
 There is a growing tendency towards unbundling the electricity system. This is continually 

confronting the different sectors of the industry (generation, transmission, and distribution) 

with increasing demand on planning management and operations of the network.  

 The operation and planning of a power utility company requires an adequate model for 

electric power load forecasting. 

 Load forecasting plays a key role in helping an electric utility to make important decisions on 

power, load switching, voltage control, network reconfiguration, and infrastructure 

development.  

 Methodologies of load forecasts can be divided into various categories that include short-term 

forecasts, medium-term forecasts, and long-term forecasts. 

 Short-term forecasting, gives a forecast of electric load one hour ahead of time. Such forecast 

can help to make decisions aimed at preventing imbalance in the power generation and load 

demand, thus leading to greater network reliability and power quality. Many methods have 

been used for load forecasting in the past. These include statistical methods such as 

regression and similar-day approach, fuzzy logic, expert systems, support vector machines, 

econometric models, end-use models, etc.  

 The neural network is trained on input data as well as the associated target values. The 

trained network can then make predictions based on the relationships learned during 

training. A real life case study of the power industry in Nigeria was used in this work. 

Implementation for Short Term Load Forecasting The data used in this study came from 

the Greek power system during the period 2013–2017 and refer to hourly load values. To 

make a more accurate forecast, weather data, such as temperature, were used in 

addition to the historical data of the loads. Data is separated into training and test sets 

in a ratio of 80% to 20%. 

The improved neural network model consists of the following input variables: 

 Hour: The time of day for which the load forecast will be made. The time is expressed 
as an integer with values ranging from 0 to 23.  

 Week Day: It’s a characteristic coding to decide the day of the week. The coding is 

done with integers ranging from 1 to 7, with 1 denoting Sunday, 2 denoting Monday, 
and so on.  

 Holiday: Binary coding is used to indicate whether a day is a holiday or a working 
day 

 Temperature: The hourly value (in Celsius) of the temperature of the day for which 

the load is forecast.  
 D-1 Load: The load value of the day preceding the one for which prediction is made, 

at the corresponding time.  
 D-7 Load: The value of the load at the corresponding time on the same day of the 

previous week.  

H-1 Load: The value of the previous hour’s load on which the forecast is based. 
The architecture of the MLP neural network that was used to predict the hourly value of 
the load is shown in Figure 1. An input layer, a hidden layer, and an output layer 

represent the three layers of a neural network. Seven neurons make up the input level. 
Each neuron is associated with one of the variables listed above. There are 100 neurons 

in the hidden layer. The value 100 was chosen experimentally as it was found to 
produce better predictive values by dramatically reducing error. As can be seen from the 



literature, neural networks with a 
single hidden layer address the 

STLF problem quite accurately. 
The output layer is composed of a 

single neuron and refers to the 
hourly load value for which the 
prediction is developed. 

The pre-processing techniques for 
the data input to the neural 
network are of particular interest 

when developing the current 
prediction model. The MSE, MAE 

and MAPE metrics are used to 
assess and compare the various 
scaling methods for the input 

data. 
 

 

Load demand pattern: A broad spectrum of factors affects the system’s load level 

such as trend effects, cyclic-time effects, and weather effects, random effects like 

human activities, load 

management and 

thunderstorms. Thus the load 

profile is dynamic in nature with 

temporal, seasonal and annual 

variations.  In  this  study, we 

develop a system  as shown in 

Fig. 1 with inputs  parameters  

such as past 24 h load, 

temperature, humidity, wind 

speed, sky condition (cloud 

cover), sunset (daylight time), 

season (month) and day of the 

week to forecast 24 ahead load 

demands (output) for the west of 

Iran  using  artificial neural 

networks. 

 

Computational intelligence models: The three models of neural networks are selected 

among the main network architectures used in engineering. The basis of all models is 

neuron structure. These neurons act like parallel processing units as shown in Fig. 2, 

where X„ . . ., X are inputs and W„ . . ., W are input weights. 



