION and REGISTER TRAMSFER LAMGUAGE AND MICRCOPERATIONS

b) What are the number systems conversions available? Explain with an COl1 L2 ™

example.

Number systems are the technique to represent numbers in the computer system architecture, every
value that you are saving or getting into/from computer memory has a defined number system.

Computer architecture supports following number systems.

e Binary number system

e Octal number system

o Decimal number system

o Hexadecimal (hex) number system

i) Binary Number System

A Binary number system has only two digits that are 0 and 1. Every number (value) represents with 0 and 1
in this number system. The base of binary number system is 2, because it has only two digits.

For example, (101101), in decimal is
=IX2%+0x2*+1x22+1x22+0x2t+1x2°
=1x32+0x16+1x8+1x4+0x2+1x1
=32+8+4+1

= (45)10

ii) Octal number system

Octal number system has only eight (8) digits from 0 to 7. Every number (value) represents with
0,1,2,3,4,5,6 and 7 in this number system. The base of octal number system is 8, because it has only 8 digits.

For example, (24)g in decimal is
= 2x81+4x8°
= (20)10

iii) Decimal number system

Decimal number system has only ten (10) digits from 0 to 9. Every number (value) represents with
0,1,2,3,4,5,6, 7,8 and 9 in this number system. The base of decimal number system is 10, because it has only
10 digits.

For example, the value of 786 is
=7x10%+8x 10! + 6 x 10°
=700+80+6

iv) Hexadecimal number system

A Hexadecimal number system has sixteen (16) alphanumeric values from 0 to 9 and A to F. Every number
(value) represents with 0,1,2,3,4,5,6, 7,8,9,A,B,C,D,E and F in this number system. The base of hexadecimal
number system is 16, because it has 16 alphanumeric values. Here A is 10, Bis 11, Cis 12, D is 13, E is

14 and F is 15.

For example (3A)16 = (00111010)z

To convert from Binary to Hexadecimal, group the bits in groups of 4 and write the hex for the 4-bit binary.
Add 0's to adjust the groups.

1111011011

(001111011011), = (3DB)1s

(OR)

3. a) What are the different ways to implement a common bus system and CO1 L2 ™
explain with a neat sketch?

» There are two ways to implement the common BUS System.
I) Multiplexers
I1) Three state buffer

Bus Transfers 13

m FPaths must be provided to transfer information from one
register to another
m A Common Bus System is a scheme for transferring infermation
between registers in a multiple-register configuration
m A bus: set of common lines, one for each bit of a register,
through which binary information is transferred one at a time
#Bus is a path (of a group of wires) ever which infoermation is
transferred, from any of several sources to any of several
destinations
m Control signals determine which register is selected by the bus
during each particular register transfer

® From a register to bus: BUS «— R,

GompuiarDrganeatian UHIT-1 DATA REFRE SEMTATION amd REGISTER TRAMSFER LANMGUAGE AHD MICRCOPERATIONS

1) Multiplexers:-

One way of constructing a common bus system is with multiplexers. The
multiplexers select the source register whose binary information is then placed
on the bus. The construction of a bus system for four registers is shown in
Fig. 4-3. Each register has four bits, numbered 0 through 3. The bus consists
of four 4 x 1 multiplexers each having four data inputs, 0 through 3, and two
selection inputs, S; and Sp. In order not to complicate the diagram with 16 lines
crossing each other, we use labels to show the connections from the outputs
of the registers to the inputs of the multiplexers. For example, output 1 of
register A is connected to input 0 of MUX 1 because this input is labeled A,.
The diagram shows that the bits in the same significant position in each register
are connected to the data inputs of one multiplexer to form one line of the bus.
Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the
four 1 bits of the registers, and similarly for the other two bits.

Y

Y

4- line

common
5, ™ bus
So I"
— 4x1 4x1 4x%1 4x1
MUX 3 MUX 2 MUX 1 MUX 0
32 10 3 2 10 3 2 1 0 3 2 1 0
Tt ERE R RRE
Dy Cy By A; Dy C; B, A Dy Co By Ay
D, D, D C: C Cg B, B, By Ay A A
i 210 3 2 10 32 10 3 2 10
Register D Register C Register B Register A

The two selection lines 5; and 5, are connected to the selection inputs of
all four multiplexers. The selection lines choose the four bits of one register and
transfer them into the four-line common bus. When 5,5, = 00, the 0 data
inputs of all four multiplexers are selected and applied to the outputs that form
the bus. This causes the bus lines to receive the content of register A since the
outputs of this register are connected to the 0 data inputs of the multiplexers.
Similarly, register B is selected if 5;S, = 01, and so on. Table 4-2 shows the
register that is selected by the bus for each of the four possible binary value
of the selection lines.

