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k)

n)

Compare reflection and refraction of plane waves in any medium

Reflection is the act of light reflecting back when it hits a medium on a plane. Refraction
is the process by which light shifts its path as it travels through a material, causing the
light to bend. Thus, this is the key difference between reflection and refraction. This
phenomenon usually occurs in mirrors.

What is perpendicular polarization

The electric vector is parallel to the boundary surface or perpendicular to
the plane of incidence.

Recall Snell’s law of refraction

sinfl, _ e,
sinf, ~ Vo,
For perfect match |I';| is 0 and the return loss is =

Define critical angle.
The angle of incidence at which the angle of refraction becomes 90 degrees

Find out the attenuation for lossless transmission line.
Zero
Write the Helmholtz equation.

TZ‘&. = T-:'ﬁ,
The Helmholtz equation in rectangular coordinates is

Fe i dY
=S t=—+ ;=
dx®  dy’ dz* L

What is the dominant mode for the TM waves in the rectangular waveguide?

TM11
What are degenerate modes in a rectangular waveguide

If any two modes of propagation share the same cut-off frequency, such modes are
called degenerate modes. The modes TEm,and TMmnare degenerate modes in a
rectangular waveguide.

What is dominant mode?

The mode with the lowest cutoff frequency in a particular

guide is called the dominant mode.
Which mode in a circular waveguide has attenuation effect decreasing with
increase in frequency?
TEOL1 mode in circular wave guide has attenuation effect decreasing with increase in
frequency.

What is the cutoff frequency for TE,,,,,mode in a circular guide.

X
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Mention the dominant modes in circular waveguide.
TE11 &TMoy

Mention the Helmholtz equation for E; in a circular waveguide.

ViE, = v’E,
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Unit-1
2 a) Shovy that, when a given uniform plane wave is incident normally on a good conductor,
the linear current density Js is essentially independent of the conductivity (o).

when

an electromagnetic wave traveling in one medium impinges upon a
second medium having a different dielectric constant, permeability, or
conductivity, the wave in general will be partially transmitted and
partially reflected. In the case of a plane wave in air incident normally
upon the surface of a perfect conductor, the wave is entirely reflected.
For fields that vary with time neither E nor H can exist within a
perfect conductor so that none of the energy of the incident wave can
be transmitted. Since there can be no loss within a perfect conductor,
none of the energy is absorbed. As a result the amplitudes of E and
H in the reflected wave are the same as in the incident wave, and the
only difference is in the direction of power flow. If the expression for
the electric field of the incident wave is

E, g-i8=

and the surface of the perfect conductor is taken to be the x = 0 plane

as shown in Fig. \po o nression for the reflected wave will be

E et

where E, must be determined from the boundary conditions. Inasmuch
as the tangential component of E must be continuous across the bound-
ary and E is zero within the conductor, the tangential component of
E just outside the conductor must also be zero. This requires that the
sum of the electric field strengths in the incident and reflected waves
add to give zero resultant field strength in the plane x = 0. Therefore

E =—E

The amplitude of the reflected electric field strength is equal to that
of the incident electric field strength,but its phase has been reversed on
reflection.

The resultant electric field sirength at any point a distance —x
from the x = 0 plane will be the sum of the field strengths of the
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Fig. Standing waves of £ and &

incident and reflected waves at that point and will be given by

Efx) = E,e-/3% L F pits
= E(e#x _ git7)
= —2E; sin Sx
Er(x, 1) = Re {—2jE, sin Bx et
If E, is chosen (o be real,

= .

