20ECD22

1M 1**M** 1M1M

Hall Ticket Number:

1	1				

III/IV B.Tech (Regular) DEGREE EXAMINATION

July/August, 2023HSixth SemesterTime: Three Hours		ugust, 2023EleSemesterhree Hours	ctronics & Communications Engineering Mobile & Cellular Communication Maximum: 70 Mark	g s
Time: Three Hours Answer question 1 compulsory. Answer one question from each unit. 1 a) Give the advantages of cell splitting.			(14X1 = 14Marks) (4X14=56 Marks)))
	 y/August, 2023 th Semester ne: Three Hours wer question 1 computed wer one question from the advant bound of t		CO BL	Μ
1	a)	Give the advantages of cell splitting.	CO1 L2	11
	b)	What is Grade of service?	CO1 L2	1N
	c)	Give the examples of Examples of wireless commu	nication systems? CO1 L1	1N
	d)	Define Free space propagation model.	CO2 L2	1N
	e)	What is ground reflection (Two-Ray) model.	CO2 L2	11
	f)	What is Fading effects due to multipath time delay si	CO2 L2	11

	e)	What is ground reflection (Two-Ray) model.	CO2	L2	1 M
	f)	What is Fading effects due to multipath time delay spread?	CO2	L2	1 M
	g)	What is Decision feedback equalization?	CO3	L2	1 M
	h)	Differences between Frequency diversity and Time diversity.	CO3	L2	1 M
	i)	What are First generation cellular systems?	CO4	L2	1 M
	j)	What are the Key requirements of LTE design?	CO4	L2	1 M
	k)	Write one difference between co-channel and adjacent channel interference.	CO1	L2	1 M
	1)	What is soft Handoff?	CO1	L1	1 M
	m)	What is the use of sectoring?	CO1	L1	1M
	n)	Define scattering.	CO2	L2	1 M
		<u>Unit-I</u>			
2	a)	Elucidate the evolution of Mobile Radio Communications.	CO1	L2	7M
	b)	Discuss in detail about microcell zone concept.	CO1	L4	7M
		(OR)			
3	a)	Define Handoff. What are its types? Explain in detail.	CO1	L2	7M
	b)	Illustrate the frequency reuse concept.	CO1	L3	
		<u>Unit-II</u>	GO2		
4	a)	Explain about the Practical link budget design using path loss models.	CO2	L2	7M
	b)	Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering.	CO2	L4	/M
		(OR)			
5	a)	What is Free space propagation model and explain in detail.	CO2	L2	7M
	b)	Discuss the different types of small-scale fading.	CO2	L4	7M
_		<u>Unit-III</u>		.	
6	a)	Discuss about the merits and demerits of Maximum likelihood sequence estimation (MLSE) equalizer.	CO3	L4	/M
	b)	Explain the differences between Linear equalizers and Nonlinear equalization. (OR)	CO3	L3	7M
7	a)	Draw and explain about RAKE receiver.	CO3	L2	7M
	b)	Write a short note on Selection diversity and feedback or scanning diversity.	CO3	L2	7M
8	a)	With a neat block diagram explain the architecture of GSM	CO4	L4	7M
-	b)	Explain the LTE architecture with neat sketch	CO4	L2	7M
	- /	(OR)			-
9	a)	Discuss in detail the 2G and 3G wireless network standards. Compare the relative	CO4	L4	7M

Discuss in detail the 2G and 3G wireless network standards. Compare the relative v merits and demerits of both the standards. b) Discuss the improvements from 1G to 4G. CO4 L3 7M

━∞ੇ=∞♦∞=≠∞

SCHEME OF VALUTION

III/IV Regular Degree Examination, August 2023 Electronics and Communication Engineering

Mobile & Cellular Communications [20ECD22]

Prepared by

Verified by

(Dr. J. Chandrasekhar Rao)

(HOD-ECE)