S1 So Register selected
0 0 A
0 1 B
1 0 C
1 1 D

In general, a bus system will multiplex k registers of n bits each to produce
an n-line common bus. The number of multiplexers needed to construct the
bus is equal to n, the number of bits in each register. The size of each multi-
plexer must be k x 1 since it multiplexes k data lines. For example, a common
bus for eight registers of 16 bits each requires 16 multiplexers, one for each line
in the bus. Each multiplexer must have eight data input lines and three
selection lines to multiplex one significant bit in the eight registers.

The transfer of information from a bus into one of many destination
registers can be accomplished by connecting the bus lines to the inputs of all
destination registers and activating the load control of the particular destina-
tion register selected. The symbolic statement for a bus transfer may mention
the bus or its presence may be implied in the statement. When the bus is
includes in the statement, the register transfer is symbolized as follows:

BUS « C, R1 « BUS
The content of register C is placed on the bus, and the content of the bus is
loaded into register R1 by activating its load control input. If the bus is known
to exist in the system, it may be convenient just to show the direct transfer.

Rl « C

From this statement the designer knows which control signals must be acti-
vated to produce the transfer through the bus.

I1) Three state buffer:-

Three-State Bus Buffers 16

A bus system can be constructed with three-state buffer gates instead of
multiplexers

m A three-state buffer is a digital cireuit that exhibits three states: legie-0,
lagic-1, and high-impedance (Hi-Z)

® The high-impedance state behaves like an cpen circuit, which means that the
output is disconnected and does not have a logic significance.

® Three-state gates may perform any conventional logic, such as AND or
HNAND,

m Howsever, the one most commanly wsed in the design of a bus system is the
buffer gate.

m Graphic symbels for three state buffer.

N{I'ITIIHI]:H.IIH r_ D.I'[[.'l.ll}'l'ﬂi'f'l

]/ High-impedance if C=0
Control input C

CompierCrganzation UHIT-1 DATA REFRE SENTATION ard REGISTER TRANSFER LANGUAGE AHD MICROOPERATIONS

Bus line with three state-buffers 18

® Bus line with three.state buffer (replaces MUXD in the previous diogram)
m Bus line with three state-buffers,

Ao I.r':..:; Bus line for bit O
Bo [:}
Ca P‘>___

Dy

i

s
Select So x4 1
. decoder 2

Enable E
3

GomprierDrgan izatan LIHIT-A

DATA AEFRE SEHTATION bied REQISTER TRAMSFER LAMGUAGE AHD MICACOPERATIONMS

b) Label the diagram for 4-bit binary adder and 4-bit adder-subtracter. CO1 L3

The Arithmetic micro-operations like addition and subtraction can be combined into one common
Circuit by including an exclusive-OR gate with each full adder.

The block diagram for a 4-bit adder-subtractor circuit can be represented as:

By Ay B, Ay B, A, B Ay
| i "
Y | Jr §]
5 Cx < G ; C, - M G
l— FA FA |~ F |~ FA |=
Cs S5 S2 5, So

2's complement of B. For unsigned numbers. thisgivesA — Bif A > Borthe

2'scomplement of (B — A) if A < B. For signed numbers, the resultis A — B
provided that there is no overflow.

™

o When the mode input (M) is at a low logic, i.e. ‘0", the circuit act as an adder and when the mode
input is at a high logic, i.e. '1', the circuit act as a subtractor.

o The exclusive-OR gate connected in series receives input M and one of the inputs B.

o When M is at a low logic, we have BEO0 = B. The full-adders receive the value of B, the input carry
is 0, and the circuit performs A plus B.

o When M is at a high logic, we have B@ 1 = B'and CO = 1.The B inputs are complemented, and a 1
is added through the input carry. The circuit performs the operation A plus the 2's complement of B.

Unit -1
4. a) Name the registers for the basic computer with number of bits used and CO2 L3 ™
describe their functionality.

-

2. Computer Registers
® It is necessary to provide a register in the control unit for storing the
instruction code alter it is read from memory.

* The computer needs processor registers for manipulating data and a
register for holding a memory address.

LT

11

o
£ l PC] "
H emory
£ 11 o
= I AR | 4096 x 16
S 15 0
P I I deereese ey OPU
i 15] 15 a4 i
S | TR | | DR]
: o7 a7 0 15
i [outr]| [iner__] | AC !i
Figure 2.4: Basic Computer Register and Memory
A .
e
-
Computer Registers
Register | Bits Register Name Function
Symbaol
DR 16 Data register Holds memory operand
AR 12 Address register Holds address for memory
AL 16 Accumulator Processor register
IR 16 Instruction register | Holds instruction code
PC 12 Program counter Holds address of instruction
TR 16 Temporary register | Holds tempaorary data
INPR b Input register Haolds input character
OUTR 2 Output register Holds output character

b)

Computer Registers

The data register (DR) holds the {}p{:rand read from mMemory.

The accumulator (AC) register is a g:.'nt:r'd] purpose processing register,

The instruction read from memory is placed in the instruction register (IR).
The temporary register (TR) is used for holding temporary data during the
processing.