Ex(x,1) = 2E, sin Bx sin of
Che expression for the resultant magnetic field will be



Hex)= He %= 4 H e*'8=
= H e ' 4 g+if%)
= 2f, cos Bx

H, is real since it is in phase with E,.
Hi(x, 1) = Re {H{x)e"]

= 2H, cos Bx cos wt

b)  Derive the reflection of a plane wave by a perfect Dielectric at normal incidence.

when
e e Emwan n- TEwEE AR EIERARATE NN T TV LG L

a plane electromagnetic wave is incident normally on the surface of
a perfect dielectric, part of the energy is transmitred and part of it
is reflected. A perfecr dielectric is one with zero conductivity, so that

there is no loss or absorption of power in propagation through the
dielectric,

As before, consider the case of a plane wave traveling in the x
direction incident on a boundary that is parallel to the x =0 plane.
Let E, be the electric field strength of the incident wave striking the
boundary, E, be the electric field strength of the reflected wave leaving
the boundary in the first medium, and E, be the electric field strength of
the transmitted wave propagated into the second medium. Similar
subsclipts will be applied to the magnetic field strength K. Let ¢, and
#1 be the constants of the first medium and e, and u, be the constants

of the second medium. Designating by . and 5, the ratios ~/4,/¢; and
& paj'ey, the following relations will hold

E =qnH,
E =—nH,
E, =nH,
The continuity of the tangential components of E and H require that
H, + H. = H,
E + E. = E,
Combining these

H: + H = ??'I_[tEI - EF}ZH! = ??l'{EL_LE"}

?F:{Ez — E.) = ‘?j‘J'[-EJ + E)
-Et{ﬂ! - ':TIJ = -Erl:ﬂi + Ji':iII]

E_m—mn
E mt+m
Also
E, E +E E,
E-E ~'tE
27,
T T
Furthermore

H_ _E_n—mn

H, £y Mo+ N2

H _mE _ 2

E by E, 1fj'|, + ‘JTJ';
The permeabilities of all known insulators do not differ appreciably
from that of free space, so that p, = g, = g, Inserting this relation
the above expressions can be written in terms of the dielectric constants

as follows:
E _ ~ples — N /e
E, e + Ao
E — 'V"{_ET ]
E! "'V'Irél + Ea
Similarly
E _ 24/ g
EE ": £ T ; Ea
H _ e — o
HJ :' g -+ N‘RE:
H_ e
H! ; € + €

(OR)
3 a) Derive the conditions for reflection by a perfect insulator-oblique incidence for
perpendicular polarization.



b)

In this case the electric

vector E is perpendicular to the plane of incidence and parallel to the reflecting
surface. Let the electric field strength E, of the incident wave be in the posi-
dve x direction [outward in Fig.

ind let the ass.umact pnsuwe directions

E'OT Er and E; in the refiected and transmitted waves also be in the positive
x direction. Then, applying the boundary condition that the tangential com-
pooent of E is continuous across the boundary,

E|.+Er=E|:
By 4B
E,-"TE
E _ | _ e Eicost,
Insert this in eq. I ;E. Eicos 8,
Ef fes . E\Peos 8,
Ei T _‘I."e_lti I'-E1) cos &,

— f"-i,_ 'rE:( E;\ *cos B,
: (E:} _"-"fE H‘E) cos #,
Ey

.Ey_ es -Er Cﬂ&a!
I-E= ‘1/ (1+E_'.}EDGE:

E _ a/e1 cos i — o/es cos By

Ey W&, cos 8, + /e cosba

MNow from eq.

A& cos By = /el —sin® Bs) = /2 — €, sin’ B,
therefore

— T
Er A& cosfy — /5 — ¢ 510’ 6,

Ei " e cosf, + +Te; — €, 5i0° B,

_cos B — a(eafer) — sin® &,

T cost 4 &/ (egfe)) — sin' &,

This equation gives the ratio of reflected to incident electric field strength for
the case of a perpendicularly polarized wave.

Explain the reflection of a plane wave by a perfect insulator at oblique incidence for
parallel polarization.