 

Multi-Layer Perceptron (MLP): This is perhaps the most popular network 

architecture in use today. Its units each perform a biased weighted sum of their 

inputs and pass this activation level through a transfer function to produce their 

output and the units are arranged in a layered feed forward topology. The network 

thus has a simple interpretation as a form of input-output model, with the weights 

and thresholds (biases) the free parameters of the model. Such networks can model 

functions of almost arbitrary complexity with the number of layers and the 

number of units in each layer, determining the function complexity. Important 

issues in Multilayer Perceptron design include specification of the number of 

hidden layers and the number of units in these layers. Once the number of layers 

and number of units in each layer, has been selected, the network’s weights and 

thresholds must be set so as to minimize the prediction error made by the network. 

This is the role of the training algorithms. The best known example of a neural 

network training algorithm is back propagation. Modern second-order algorithm 

such as conjugate gradient descent and Levenberg-Marquardt are substantially 

faster for many problems, but Back propagation still has advantages in some 

circumstances and is the easiest algorithm to understand. With this background 

we designed and trained the network as follows: the three-layer network with 

Sigmoid transfer function for hidden layer and linear transfer function for output 

layer has been selected. The MLP structure is shown in Fig. 3. 

Fig. 4a: Comparison of 24 h ahead load 

forecasting using MLP     



Back propagation training algorithms are often too slow for practical problems, so we can 

use several high performance algorithms that can converge from ten to one hundred times 

faster than back propagation algorithms. These faster algorithms fall into two main 

categories: heuristic technique (variable learning rate back propagation, resilient back 

propagation) and numerical optimization techniques (conjugate gradient, quasi- Newton, 

Levenberg-Marquardt). We tried several of these algorithms to get the best result. 

Levenberg-Marquardt is the fastest algorithm but as the number of weights and biases in 

the network increase, the advantage of this algorithm decrease, so we tried another 

algorithm which perform well on function approximation and converge rather fast. From 

these algorithms, conjugate gradient was suitable for   our purpose.   Neural   networks   

generally provide improved performance with the normalized data. The use of original 

data as input to neural network may cause a convergence problem. All the data sets 

were therefore, transformed into values between -1 and  1 through dividing the 

difference of actual and minimum values by the difference of maximum and minimum 

values subtracted  by 1. At the end of each algorithm, outputs were denormalized into 

the original data format for achieving the desired result. From one initial condition the 

algorithm converged to global minimum point, while from another initial condition the 

algorithm converged to a local minimum so it is better to try several different initial 

conditions in order to ensure that optimum solution has been obtained. Training goal 

for the networks was set to 10 ‘. Finding appropriate architecture needs trial and 

error method. Networks were trained for a fixed number of epochs. By this way, we 

found that 1 neurons for hidden layer at 500 epochs produce good result. Comparison 

of 24h a head load forecasting with MLP and exact load is shown in Fig. 4. 

Elman recurrent networks: Elman networks are just like back propagation 

networks, with addition of a feedback connection from the output of the hidden 

layer to its input. This feedback path allows Elman networks to learn to recognize 

and generate temporal patterns, as well as spatial patterns. This makes Elman 

networks useful in such areas as signal processing and prediction where time plays a 

dominant role. Because Elman networks are an extension of two-layer 

Sigmoid/linear architecture, they inherit the ability to fit any input/output 

function with a finite number of discontinuities. They are also able to fit temporal 

patterns, but may need many neurons in the recurrent layer to fit a complex 

function. Also because of the more complex architecture of the recurrent model, 

there is a significant increase in training time compared with the MLP model. 

Figure 5 shows an Elman structure, where I„ ..., I, are inputs and O„ ..., O are 

outputs. 

For  finding  the  appropriate  architecture  of Elman recurrent network, previous steps at 

MLP designing was followed  and found  that  11  neurons  for hidden layer at 1000 

epochs produce good result. Comparison of 24 h ahead load forecasting with ERNN 

and exact load is shown in Fig. 6. 