The memory address register (AR) has 12 bits since this is the width of a
memory address,

The program counter (PC) also has 12 bits and it holds the address of the next

instruction to be read from memory after the current instruction is
b

executed.
* Two registers are used for input and output.
® The input register (INPR) receives an 8-bit character from an input device.
® The owmpur register {OUTR) holds an 8-bit character for an output device.
_ P
Interpret the symbols and binary code used for microinstruction fields. CO2 L2
Microinstructions
— Control words stored in control memory
— Specify control signals for execution of micro operations
Microinstruction Fields
F1 F2 F3 CD BR AD
3bits 3 bits 3 bits 2 bits 2 bits 7 bits
F1, F2, F3: Micro operation fields

CD: Condition for branching
BR: Branch field
AD: Address field

™

Microinstruction Fields

F1 Microoperation Symbal Fz Microoperation Symbol
000 | Hone =1 00 | Mone MOP
=01 AC +—AC + DR ADD =01 AC «— A0 -DR SUB
010 | AC <D CLRAC Ml | AC s« AC wDR OR
o1 | AC «— AT + 1 INC AT 11 AT +— AT ~ DR AND
100 | AC «— DR DRTAC 100 DR +— MI[AR]) REA&AD
101 | AR «— DRY{-10) DRTAR 101 | DR« AC ACTDR
110 AR +— FC PLTAR 110 DR«—DR+=1 INCDR
111 | M[AR] «— DR WRITE 111 DR E-10) +— PC PCTDNR

F3 MEcrooperation Symibol

00l | Mone [l o

oM | AC s+ AC @ DR XOR

o1d AC —AC SO

011 | AC +— shi AC SHL

100 | AC +— shr AC SHR

101 PC +—PC =1 NCPC

e | PG +— AR ARTRC

M Reserved

Microinstruction Fields

10
1

RET
MaP

CO | Conddtion | Symbol Comments
[51] Always =1 u Uncondiional branch
o DR 15) 1 Indirect address bt
10 AC[15) 5 Sign bit of AC
1 AC=0 2 Zaro value in AC
BR | Symbal Function
oo JMF CAR « AD Il condition = 1
CAR s CAR + 1 condition =0
o CALL | CAR+AD, SBR + CAR + 1 if conastion = 1

CAR « CAR + 1 if condition = 0
CAR <« SBR [Retum from subroutine]
CARY2-8) < DR{11-14), CAR[D,1,6) «— 0

Fetch Routine

Fetch routine
- Read instruction from memory
- Decode instruction and update PC

Microinstructions for fetch routine:

AR « PG

DR « MIAR]

,PC < PC+1

AR « DR{0-10), CAR{2-5) + DR{11-14), CAR|0,1,6) « 0

Symbolic microprogram for fetch routine:

ORG 64

FETCH: PCTAR U JMP NEXT
READ, INCPC U JMP NEXT
DRTAR U Map

Binary microporgram for fetch routine:

Binary

addnass F1 F2 F3 CD BR AD
1000000 10 000 [T [T 00 1000001
1000001 a0 104 10] 00 1000010
1000010 101 00 000 [11 000000

18

21

18

Symbolic Microinstruction

Sample Format | Label: Micro-ops CD BR AD |

Label may be empty or may specify symbolic address
terminated with colon

Micro-ops consistsof 1, 2, or 3 symbals separated by commas

CD one of {U, |, §, Z}
U: Unconditional Branch
I Indirect address bit
S: Sign of AC
2. Zerovalue in AC

BR one of {JMP, CALL, RET, MAP}

AD one of {Symbolic address, NEXT, empty}
20

Symbolic Microprogram

+ Controlmemory: 128 20-bit words

s First64words: Routines for 18 machine instructions

+ Lasted words: Used for other purpose (e.g., fetch routine and other subroutines)

« Mapping: QP-code XXNX inte 0XXXX00, first addressfor 16 roulines are
0i0 0000 00}, 4{0 0001 00), 8, 12,16, 20, ..., 60