[n this case E is parallel to thl:

plane of incidence and, H is parallci to the reflecting surface. hgam applymg
the boundary ::nndumu that the mngﬁuna] component of E is continuous across

he buu.ndar:.r in this case gwes.
':-EE — E:lcos 3: = F,cos &1

Ee _ (1 _ ‘EI) cos &,

E; E. cos 0y

o E= 1 — ‘V'{f_r E} cos 6,
Insert this in eq. -E_.E :; e, E; cos 6,

B -1 V-8
E, - Y e "E
E e :
1 =20 feafy  EdTcosH,
Ei ™ Ve (.! E) cos £,
| B .-"IE—*(I _E) cos #,
El:' dll' (4] 'EI C,usat
£, [es cos 6, [es cos
Erfp o £s cosf
e( Ve msﬂ:) Ve cost

-\r'?msﬂun-\-"?r:mﬁ
"'"Ecm'ql ey OO&I'.L}_

_ e cos — ~ €l — sin® fy)
/Jf_»cusﬂ. + el — sin? )

Recall that zin® f. = e.;’e«sm N

= E/edcos 8y — +lefe) = sin® B,

Ea (es/e)) cos &, + ~'(esfer) — sin B,

i

gives the reflection meﬂiv:[em for parallel or vertical

The above Eauatlon g i e a_ .. polariza-
S een pmiaiied Un YETUCAL POIAriza-

tion, that is, the ratio of reflected
: o |nc1d=nt electric fi
is parallel o the plane of incidence. el strength when E

Unit-11
In a transmission line the VSWR is given as 2.5. The characteristic impedance is
50Q and the line is to transmit a power of 25 watts. Compute the magnitudes of
the maximum and the minimum voltage and current. Also determine the

™

™



magnitude of the receiving end voltage when load is (100-;80) Q
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b)  What are the properties and applications of smith chart? ™
The properties of smith chart

1. The constant r and constant x loci form two families of orthogonal circles in
the chart.
2. The constant r and constant x circles all pass through the point (', = 1,
I, =0).
3. The upper half of the diagram represents + jx.
. The lower half of the diagram represents — jx.
. For admittance the constant r circles become constant g circles, and the con-
stant x circles become constant susceptance b circles.
. The distance around the Smith chart once is one-half wavelength (A/2).
. At a point of z. = 1/p, there is a V., on the line.
. At a point of Zwu = p, there is a Vo, on the line.
. The horizontal radius to the right of the chart center corresponds 10 Vi, Toun,
Zmats and p (SWR).
10. The horizontal radius to the left of the chart center corresponds to Vi, Jua,
Zein, and 1/p.
11. Since the normalized admittance y is a reciprocal of the normalized impedance
z, the corresponding quantities in the admittance chart are 180° out of phase

wm e

oo a

Applications of Smith Charts

Smith charts find applications in all areas of RF Engineering. Some of the most popular application includes;

1. Impedance calculations on any transmission line, on any load.

2. Admittance calculations on any transmission line, on any load.

3. Calculation of the length of a short circuited piece of transmission line to
provide a required capacitive or inductive reactance.

4. Impedance matching.

Measurement of Vmax vmin Imax,imin

6. Location calculation of Zmax and Zmin

o

(OR)
a) Derive the reflection coefficient in terms of load impedance ™

In the analysis of the solutions of transmission-line equations, the traveling wave
along the line contains two components: one traveling in the positive z direction



and the other traveling the negative z direction. If the load impedance is equal to
the line characteristic impedance, however, the reflected traveling wave does not
exist.

Figure, shows a transmission line terminated in an impedance ZI. It is usually
more convenient to start solving the transmission-line problem from the receiving
rather than the sending end, since the voltage-to-current relationship at the load
point is fixed by the load impedance. The incident voltage and current waves
traveling along the transmission line are given by

V=V,em+ V. '™
I=Le™+ [ et”

in which the current wave can be expressed in terms of the voltage by

If the line has a length of I, the voltage and current at the receiving end become
Vi= Ve 4+ V_ g™

I = i{\’m"“ - V&)

Ly
The ratio of the voltage to the current at the receiving end is the load impedance.
That is,
—f o
Pt Ne - Vie " + ¥ ¢

I Vet — Y o

£y I,—/8*+= -
¥ —_— ¥, Z, L -— F
Sending Receiving
end end
O '3 =0
e 7 d —0

Fig. Transmission line terminated in a load impedance.