  

Radial Basis Function (RBFN): Radial basis function was then applied to each 

center. There is one radial Gaussian function for each hidden unit which 

simulates the effect of overlapping and locally tuned receptive fields. The 

activation function of hidden nodes is radially symmetric in input space, the 

magnitudes of activation given a particular record is decreasing function of the 

distance between the input vector of the record and the center of the basis 

function. The role of hidden units is to perform a non-linear transformation of the 

input space A. Radial Basis Function Network is a hybrid learning neural 

network. It’s a two layer fully-connected network with an input layer which 

performs no computation. It uses a linear transfer function for the output units 

and Gaussian function (Radial basis function) for input units (Hagan et al., 1996; 

Powell, 1992; Zurada, 1992). Learning in the hidden layer is performed by using an 

unsupervised method, the K-mean algorithm. First, the user must choose a number 

of centers and this number will correspond to the number of neurons in hidden 

layer. The K-means algorithm is used to position the centers in the best way, so 

that each presented record is attached to its nearest center (or cluster). As it is 

an unsupervised learning method, only the inputs data are presented to K-means 

algorithm. Learning in the output layer is performed by computing a linear 

combination of activation of the basis functions, parameterized by weights W 

between hidden and output layer. Radial basis networks may require more neurons 

than standard feed-forward Back propagation networks, but often they can be 

designed in a fraction of the time it take to train standard feed-forward networks. 

They work best when many training vectors are available.  

A Generalized Regression Neural Network (GRNN) is often used for function 

approximation. It has been shown in fig.7, that, given a sufficient number of hidden 

neurons, GRNNs can approximate a continuous function to an arbitrary accuracy. 

Probabilistic Neural Networks (PNN) can be used for classification problems. Their 

design is straightforward and does not depend on training. These networks generalize 

well. Figure.7 shows RBFN common structure, where Ii. . ., Im are inputs. 



      

 

Fig 7   : RBFN structure          Fig.8: Comparison of 24 h ahead load forecasting using 

Designing a radial basis function network often takes much less time than training a 

Sigmoid/linear network (Khan and Ondrusek, 2000) in RBFN, neurons increase till 

error goal or maximum number of neurons reach. The good result obtained with error 

goal of 10-5 ‘and maximum number of neurons equal to 19. Comparison of 24h ahead 

load forecasting with RBFN and exact load is shown in Fig. 8. 

The assessment of the prediction performance of the different soft computing 

models was done by quantifying the prediction obtained on an independent data set. 

The Mean Absolute Percentage Error (MAPE) were used to study the performance  of 

the trained forecasting  models for the testing years. MAPE is defined as follows: 

 
Where P actual,i  , is the actual load on day I and Predicted I , is the forecast   value   of   

the   load   on  that   day.   Where   N represents the total number of data (hours).  The 

Mean Absolute Percentage Error (MAPE) results (Table 1) for three important architectures 

of neural networks i.e., MultiLayer Perceptron (MLP), Elman Recurrent Neural Network 

(ERNN) and Radial Basis Function Network (RBFN) and their optimal structures are 

shown in Table 1. It has been observed that error associated with each method depends on 

several factors such as the homogeneity in data, the choice of model, the network 

parameters and finally the type of solution. The learning method for MLP and ERNN were 

based on back propagation algorithm. As the learning process is time-consuming in back 

propagation. 



 

 Load Frequency Control In A Single Area Power System By Artificial Neural Network 

In a power system, load-frequency control (LFC) obtains an essential role to allow power 

exchanges and to supply better conditions for the electricity trading. Also, time delays in 

such systems can reduce system performance and even cause system instability on 

frequency or other parameters. The dynamic behavior of many power systems and resulted 

in industrial loads heavily depends on disturbances and in particular on changes in the 

operating point. Load frequency control in power systems is very important in order to 

supply reliable electric power with good quality. The goal of the LFC is to maintain zero 

steady state errors in a multi area interconnected power system. In addition, the power 

system should fulfill the proposed dispatch conditions. Power systems are divided into 

control areas connected by tie lines. All generators are supposed to constitute a coherent 

group in each control area. From the experiments on the power system, it can be seen that 

each area needs its system frequency to be controlled. 