Partial Symbolic Microprogram

Labs| Micraops Ch BR AD
ki

AL; RO I CalL WRCT
READ L. NEXT
A0 U FETCH
ORG 4

HRARCH: ROF 5 il OVER
ROE i JHF FETCH

OVER: KR 1 CalL BOACT
ARTRC Ll JHF FETCH
ORG E

STORE: RO 1 CALL BDACT
ACTLH u JNIP MEXT
WRITE u il FETCH
ORG 12

EXCHAMGE: RO 1 CALL [[
READ o HEXT
ACTOR, DRTAC L. NEXT
WRITE U FETCH
(G B

FETCH: PCTAR o HEXT
RELD, MR e HNEXT
[=TA8 U map

MCACT: READ o HEXT 32
=788 U RET

Binary Microprogram

Addiress Binary Microinsbruction _
Micro Routine Decimal Binary F1i F2 F3 [v] BR ALY
aADD L] Q000000 L] L] L] 01 01 1000011
1 0000001 L] 100 L] L] L] 0000010
2 0000010 oo L] L] L] L] 1000000
3 0000 0ol 0ol 0ol oo oo 10000 00
BRAMCH 4 00100 00 00 00 10 an aeaoi10
5 oa0a101 a0 a0 a0 an an 1000 00
& il b a0 a0 a0 Lhl Lhl 10004011
T oa0a111 aod a0a gl ag ag 1 0000 00
STORE] 000 000 00 00 00 L] L] 1000011
E| 000 001 a0 1M a0 an an apd191a
10 0000 11 L] L] Lili] Lili] 1000000
11 001011 L] L] L] 15} 15} 10000 00
EXCHANGE 12 001100 L] L] L] o1 o1 1000011
13 0ol oo L] L] L] L] 0001110
14 000 100 101 L] Lili] Lili] 0001111
15 00111 111 L] L] 15} 15} 10000 00
FETCH &4 1000000 o a0 a0 an an 1 000001
G5 1000001 a0 100 10 an an 1000010
66 1000010 10 aod aod L] " Q000000
HDRCT &7 1000011 aod 100 00 an an 10001 00
68 1000100 101 00 00 an 10 0004000
(OR)

5. a) State the phases of an instruction cycle? Design the flowchart for instruction
cycle
Co2 L1

In the basic computer each instruction cycle consists of the following phases:

. Fetch an instruction from memory.
. Decode the instruction.
. Read the effective address from memory if the instruction has an indirect address.

. Execute the instruction.

SC+0
T
AR &= M
T
IR o= M |AR], PC = PC + |
Ty

Decode operation code in 7R (12 = 14)
AR o IR (0= 11), |+ IR (15)

(Reglsier of 1) = | /ﬂ\ =0 (Memory-reference)
NS

(i =1 () (reglated) {indiract) = |

w0 (direct)

Ty Ty Iy Ty
Execuie Exgcuite AR b= MIAR Maothing
i -t regisier-reference -
R irstruction
SC =0 SC 4=10 1
Execule
memiry-ref erence
instnacison
5 =0

Fijpure 59 Fowchar for instrection cyele (inivial confipuration)

b) Show the block diagram of the microprogram sequencer and discuss. CO2 L2 7™M

The basic components of a microprogrammed control unit are the control memory and the circuits
that select the next address. The address selection part is called a microprogram sequencer.
» These are the different ways a microprogram sequencer select the address.
— Incrementing CAR
— Unconditional or conditional branch, depending on status bit conditions
— Mapping from bits of instruction to address for control memory

— Facility for subroutine call and return

Microprogram Sequencer

External
ML)
L ‘I’ v v ¥
=T EF o
- Input Laad
I_.' ¥ 2
1 - I Ihcrlm-lnurl
Iﬁ_: Uz | Test i
—] 4 E
Fo ceopoan]
N
Contral memory
Microops o] BR AD
T . r Ofganizaticn 25

The truth table can be used to obtain the simplified Boolean functions for the input logic circuit:

6.

a)

So - Io
= + |’

S, = 1ol + 1T

Il =1°1T
BR Inpul ML 1 Load SBIR
Fiel} fv Fo T Si: So r
O O O O (9] O O O
O O (o] (o) 1 (o) 1 (9]
(o] [§ o 1 (o] O O o
(9] 1 (9] [§ 1 (0] 1 1
1 (9] 1 O > | | (9] (o]
1 1] 1 b | 1 (9]

Fig:- Input Logic Truth table for Microprogram Sequencer

Unit 111
Examine the procedure involved in reverse polish notation with an CO3 L3
example.

Reverse Polish Notation (RPN) was devised as a method of simplifying mathematical

Expressions.

™

REVERSE POLISH NOTATION

Arithmetic Expressions: A+ B
A+ B Infix notation
+AB Prefix or Polish notation
A B+ Fostfix or reverse Polish notation

- The reverse Polish notation is very suitable for stack
manipulation

Ewvaluation of Arithmetic Expressions

Any arithmetic expression can be expressad in parenthesis-free
Faolish notation, including reverse Paolish notation

(3“4)+(56) — 34°56"+

]
[| —[=
| & | 5 | =20
—{ 3 —={12 [12 | 12 12
& .