The reflection coefficient, which is designated by I' (gamma), is defined as

reflected voltage or current
incident voltage or current

. Eﬂ _ "L
S Vie I

If Eq. is solved for the ratio of the reflected voltage at the receiving end

which is ¥_¢*, to the incident voltage at the receiving end, which is V,e*, the re-
sult is the reflection coefficient at the receiving end:

Reflection coefficient =

Voe¥ i Lo — Iy

L =N 7+ 7
T = transmitted voltage or current V. L.
 incident voltage or current Vie Iu
e
V. Ze+ L

b) A transmission line has the propagation constant y = 0.1 + j10 and characteristic
impedance of Z, = 50 + j5 Q. The line is terminated in an impedance of 100 —
j30 Q. Find the impedance at a distance of 1.5 m from the load

™
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Unit-111

a) Derive the field equations for the electric and magnetic fields for TMmn mode in
rectangular wave guide?

It has been previously assumed that the waves are propagating in the positive z di-
rection in the waveguide.

¥

™ S|

Fig. Co-ordinates of rectangular waveguides

The TM.. modes in a rectangular guide are characterized by H. = 0. In other
words, the z component of an electric field £ must exist in order to have energy
transmission in the guide. Consequently, the Helmholtz equation for E in the rectan-
gular coordinates is given by

VE, = ¥'E,

A solution of the Helmholtz equation is in the form of

= e (57) ¢ o () () + 0o (57) e

which must be determined according to the given boundary conditions. The proce-
dures for doing so are similar to those used in finding the TE-mode wave.

The boundary conditions on E; require that the field vanishes at the waveguide
walls, since the tangent component of the electric field E. is zero on the conducting

surface. This requirement is that for E, =0 at x = 0, a, then B, = 0, and for
E.=0aty=0,b, then D, = 0. Thus the solution as shown in Eq. roqces to E

™



E. = Ex sin (m) sin (ﬂ)('fﬁz
a b

ek SIS
05 B

If either m = 0 or n = (, the field intensities all vanish. So there is no TMy, or
TMip mode in a rectangular waveguide, which means that TE; is the dominant
mode in a rectangular waveguide for @ > b. For H. = 0, the field equations, after
expanding V x H = jweE, are given by

where m =
n —

aE, .
dy + JB:E, = — jwpH,
. dE;,
JBsE: + ar = JouH,
o _3E
dx dy
B:H, = wek,
~B,H, = weE,
dH, dH.

ax ay ’
These equations can be solved simultaneously for E, , E,, H., and H, in terms of E, .

The resultant field equations for TM modes are

- s 35
o kI ax

il _jﬂrﬂ_":-
s
E. = Eq. (4-1-61)

. Jwe oL,
e

i iyl
i kX ox
H.=0

where 8; — w’ue = —k? is replaced.

The TM,, mode . . ]
field equations in rectangular waveguides are

E. = Eu cos limﬂ—x) sin (ﬂ)r"ﬂrz
e} b

I . [mmx nwyy .
E, = Eq sin (——) cos (—')e 1Re
a b

E. = Eq. (4-1-61)

H, = H,, sin (%) i (ﬂ) o 1aZ

.H_-.- = Hm [ (mx
il

H.=10

Some of the TM-mode characteristic equations are identical to those of the TE
modes, but some are different. For convenience, all are shown here;

b 1 m L
o e

= = JE:
B = wVpe 1 (f)

:#
VI = (£ fF

% = T (R
2 -i- 6]

_ Pr _
zg-—wf r;-'\h.

b) When TEio mode is propagated through a standard rectangular wave guide, the
guide wave length measured is 8cm and when TE11 mode is propagated, the guide
wave length is increased to 12cm. If the operating frequency for both the modes is
6 GHz. Calculate “a” and “b” for the guide?

™
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Derive electric and magnetic field components for TEnwn modes in rectangular
waveguide.

It has been previously assumed that the waves are propagating in the positive z

direction in the waveguide.
Below figure shows the coordinates of a rectangular waveguide.