Basically, single area power system consists of a governor, a turbine, and a generator with 

feedback of regulation constant. System also includes step load change input to the 

generator. Simple block diagram of a single area power system with the controller is shown 

in Figure 1. 

 



A lot of studies have been made in the past about the load frequency control. In the 

literature, some control strategies have been suggested based on the conventional linear 

control theory. These controllers may be unsuitable in some operating conditions due to the 

complexity of the power systems such as nonlinear load characteristics and variable 

operating points. To some authors, variable structure control maintains stability of system 

frequency. 

 However, this method needs some information for system states, which are very difficult to 

know completely. Also, the growing needs of complex and huge modern power systems 

require optimal and flexible operation of them. The dynamic and static properties of the 

system must be well known to design an efficient controller. On the other hand, to handle 

such a complex system is quite complicated]. Recently the LFC systems use the 

proportional integral (PI) controllers in practice. Since the dynamic behavior even for a 

reduced mathematical model of a power system is usually nonlinear, time-variant and 

governed by strong cross-couplings of the input variables, special care has to be taken for 

the design of the controllers. Gain scheduling is a controller design technique used for non-

linear systems. Therefore, a gain scheduling controller can be used for this purpose. In this 

method, since parameter estimation is not required, control parameters can be changed 

very quickly. In addition, gain scheduling application is easier than both automatic tuning 

and adaptation of controller parameters methods. However, the transient response for this 

controller can be unstable because of abruptness in system parameters. Besides, it can not 

be obtained accurate linear time variant models at variable operating points [2]. To solve all 

these problems in the above mentioned papers, an ANN controller is proposed in this study. 

The ANN controller has been established to apply a single area power system in the 

different operating points under different load disturbances by using the learning capability 

of the neural Networks to improve the stability of the overall system and also its good 

dynamic performance achievement. it is shown that the overshoots and settling times with 

the proposed ANN controller are better than the outputs of the other controller. 

Artificial Neural Network (ANN) Controller: The ANN controller architecture employed here is 

a Model Reference Neural Network, which is shown in Fig. 2. As with other techniques, the 

Model Reference Adaptive Control configuration uses two neural networks: a controller 

network and a model network. The Model network can be trained off-line using historical 

plant measurements. The controller is adaptively trained to force the plant output to track 

a reference model output. The model network is used to predict the effect of controller 

changes on plant output, which allows the updating of controller parameters. In the study, 

the frequency deviations, tie-line power deviation and load perturbation of the area are 

chosen as the neural network controller inputs. 

The outputs of the neural network are the control signals, which are applied to the 

governors in the area. The data required for the ANN controller training is obtained from 

the designing the Reference Model Neural Network and applying to the power system with 

step response load disturbance. After a series of trial and error and modifications, the ANN 

architecture shown in Fig. 2 provides the best performance. It is a three-layer perceptron 

with five inputs, 13 neurons in the hidden layer, and one output in the ANN controller. 

Also, in the ANN Plant model, it is a three-layer perceptron with four inputs, 10 neurons in 

the hidden layer, and one output. The activation function of the networks neurons is 



hyperbolic tangent. The proposed network has been trained by using back-propagation 

algorithm. The root mean square (RMS) error criterion is being used to evaluate the 

learning performance. Learning algorithms cause the adjustment of the weights so that the 

controlled system gives the desired response 

 

 
SIMULATION STUDY 

The single area power system’s parameters are given in Table 1. System block scheme and 

simulation results for the single area power system are shown in Figure 3 and 4. As can be 

observed, the settling time and overshoots with the proposed ANN controller are much 

shorter than that with the conventional PI controller. 

From the figure, it is shown that the settling time of conventional PI controller is much 

longer than the proposed ANN controller and the overshoots of the proposed controller is 

almost 85% better than the PI controller’s. Therefore, the proposed ANN controller provides 

better performance than conventional I controller for the single area power system. 