3 4 *] +

b) Inspect the hardware for signed-magnitude addition and subtraction. CO3 L2

Addition and Subtraction

Sign-magnitude

Addition and Subtraction|
2's complement
Addition and Subtraction with Signed-Magnitude Data

TABLE 101 Addition and Subtraction of Signed-Magnitude Numbers

Subtract Magnitudes

Add
Operation Magnitudes When A > 8B When A <B When A = B

(+A) + (+8) +{A + B)

(+A) + (—-B) A~ B) =& = A) A — B)
(=AY + (+8) -(A — B) +(F — A) +(A — B)
(=A)+ (-8) -(A + B)

(+A) = (+8) +HA - B) (8 - A) +A - B)

(+A) = (-B) +(A+ B)
(~A) - (+B) ~(A + B)
(-A) - (-B) ~(A - B) +(B - A) +HA - B)

™

Hardware implementation: Sign flip flop

LB’] l_ B xegisier /—L”"’ Overflow FF
—
oS XOR gates
/

—f—’/’
I Compiementer]-'-——< M (Mode control)
i Out put
E . Paraticl adder A
carry

Inpur carry

B

sy

s B A register f=—— Lood sum

Figure 10-1 Hardware for signed-magnirtide add:tion and subtraction.

(OR)

7. a) List out any seven addressing modes and interpret each addressing mode CO3 L2
with syntax.

Addressing Modes— The term addressing modes refers to the way in which the operand of an
instruction is specified.

. Implied mode:: In implied addressing the operand is specified in the instruction itself. In this mode
the data is 8 bits or 16 bits long and data is the part of instruction.Zero address instruction are designed
with implied addressing mode.

Instruction

Data

Example: CLC (used to reset Carry flag to 0)

Immediate addressing mode (symbol #):1n this mode data is present in address field of instruction
.Designed like one address instruction format.

Note:Limitation in the immediate mode is that the range of constants are restricted by size of address
field.

Opcode ‘ Address

l

Data is

directly
stored
here

Example: MOV AL, #35H (move the data 35H into AL register)

. Register mode: In register addressing the operand is placed in one of 8 bit or 16 bit general purpose
registers. The data is in the register that is specified by the instruction.

™

https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_2.jpg

Here one register reference is required to access the data.
Instruction Register

Data

h 4

Register

Example: MOV AX,CX (move the contents of CX register to AX register)

Register Indirect mode: In this addressing the operand’s offset is placed in any one of the registers
BX,BP,SI1,DI as specified in the instruction. The effective address of the data is in the base register or
an index register that is specified by the instruction.

Here two register reference is required to access the data.

Instruction Register Memory

Effective Address > Data

h 4

Register

The 8086 CPUs let you access memory indirectly through a register using the register indirect
addressing modes.
MOV AX, [BX](move the contents of memory location s

addressed by the register BX to the register AX)

Auto Indexed (increment mode): Effective address of the operand is the contents of a register
specified in the instruction. After accessing the operand, the contents of this register are automatically
incremented to point to the next consecutive memory location.(R1)+.

Here one register reference,one memory reference and one ALU operation is required to access the
data.
Example:

Add R1, (R2)+ // OR

R1 = R1 +M[R2]
R2=R2+d

Useful for stepping through arrays in a loop. R2 — start of array d — size of an element

Auto indexed (decrement mode): Effective address of the operand is the contents of a register
specified in the instruction. Before accessing the operand, the contents of this register are
automatically decremented to point to the previous consecutive memory location. —(R1)

Here one register reference,one memory reference and one ALU operation is required to access the
data.

Example:

Add R1,-(R2) //OR
R2 = R2-d
R1=R1+M[R2]

Auto decrement mode is same as auto increment mode. Both can also be used to implement a stack as push
and pop . Auto increment and Auto decrement modes are useful for implementing “Last-In-First-Out” data
structures.

Direct addressing/ Absolute addressing Mode (symbol []): The operand’s offset is given in the
instruction as an 8 bit or 16 bit displacement element. In this addressing mode the 16 bit effective
address of the data is the part of the instruction.

Here only one memory reference operation is required to access the data.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_3.jpg
https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_4.jpg

Instruction Memory

Effective address » Data

Example:ADD AL,[0301] //add the contents of offset address 0301 to AL

. Indirect addressing Mode (symbol @ or ()):In this mode address field of instruction contains the
address of effective address.Here two references are required.
1st reference to get effective address.
2nd reference to access the data.
Based on the availability of Effective address, Indirect mode is of two kind:

1. Register Indirect:In this mode effective address is in the register, and corresponding register
name will be maintained in the address field of an instruction.
Here one register reference,one memory reference is required to access the data.

2. Memory Indirect:In this mode effective address is in the memory, and corresponding memory
address will be maintained in the address field of an instruction.
Here two memory reference is required to access the data.

. Indexed addressing mode: The operand’s offset is the sum of the content of an index register SI or
DI and an 8 bit or 16 bit displacement.
Example:MOV AX, [SI +05]

. Based Indexed Addressing: The operand’s offset is sum of the content of a base register BX or BP
and an index register Sl or DI.
Example: ADD AX, [BX+SI] .

Based on Transfer of control, addressing modes are:

. PC relative addressing mode: PC relative addressing mode is used to implement intra
segment transfer of control, In this mode effective address is obtained by adding displacement to PC.
. EA=PC + Address field value

PC= PC + Relative value.