Fig.Co-ordinates of rectangular waveguides

The TE... modes in a rectangular guide are characterized by E. = 0. In other
words, the z component of the magnetic field, /., must exist in order to have energy
transmission in the guide. Consequently, from a given Helmholtz equation,

V'H. = y*H,

a solution in the form of

H. = [A,. sin (?) + B, cos (%]] x [c,, sin (?) + D. cos (%)] Joe

~



will be determined in accordance with the given boundary conditions, where
k, = mmr/a and k, = nm/b are replaced. For a lossless dielectric, Maxwell’s curl
equations in frequency domain are

VXxE=—jwuH

Vx H = jweE
In rectangular coordinates, their components are
9E, _ 3&

dy oz = TjopH.
aa—f‘ - E}a—? = —jwpH,
Eia_f;"lz - % = jwekE,
ﬂ[:, - aﬂ—T = jweE,
ey

With the substitution a/dz = — jB, and E. = 0, the foregoing equations are sim-
plified to

B, E, = —wuH,
B:E. = wuH,
dE, dE. .
ax ay Jopt:
dH. . R
ay + jBeH, = jweE,
_ H.,
JBeH: ax = jwekE,
o, oH. _
ax dy

Solving these six n::quminns for E,, E,, H., and H, in terms of H, will give the TE-

mode field equations in rectangular waveguides as

ronditions are applied to the newly tound field equations in such a manner that either
the tangent E field or the normal H field vanishes at the surface of the conductor.
Since E. = 0, then dH./dy =0 at y = 0, b. Hence C, = 0. Since E, = 0, then

oH.Jax = Datx =0, a. Hence A, = 0.

It is generally concluded that the normal derivative of H, must vanish at the
conducting surfaces—that is,

oM. _
an

0

at the guide walls. Therefore the magnetic field in the positive z direction is given by



H, = Hy cos (ﬂ] cos (ﬂ)e‘f‘*‘z
a b
whereHoz is the amplitude constant.

TE.. field equations in rectangular waveguides as

. [mmx
H, = Hy sin (-—1-
a

g
RE

H, = H,, cos (@) sin (

H. = Hy, cos (@] cos (ng)e‘ﬂ*‘z
a

b) A TEi mode is propagated through a wave guide with a = 10cm at a frequency
2.5 GHZ, F|nd }\,c, Vp, Vg, 7\,9, Zgand Bg.

[ o Wave lrWH{ ud o =10t

Unit-1V
8 a) Derive the field equations for the electric and magnetic fields for TMmn mode in
Circular wave guide?

The TM,, modes in a circular guide are characterized by H. = 0. However, the z
component of the electric field £, must exist in order to have energy transmission in
the guide. Consequently, the Helmholtz equation for E. in a circular waveguide is

given by
VE. = y'E.

I

@
x Fig.Co-ordinates of circular waveguide

Its solution is given by
E. = EnJJk.r) cos (ng)ePe?

which is subject to the given boundary conditions.
The boundary condition requires that the tangential component of electric field

E. at ¥ = a vanishes. Conseauentlv.
Jlka)y =0

~

™



Since J.(k.r) are oscillatory functions, there are infinite numbers of roots of Ji(k.r).

For H. = O and d/dz = - jB,, the field equations in the circular guide, after
expanding V X E = — jwuH and ¥V X H = jweE, are given by

_ Bk,
Bs ki ar
E _ ZJB: 1 9E;
* & rap
E. = Eq. (4-2-48)
- Jwe 1 3E,
H: ki r ad
_ jue OE.
* TR ar
H.=

where k! = w?pe — B} has been replaced.
The field equations of TMnp modes in a circular waveguide:

e
E. = E.;;JL(—-TEJ cos (ned)e HBe?

i

e

Es = EosJw aff sin (ng)e "%

E, = ED;J,(%) cos (n)e—#e?
X .
H, = Eﬁin(i) sin (ng)e Fe?
£y a
= Eo po(Xel) o -1y 2

H, Z, Jn( a ) cos (ng)e P

H. =0
where Z, = E,/Hy, = — E4/H, = B,/(we) and k. = X,./a have been replaced and
where n = (), | v candp=1,2,3.4,....

3

I +

b)  Analyse the solutions of wave equations in cylindrical coordinates.