Scheme

	a)	Give the advantages of cell splitting
	a)	It Accommodate large number of users it provides high quality service. High capacity is
		achieved by using cell concept
	b)	What is Grade of service?
	~)	The grade of service (GOS) is a measure of the ability of a user to access a trunked system
		during the busiest hour.
	c)	Give the examples of Examples of wireless communication systems?
	-)	Paging systems, Cordless telephone systems, Cellular Telephone Systems, Hand-held walkie-
		talkies Remote controllers and Garage door openers
		unkles, Remote controners une ouruge door openers.
	d)	Define Free space propagation model.
		The free space propagation model is used to predict received signal strength when the
		transmitter and receiver have a clear, unobstructed line-of-sight path between them.
	e)	What is ground reflection (Two-Ray) model.
		The two-rays ground-reflection model is a multipath radio propagation model which predicts
		the path losses between a transmitting antenna and a receiving antenna when they are in line of
		sight (LOS).
	f)	What is Fading effects due to multipath time delay spread?
		Time dispersion due to multipath delay spread leads to flat fading or frequency selective fading.
	g)	What is Decision feedback equalization?
		DFE Can be realized in either the direct transversal form or as a lattice filter. Once an
		information symbol has been detected, the ISI that it induces on future symbols can be estimated
		and subtracted out before detection of subsequent symbols.
	h)	Differences between Frequency diversity and Time diversity
	,	Frequency diversity transmits information on more than one carrier frequency
		Time diversity repeatedly transmits information at time spacings that exceed the coherence time
		of the channel.
	i)	What are First generation cellular systems?
		AMPS (Advanced Mobile Phone Service) in the United States, European Total Access
		Communication Systems (ETACS) in Europe and NTACS in Japan.
	j)	What are the Key requirements of LTE design?
		Performance on Par with Wired Broadband, Flexible Spectrum Usage, Co-existence and
		Interworking with 3G Systems as well as Non-3GPP Systems (3GPP2 CDMA and WiMAX)
		and Reducing Cost per Megabyte.
	k)	Write one difference between co-channel and adjacent channel interference.
	,	The interference between signals from co-channel cells is called co-channel interference.
		Interference resulting from signals which are adjacent in frequency to the desired signal is called
		adjacent channel interference.
Γ	l)	What is soft Handoff?
		It is defined as a soft handoff where a new connection is established before the old one is
		released.
	m)	What is the use of sectoring?
		The technique for decreasing co-channel interference and thus increasing system performance by
		using directional antennas is called <i>sectoring</i> .
	n)	Define scattering.
		Scattering occurs when medium has objects that are smaller or comparable to the wavelength of
1		the signal

Year	Important Milestone
Before 1892	Nikola Tesla found theoretical basis for radio communication and
	demonstrated radio transmission.
1897	Guglielmo Marconi demonstrated radio communications; awarded patent for it.
1902	First verifiable transatlantic radio transmission (telegraphy) made from an Italian cruiser with Marconi aboard using 272kHz signals.
1906	Reginald Fessendon made first successful two-way transmission over North Atlantic and demonstrated voice transmission using amplitude modulation.
1915	First transatlantic radio transmission of voice from Arlington, Virginia to Paris, France.
1921	Short wave radio (HF radio: 2.3MHz to 25.82MHz) developed.
1934	AM radio systems used in 194 U.S. municipalities for public safety.
1935	Edwin Armstrong demonstrated FM.
1946	First mobile telephone service in St. Louis, Missouri introduced by AT&T.
1948	Claude Shannon published his seminal theory on channel capacity; $C=Blog_2(1+SNR).$
1956	Ericsson developed first automatic mobile phone called Mobile Telephone A (weighed 40kg).
1960-1970	Bell Labs developed cellular concept.
1971	AT&T submits proposal for a cellular mobile system concept to FCC.
1979	First commercial cellular system deployed by NTT in Japan.
1983	FCC allocated 40MHz of spectrum in 800MHz for AMPS.
1983	Advanced Mobile Phone Service (AMPS) launched in Chicago.
1989	Qualcomm proposes CDMA as a more efficient, wireless voice technology.
1991	First commercial GSM deployment in Europe (Finland).
1995	First commercial launch of CDMA (IS-95) service by Hutchinson Telecom, Hong Kong.
1995	Personal Communication Services (PCS) license in the 1800/1900MHz band auctioned in the United States.
2001	NTT DoCoMo launched first commercial 3G service using UMTS WCDMA.
2002	South Korea Telecom launches first CDMA2000 EV-DO network.
2005	UMTS/HSDPA launched in 16 major markets by AT&T.
2005	IEEE 802.16e standard, the air-interface for Mobile WiMAX, completed and approved.
2006	WiBro (uses the IEEE 802.16e air-interface) commercial services launched in South Korea.
2007	Apple iPhone launched, driving dramatic growth in mobile data consumption.
2009	3GPP Release 8 LTE/SAE specifications completed.