. Base register addressing mode:Base register addressing mode is used to implement inter
segment transfer of control.In this mode effective address is obtained by adding base register value to
address field value.

. EA= Base register + Address field value.

PC= Base register + Relative value.

https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_5.jpg

b) Display the flowchart for Booth multiplication operation and discuss the CO3 L4
operations performed.

Booth Multiplication Algorithm

Boeoth algorithim gives a precedure for multiplying Blnary integers In signed-2's complement
representation,

It operates on the fact that strings of 0's in the multiplier require no addition but just shifting, and a
string of 1's in the multiplier from bit weight 2% to weight 2™ can be treated as 254 - 2m,

For example, the binary numbser 001 110 { + 14) has a string of 1's from 27 to 25 [k = 3, m = 1).
The number can be represented as 281-2m =24 .21 =165 - 2 = 14,

Therefare, the multiplication M x 14, where M is the multiplicand and 14 the multiplien, can be done
ashx 2t -MXK 2!

A= 00011 B= 00111 == A*B= A¥(7)=A* [B-1]=A*8-A%1

Thiss the product can be obtained by shifting the binary multiplicand M four times to the left and
subtracting M shifted left cnce,

Booth algorithm requires examination of the multiplier bits and shifting of the partial product, Prior to
the shifting, the multiplicand may be added to the partial product, subtracted from the partial
product, or left unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product upon encountering the first least significant
1 ina string of 1's in the multiplier,

£ The multiplicand is added to the partial product upon encountering the first O [provided that there
was 3 previous 1) in a string of 0's in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous multiplier
bit.

Muliphcard in QK

Flowchart for Booth algorithm (Muipler s, QR

= h0 = 01

= 00
AC = AC + TR + | l = | AT = AC + BR

ashe (AT & QR0
BC=5C—1

w0 =0

EMD

8.

a)

Unit -1V

Examine the working of associate memory with a neat diagram. CO4 L2

The block diagram of an associative memory is shown in Fig. 12-6. It consists
of a memory array and logic for m words with n bits per word. The argument
register A and key register K each have n bits, one for each bit of a word. The
match register M has m bits, one for each memory word. Each word in memory
is compared in parallel with the content of the argument register. The words
that match the bits of the argument register set a corresponding bit in the match
register. After the matching process, those bits in the match register that have
been set indicate the fact that their corresponding words have been matched.
Reading is accomplished by a sequential access to memory for those words
whose corresponding bits in the match register have been set.

The key register provides a mask for choosing a particular field or key in
the argument word. The entire argument is compared with each memory word
if the key register contains all 1’s. Otherwise, only those bits in the argument
that have 1’s in their corresponding position of the key register are compared.
Thus the key provides a mask or identifying piece of information which

Argument register (4)

Key register (K)

Match
register
INnput ——
Associative memory
array and logic M
Read e m words
Write . rt bits per word

1

Output

Fig: Block diagram of Associative memory

specifies how the reference to memory is made. To illustrate with a numericai
example, suppose that the argument register A and the key register K have the
bit configuration shown below. Only the three leftmost bits of A are compared
with memory words because K has 1's in these positions.

A 101 111100

K 111 000000

Word 1 100 111100 no match
Word 2 101 000001 match

Word 2 matches the unmasked argument field because the three leftmost bits
of the argument and the word are equal.

™

The relation between the memory array and external registers in an
associative memory is shown in Fig. 12-7. The cells in the array are marked by
the letter C with two subcripts. The first subscript gives the word number and
the second specifies the bit position in the word. Thus cell C; is the cell for bit
jin word i. A bit A; in the argument register is compared with all the bits in
column j of the array provided that K; = 1. This is done for all columns
j=1,2,...,n. If a match occurs between all the unmasked bits of the argu-
ment and the bits in word i, the corresponding bit M; in the match register is
set to 1. If one or more unmasked bits of the argument and the word do not
match, M, is cleared to 0.

A| AI Aﬂ
L J
r L
word 1| | Cyy Cy Cin M,
Word:' C.'l C# Cm M‘-
Word m Cn” ij Cina M,
Bit | Bit j Bitn

Fig: Associative memory of m words, n cells per word.

b) Ilustrate the mapping procedures while considering the organization of cache CO4 L3
memory.

. If the active portions of the program and data are placed in a fast small memory, the average
memory access time can be reduced

. Thus reducing the total execution time of the program
. Such a fast small memory is referred to as cache memory

. The cache is the fastest component in the memory hierarchy and approaches the speed of CPU
component.

. When CPU needs to access memory, the cache is examined
. If the word is found in the cache, it is read from the fast memory

. If the word addressed by the CPU is not found in the cache, the main memory is accessed to read
the word.

. When the CPU refers to memory and finds the word in cache, it is said to produce a hit
. Otherwise, it is a miss

. The performance of cache memory is frequently measured in terms of aquantity called hit
ratio

. Hit ratio = hit / (hit+miss

. The basic characteristic of cache memory is its fast access time.