Solutions of Wave Equations in Cylindrical
Coordinates

Figure 4-2-1 Cylindrical coordinates,

The scalar Helmholtz equation in cylindrical coordinates is given by

1a ( a-.:.) 1Lty #y

— == +t=—T+—== 4-2-

rarlar) PGt a2 T v “-2-1)
Using the method of separation of variables, the solution is assumed in the form of

W = Rir)dip)Z(z) (4-2-2)

where R(r) = a function of the r coordinate only
D{ch) = a function of the ¢ coordinate only
Z(z) = a function of the z coordinate only

Substitution of Eq. (4-2-2) in (4-2-1) and division of the resultant by (4-2-2) yield

Id'a’*’) dde 1Lz,
FEB?(’E? treae Tz T *-2-3)

Since the sum of the three independent terms is a constant, each of the three terms
must be a constant, The third term may be set equal to a constant y3:

d*Z

e =yiZ (4-2-4)
The solutions of this equation are given by
Z= Ae7t + Be¥ (4-2-5)

where y, = propagation constant of the wave in the guide.

Inserting ¥; for the third term in the left-hand side of Eq. (4-2-3) and multi-
plying the resultant by r? yield
rd L dRYy 1 d'®

raf.e -y = i)t = 42
R (¥ =—yilri=20 {4-2-6)

dr ) & Ef

The second term is a function of ¢ only: hence equating the second term to a con-



stant {=n?) yields

d*d
E‘Fi = =n'd (4-2-7)
The solution of this equation is also a harmonic function:
& = A, sin (ndh) + B, cos (ndh) (4-2-8)
Replacing the @ term by (—a®) in Eq. (4-2-6) and multiplying through by R, we
have
d [ dR’ P
re (r dr) + [(erl? - n?IR = 0 (4-2-9)

This 15 Bessel's equation of order n in which
o+ 72 = y; (d-2-10)

This equation is called the characteristic equation of Bessel's equation. For a lossless
guide, the characteristic equation reduces to

B = tVelpe — kI (4-2-11)
The solutions of Bessel's equation are
R = C, Jjk.r) + DNk r) i4-2-12)

where J. (k. r) is the nth-order Bessel function of the first kind, representing a stand-
ing wave of cos (k.r) for v < & as shown in Fig. 4-2-2. Ny(k.r) is the nth-order Bes-
sel function of the second kind, representing a standing wave of sin (kr) for r > a
as shown in Fig. 4.2-3.

Therefore the total solution of the Helmhohz equation in ¢ylindrical coordi-
nates is given by

W o= [Coddkr) 4 DaNSkor) [ As sin (nd) + B, cos (nd)]e =#e (4-2-13)
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Figure 4-2-2 Bessel functions of the first kind.
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Figure 4-2-3  Bessel functions of the second kind.
At r = 0, however, k.r = 0; then the function N, approaches infinity, so 0, = 0.

This means that at ¥ = 0 on the z axis, the field must be finite. Also, by use of
trigonometric manipulations, the two sinusoidal terms become

A, sin (nd) + B, cos (ng) = VAL + Bl cos [mii' + tan"(%)J

= F, cos (ngh) (4-2-14)
Finally, the solution of the Helmholtz equation is reduced to
W = Wodik.r) cos (ngd)e B (4-2-15)
(OR)
9 a) Listoutthe various characteristics of standard circular waveguides ™

The inner diameter of a circular waveguide is regulated by the frequency of the sig-
nal being transmitted. For example: at X-band frequencies from 8 to 12 GHz, the in-
ner diameter of a circular waveguide designated as EIA WC(94) by the Electronic
Industry Association is 2.383 cm (0.938 in.). Table 4-2-8 tabulates the characteris-
tics of the standard circular waveguides.