 



 

Fuzzy logic application to PSS 
The basic system, which is simulated to analyze the effect of the proposed FLPSS on the 

system stability, consists of one nonlinear synchronous generator connected by long 

transmission line to a pure resistive load (Fig. 1). An exciter of the synchronous generator 

gets two external voltage signals as shown in Fig. 1, one from the Automatic Voltage 

Regulator (AVR) and another from the proposed FLPSS, to regulate its current and so that 

necessary damping torque can be obtained to damp out oscillations in minimum settling 

time. 

 
For studying the robustness and the settling time, a two different perturbations (a Three 

phase to ground-LLLG fault and Single-phase to ground-LG fault on middle of the 

transmission line) are simulated. Also to examine an effectiveness of the proposed FLPSS 

on the case of a step increase in the input Pm, an analysis is carried out for a fixed input 

mechanical power (Pm). 



Fuzzy Controlled Power System Stabilizer 

Fuzzy Control System The concept of fuzzy logic given by Zadeh in 1965 has found 

applications in various areas including a controller for power system stabilizer. The aim of 

fuzzy control systems is normally to replace a skilled human operator with a fuzzy rule-

based system. The fuzzy logic controller provides an algorithm which can convert the 

linguistic control strategy based on expert knowledge into an automatic control strategy. A 

fuzzy logic system, as shown in Fig. 2, comprises of four stages: a fuzzification interface, a 

knowledge base, an inference engine and a defuzzification interface. 

 
The fuzzification interface is mapping from the crisp domain into the fuzzy domain and 

converts input data into suitable linguistic values that can be viewed as label fuzzy sets. 

Fuzzy sets can be characterized by membership functions. There are many types of 

membership functions e.g., the bell shaped, linear function, triangular function, trapezoidal 

function and exponential function 

The knowledge base comprises knowledge of application domain and attendant control 

goals by means of set of linguistic control rules. The inference engine determines the 

operating condition from the measured values and selects the appropriate control actions 

using the rule base created from the expert knowledge. 

The defuzzification inference performs scale mapping, which converts the range of values of 

output variables into corresponding universe of discourse and also converts the inferred 

decision from the linguistic variables back the numerical values. 

Fuzzy Based PSS 

The selection of control variables (controlled inputs and outputs) depends on the nature of 

the controlled system and the desired output. Usually the output error (e) and the rate or 

derivative of the output (de) is used as controller inputs. Since rotor angular speed is easily 

measurable, a proposed fuzzy logic based power system stabilizer uses two input variables: 

change in rotor angular speed (rotor-speed deviation) and time derivative of change of rotor 

angular speed (rotor acceleration) as shown in Fig.3. So, the fuzzy power system stabilizer 

has two-input and a single-output component which is shown in Fig. 3. An output of fuzzy 

logic controller is a voltage signal (Vpss) which is given to the exciter unit. 



A linear triangular membership functions are used for both input and output variables. The 

membership function of an input variable rotor speed deviation is expressed into eight 

fuzzy sets, say; NVL, NL, NVB, NB, NM, NS, ZE, PS; the membership function of an input 

variable rotor acceleration is expressed into five fuzzy sets, say; NS, ZE, PS, PM, PB and the 

membership function of an output variable voltage signal (Vpss) is expressed into ten fuzzy 

sets, say; NVL, NL, NVB, NB, NM, NS, ZE, PS, PM, PB and they are defined in Table.1. 

 
A set of rules which define the relation between the inputs and output of fuzzy controller 

are defined using the linguistic variables. The knowledge required to generate the fuzzy 

rules can be derived from an offline simulation. However, it has been noticed that, for 

monotonic systems, a symmetrical rule table is very appropriate, although sometimes it 

may need slight adjustment based on the behavior of the specific system. If the system 

dynamics are not known or are highly nonlinear, trial-and-error procedures and experience 

play an important rule in defining the rules [4]. 

In the rules of a proposed FLPSS, the input variables are connected by an „AND‟ method 

and it is meant that membership degree of a Vpss is the minimum value among the 

membership degree of the input variables. For the proposed FLPSS, 40 rules are defined 

and they are shown in Table.2. 