™

. Therefore, very little or no time must be wasted when searching the words in the cache

process, there are three types of mapping:

— Associative mapping
— Direct mapping

— Set-associative mapping

Al ain WMlemors
32K T 12hit
(Z2~15)

The transformation of data from main memory to cache memory is referred to as a mapping

Associative mapping

P

Cache Zdemory
512 = 12hit
(Z79)

The fastest and most flexible cache organization uses an associative memory

The associative memory stores both the address and data of the memory word

This permits any location in cache to storeant word from main memory

The address value of 15 bits is shown as afive- digit octal number and its corresponding 12- bit

word is shown as a four-digit octal number

A CPU address of 15 bits is places in the argument register and the associative memory us searched
for a matching address

If the address is found, the corresponding 12- bits data is read and sent to the CPU

If not, the main memory is accessed for the word

If the cache is full, an address-data pair must be displaced to make room for a pair that is
needed and not presently in the cache.

CPU address (15 bits)

J

|.:—‘Lrgument register |

address data

00 1 0HOHDE 32450
02777 6710
22345 1234

Fig: - Associative mapping cache

Direct Mapping

Associative memory is expensive comparedto RAM

In general case, there are 2"k words in cache memory and 2”*n words in main memory (in our
case, k=9, n=15)

The n bit memory address is divided into two fields: k-bits for the index and n-k bits for the tag
field,

Tagz Index (evervthing is presented in Octal)

|
l

00 000

000
32K*12 512*12
Main Memory Cache Memory

77T

77 77T

Fig: - Addressing relationships between main and cache memories.

Tl = mwm e w5
Aaddress

O OO O

77T

O I OO

O11173

DL FTFT

D22 OO

DxETFTFT

vl e ors Itz

A =0

2340

A4S

22

4 Sy

Sa 7o

LTl 0§

Set-Associative Mapping

The disadvantage of direct mapping is that two words with the same index in their address
but with different tag values cannot reside in cache memory at the same time

Aoddress

Tmdex

OHOHO

113

TTT

Fig: - Direct Mapping cache organization.

I>ata

A ZZO

T2

o T LA

Set-Associative Mapping is an improvement over the direct-mapping in that each word of cache
can store two or more word of memory under the same index address.

Each index address refers to two datawords and their associated tags

Each tag requires six bits and each data word has 12 bits, so the word length is 2*(6+12) = 36

bits.

Memory

Address

Memory Data

Index
Address

00000

00777

01000

01111

01777

02000

02777

1220

2340
3450

2222

6710

000

111

777

Tag Data Tag Data
01 3450 02 5670
01 2222

02 6710 111] 2340

Fig:- Two-way set-associative mapping cache.

(OR)

Analyse the various modes of data transfer to and from peripherals CO4 L2 14M

s 11-4 Modes of Transfer
Data transfer to and from perlpherals
¢ 1) Programmed /0 : iz section
s 2] Interrupt-initiated I.’D et
« 3) Direct Memory Access [DMA]
4) /0 Processor (IOP) © sec. 71
Example of F‘mgrammed VO : Fig. 11-10, 11-11

Dk bus bk 11 b
| dames b
- Dl vl 1
10 mad " deviee
T
UL L RN e T
F=FRgbe

|nterrupt-initiated 1O
¢ 1) Mon-vectored ; fixed branch address
o 2) Vectored | interrupt source supplies the branch address (interrupt vector)

Chap. 11 Irput-Output Organization

Software Considerations

s /O routines
» saftware routines for contralling penpherals and for transfer of data between the
processor and peripherals

/0 routines for standard peripherals are provided by the manufacturer (Device
driver, OS5 or BIOS)
o /0 routines are usually included within the operating system

¢ |/ routines are usually available as operating system procedures ([05 or BIOS
function call)

s 11-5 Prionty Interrupt

+ Priority Interrupt
|dentify the source of the interrupt when several sources will reguest service
simultanesusly
o Determine which condition 15 to be serviced first when wo of more requests
arrive simuttaneausly
1) Software : Polling
2] Hardware : Daisy chain, Parallel priofity

Cheap. 1 Input-Output Drganization

11-26

Polling

o |dentify the highest-priority source by software mears
One cammen branch address s used far all interrupts
Program podls the interrupt sources in segquence
Tha highast-prioiy source |s lested fiest

¢ Polling pricrity interrupt If there are many interrupt sources, the time required fo
poll them can exceed the fime available to service the /0 device
Hardware pricsity interrupt

Daisy-Chaining : Fig. 11-12

Prceauor data biis
' VAD 1 (WAD 7) ' WAD 3
wiw [oves 1| #3% [oves 2| 4 [even o
e L e ol ™ el ™ T
Tinterraipt Request [~