EIA® Cutoff frequency Recommended
designation Inside diameter for air-filled frequency range
WC( ) in cm (in.) waveguide in GHz for TE;; mode in GHz
992 25.184 (9.915) 0.698 0.80-1.10
847 21.514 (8.470) 0.817 0.94-1.29
724 18.377 (7.235) 0.957 1.10-1.51
618 15.700 (6.181) 1.120 1.29-1.76
528 13.411 (5.280) 1.311 1.51-2.07
451 11.458 (4.511) 1.534 1.76-2.42
385 9.787 (3.853) 1.796 2.07-2.83
329 8.362 (3.292) 2.102 2.42-3.31
281 7.142 (2.812) 2.461 2.83-3.88
240 6.104 (2.403) 2.880 3.31-4.54
205 5199 (2.047) 3.381 3.89-5.33
175 4.445 (1.750) 3,055 4,54-6.,23
150 3.810 (1.500) 4.614 5.30-7.27
128 3.254 (1.281) 5.402 6.21-8.51
109 2.779 (1.094) 6.326 7.27-9.97
94 2.383 (0.938) 7.377 8.49-11.60
80 2.024 (0.797) 8.685 9.97-13.70
69 1.748 (0.688) 10.057 11.60-15.90
59 1.509 (0.594) 11.649 13.40-18.40
50 1.270  (0.500) 13.842 15.90-21.80
44 1113 (0.438) 15.794 18.20-24.90
38 0.953 (0.375) 18.446 21.20-29.10
13 0.833 (0.328) 21.103 24.30-33.20
28 0.714 (0.281) 24.620 28.30-38.80
25 0.635 (0.250) 27.683 31.80—43.60
22 0.556 (0.219) 31.617 36.40-49.80
19 0.478 (0.188) 36.776 42.40-58.10
17 0.437 (0.172) 40,227 46.30-63.50
14 0.358 (0.141) 49.103 56.60-71.50
13 0.318 {0.125) 55.280 63.50-87.20
1 0.277 (0.109) 63.462 72.70-99.70
9 0.239  (0.094) 73.552 84.80-116.00
b)  Find the related expressions for not propagation of TEM waves in hallow ™
waveguides.

The transverse electric and transverse magnetic (TEM) modes or transmission-line
modes are characterized by

E.=H.=10

This means that the electric and magnetic fields are completely transverse to the di-
rection of wave propagation. This mode cannot exist in hollow waveguides, since it
requires two conductors, such as the coaxial transmission line and two-open-wire
line. Analysis of the TEM mode illustrates an excellent analogous relationship be-  \veen the method of circuit

theory and that of the field theory.

Maxwell's curl equations in cylindrical coordinates

VXE=—jowuH

V x H = jweE
become
B.E = wuH,
B,E; = wuH,
d dEr
— - - =1
ar{FF.i}' ﬂ-tﬁ
B:H. = —weE,
B.Hs; = weE,
d aH,
E{fHd.} ﬂé = {]
where dfdr = — jB,and E. = H. = 0 are replaced.

The propagation constant of the TEM mode in a coaxial line:

|BE=WV;;

which is the phase constant of the wave in a lossless transmission line with a dielec-

tric.

In comparing the preceding equation with the characteristic equation of the Helmholtz equation in cylindrical

coordinates as given in

B = Vw'lpe — ki

it is evident that



k.=10

This means that the cutoff frequency of the TEM mode in a coaxial line is zero,
which is the same as in ordinary transmission lines.

The phase velocity of the TEM mode can be expressed from Eq as
w 1

"B Ve
which is the velocity of light in an unbounded dielectric.
The wave impedance of the TEM mode is found from either Egs.

n(TEM) = é

which is the wave impedance of a lossless transmission line in a dielectric.
Ampére’s law states that the line integral of H about any closed path is exactl

equal to the current enclosed by that path. This is

%H ~d€ =1 = he ™ = 2nrH,



I B.Tech Reqular DEGREE EXAMINATION
Department of ECE

Name of the Subject: EMWTL

Subject Code: 20EC403

Date of Exam: 03-08-2023

Signature of the External