 



The typical rules are having the following structure: 

Rule 1: If rotor speed deviation is NM (negative medium) AND rotor acceleration is PS 

(positive small) then voltage (output of fuzzy PSS) is NS (negative small). 

Rule 2: If rotor speed deviation is NB (negative big) AND rotor acceleration is NS (negative 

small) then voltage (output of fuzzy PSS) is NB (negative big). 

From Fuzzification to Defuzzification for a proposed FLPSS 

Maximum and minimum value, which defines the universe of discourse of rotor speed 
deviation, rotor acceleration and Vpss are mentioned in Table 3. 

 
For an example of rotor speed deviation = -0.62 and rate of change of rotor angular speed 

(rotor acceleration) = 0.0001, the crisp output of Vpss by defuzzification using the centroid 

method is given to be -0.2 and it can be understood by the following explanation: 

-From Fig. 4, a membership degree for a given value -0.62 of a rotor speed deviation is 0.95 

and a membership degree for a given value 0.0001 of rotor acceleration is 1. This process 

is called as Fuzzification Process and it is done by the triangular membership function 

definition in the proposed FLPSS. 

-Since a given value (=-0.62) of a rotor speed deviation is belong to the NL fuzzy set of rotor 

speed deviation fuzzy variable and a given value (=0.0001) of a rotor acceleration is belong 

to the ZE fuzzy set of rotor acceleration fuzzy variable, an output signal Vpss will be NL. 

This process is called as Inference Process. 

- A membership degree of an output signal Vpss for a given condition (IF part of rule) can 

be found by taking the minimum value among the membership degree of the input 

variables and thus value of membership degree for Vpss is 0.95. 

Algorithm for FLPSS 
1. The universes of discourse for each of the inputs and the output are defined. 
2. The inputs are fuzzified according to the respective universe of discourses. (Fuzzification 

Process) 
3. The fuzzy rule matrix is used to find out the activation AND the firing of control rules for 
this combination of inputs. (Inference Process) 

4. Using the fuzzy values of output (Vpss) as obtained from the fuzzy relation matrix and 
the universe of discourse defined for the output variable, the crisp value of output is 

obtained by defuzzificition using the center of gravity method. (Defuzzification Process) 
5. The above steps are repeated till the end of the simulation time. 
A response of the rotor acceleration deviation to the occurrence of a LLLG fault and LG 

fault is shown in Fig. 5 and 6 respectively. 
Both fault occurs at the middle of the transmission line at 700 km and were applied at 0.1 

sec and cleared at 0.15 sec. 
The settling time of system without PSS is around 8 second whereas to the system with 
fuzzy logic PSS takes around 0.5 second after clearing the LLLG fault and the settling time 



of system without PSS is around 10 second whereas to the system with fuzzy logic PSS 
takes around 1 second after clearing the LG fault. It shows the ability of the FLPSS for 

stabling system and in specially Ts (settling time). So it can be said that after clearing the 
both faults, the system under FLPSS is coming back to its stable condition much faster 

than the system without PSS and it means that the proposed fuzzy logic power system 
stabilizer achieves a significantly fast damping for a rotor acceleration deviation. 
A settling time of the rotor acceleration deviation under the different fault types for without 

PSS and with FLPSS is mentioned in Table 5. 

 
      

   

Fig. 6 Response of the per unit Rotor Acceleration Deviation to the LG Fault  

The fuzzy logic power system stabilizer is designed for Single Machine Power System. Rotor 
speed deviation and rotor acceleration of synchronous generator were taken as the input 
signals to the fuzzy logic controller. The performance of the power system with fuzzy logic 

power system stabilizer is better one since it is effective for all test conditions. It was also 
shown in the simulation results that the fuzzy logic power system stabilizer can decrease 

the settling time of the system. The control signal, required, in all cases is with less 
magnitude. 
The proposed FLPSS is useful for power stations which work under small and large signal 

disturbances. This controller is very suitable for the real time control of generators because 
of its simple control rules and its shorter computation time. 