Emupt eguast

NT

GPU
NPT know idge NTAGK

L J

Chap. 11 Inpul-Oulput Organizatian

11-27

Parallel Priarity
s Pricrity Encoder =
& Parallel Priority : Fig. 17-14
% |ntermapt Enable FiF (IEN) : set or cleared by the
program
% |ntermapt Status FIF (IST) : st or cleared by tha
encoder cuiput

& Priority Encoder Truth Table - Tab. 11-2

#* Interrupt Cycle

s Al the end of each instruction cyele, CPU
checks [EN and IST

o if both IEN and IST equal to"17

+ CPU goes to an Instruction Cycle
» Sequence of microcperation during Instrection

Cycle
5 5P -1 : Decrement stack point

———————— M[5P]+PC : Push PC mbe stack

Bramch to ISR

l““——l INTACK o1 - Enable INTACK
PC—FAD : Transfer VAD to PC
{EN +1 - Disable further internypts mymkr
G to Fetch next mstruction

Chap. 11 Input-Output Organizstion

11-28

& DMA

s 11-6 DirectMemory Access(DMA)

DMA controller takes over the buses to manage the transfer directly between the
110 device and memory (Bus Request/Grant)

L1

Bus mouest

i1 1)
G ontm ler

BE

Bus grant

ABU & —— D ata bus

GrU
RO — Read

Wi — Wrie

5 [— Add ress bus

H gh- m pedance
{d sab k)
when BG &
enah kd

Chap. 11 Inpul-Output Drganization

E =]

11-2

Transfer Modes

o 1) Burst transfer : Block
s 2] Cycle stealing transfer : Byte

o DMA Initialization Process

1) Se Addrass ragister
= memiry addrass for read'wnba
2) Sel Ward count register
» tha number afwards ta ransfar
u 3] Sef ransfer mode
w readwmba,
s bursticycle sleakng,
1) o),
I i Memory
bemery b Memory
Mefmiony seanch
= i} saarch

w 4) DIMA transter start | nex! section

% 5) EOQT (End of Transfer) :
o Infemupt

DMA Controller { Intel 8237 DMAC) Fig. 11-17

Add mss bus

Mdrss bes

Datn bas
nua #hﬂjﬂﬁ
Eeg bter se bat: RS

Read #—— R0

T 0k il
Bus request+— BE bz
Bis g st —mBE

Niermip T 4— hismgt

bufiers

Addreas g bier

I femia | bms

e

N ord pount reg wter

Contm | rgnter

DA mguest
-—

DU A Aoknow kdge 0 T

Chap. 11 Input-Output Organization

DMA Transfer (110 to Memary)
1110 Device sends a DMA request

+ 2) DMAC activates the BR line e —
» 3) CPU responds with BG line o vy fil)

¢ 4) DMAC sends a DMA acknowledge
to the 11O device

Bl ¥R Addrem bk i R Adima bl

bt rin |

5) /0 device puts a word in the data X [T
bus (for memory writs) LLLLL
§ Reddmas bue

§) DMAC write a data to the address
specified by Address register —
¢ 7) Decrement Word count register st
« 8) Word count register
EOT interrupt CPU
0) Word count register
DMAC checks the DMA request from
110 device

'I'i- 1R Adiren ok

5 I o bedge
RS B ifocti o ofy H
wooe ki Ferghernl
B oy ket drike

10 requect

Cheap. 11 Input-Output Organizatian

11-31

n 11-7 Input-Output Processor (|OF)
0P
¢ Communicate direcily with all "0 devices
s Felch and execule its own instruction
|OF instrections are specifically designed to faciitate 110 transfer
DMAC must be sel up entirely by the CPU
¢ Designed to handle the details of 110 processing

4—#{C et | Proceieing
unit EPUY
E. .-.""'5“:,1"“-
- it T S
Wemory ek }<—oi 'l“":']l.f"}?lm [PO}
: - ~ .
hpat- setpst [Y T) T
¥ omoesser (DF) T Bus

¢ Command
& Instruction that are read form memory by an 10P
» Disfinguish from instructicns that are read by the CPU
& Commands are prepared by experenced programmens and ane stared in memary
Commandward = 10P program

Chap. 11 Inpul-Output Organization

€ CPU - IOP Communication :

I Memory units acts as a message center : Information

»

CPU Program

Scheme prepared by

GPU operations

Send instruction
to test IOP path

each processor leaves information for the other

10P operations

Transfer status word
to memory location

[f status OK. , send
start [/0 instruction
to I0P

N

Access memory for
10P program

OPU continues with
another program

Conduct 1/0 transfer
using DMA ; prepare
status report

Request I0P status

1/0 transfer completed
interrupt CPU

Check status word
for correct transfer

Transfer status word
to memory location

/
|
/

CGontinue

Fig:- CPU - IOP Communication

(RVEERAMOHANA RAO)

SIGNATURE OF EVALUATORS.

IOP Program

Signature of HOD