	b)	Discuss in detail about microcell zone concept.	7M
		Microwave or fiber optic	
		Tx/Rx	
		• <i>Microcell-zone</i> concept distributes the coverage of a cell and extends the cell boundary to hard to-reach	
		single base station and share the same radio equipment. The zones are connected by coaxial cable	
		fiberoptic cable, or microwave link to the base station. Multiple zones and a single base station make up	
		a cell. As a mobile travels within the cell, it is served by the zone with the strongest signal. As a mobile	
		travels from one zone to another within the cell, it retains the same channel.	
		• The base station simply switches the channel to a different zone site. The channels are distributed in time and space by all three zones and are also reused in co-channel cells	
		 Ex: To achieve S/I of 18 dB: 	
		Normal system requires D/R ratio of 4.6 with N=7.	
		Microcell system requires D/R ratio of 3 with N=3. This reduction in the electron size from $N = 7 \pm 2 N = 2$ merely $4 \pm 2 + 2 = 2$ dimensions in a maximum size from $N = 7 \pm 2 = 2$	
		1 - 1 mile redulction in the culleter cize from $N = 1$ to $N = 3$ require to $1/34$ times increased in consecutiv	
		for a system using microcell zone concept	
		for a system using microcell zone concept. (OR)	
3	a)	for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail.	7M
3	a)	(OR) Define Handoff. What are its types? Explain in detail. • When a mobile moves into a different cell while a conversation is in progress, the MSC	7M
3	a)	(OR) Define Handoff. What are its types? Explain in detail. • When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This	7M
3	a)	 (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. 	7M
3	a)	 In the cluster size from N = 7 to N = 5 results to 2.55 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: 	7M
3	a)	 In a reduction in the cluster size from N = 7 to N = 5 results to 2.55 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: i. Hard Handoff 	7M
3	a)	 In the cluster size from N = 7 to N = 5 results to 2.55 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: i. Hard Handoff ii. Soft Handoff 	7M
3	a)	 Inits reduction in the cluster size from N = 7 to N = 5 results to 2.55 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: i. Hard Handoff ii. Soft Handoff iii. Queued Handoff 	7M
3	a)	 Inits reduction in the cluster size from N = 7 to N = 5 results to 2.55 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: i. Hard Handoff ii. Soft Handoff iii. Queued Handoff 	7M
3	a)	 Inits reduction in the cluster size from N = 7 to N = 5 results to 2.55 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: i. Hard Handoff ii. Soft Handoff iii. Queued Handoff v. Intersystem Handoff 	7M
3	a)	 Init reduction in the cluster size from N = 7 to N = 5 results to 2.55 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: i. Hard Handoff ii. Soft Handoff iii. Queued Handoff v. Delayed Handoff v. Intersystem Handoff 	7M
3	a)	 Init reduction in the cluster size from N = 7 to N = 5 festilis to 2.55 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: i. Hard Handoff ii. Soft Handoff iv. Delayed Handoff v. Intersystem Handoff vi. Intrasystem Handoff vii. Network controlled Handoff (NCHO) 	7M
3	a)	 Inits reduction in the cluster size from N = 7 to N = 5 results to 2.55 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: i. Hard Handoff ii. Soft Handoff iv. Delayed Handoff v. Intersystem Handoff vi. Intrasystem Handoff vii. Network controlled Handoff (NCHO) viii. Mobile Assisted Handoff (MAHO) 	7M
3	a)	 Inits reduction in the cluster size from <i>N</i> = <i>T</i> to <i>N</i> = <i>S</i> results to 2.35 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: i. Hard Handoff ii. Soft Handoff iv. Delayed Handoff v. Intersystem Handoff vi. Intrasystem Handoff vii. Network controlled Handoff (NCHO) viii. Mobile Assisted Handoff (MAHO) Illustrate the frequency reuse concept. 	7M 7M
3	a) b)	 Inits reduction in the cluster size from <i>N</i> = 7 to <i>N</i> = 5 results to 2.55 tilles increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: i. Hard Handoff ii. Soft Handoff iv. Delayed Handoff v. Intersystem Handoff vi. Intrasystem Handoff (NCHO) viii. Network controlled Handoff (MAHO) Illustrate the frequency reuse concept. 	7M 7M
3	a)	 Inits reduction in the cluster size from N = 7 to N = 3 results to 2.33 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: Hard Handoff Soft Handoff Queued Handoff Used Handoff Used Handoff Intrasystem Handoff Intrasystem Handoff Network controlled Handoff (NCHO) Mobile Assisted Handoff (MAHO) Illustrate the frequency reuse concept. The design process of selecting and allocating channel groups for all of the cellular base stations within a system is called frequency reuse or frequency planning. 	7M 7M 7M
3	a) b)	 Inis reduction in the cluster size from <i>N</i> = <i>T</i> to <i>N</i> = 5 results to 2.35 times increase in capacity for a system using microcell zone concept. OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: Hard Handoff Soft Handoff Soft Handoff Ueued Handoff Ueued Handoff Intersystem Handoff Intrasystem Handoff Network controlled Handoff (NCHO) Mobile Assisted Handoff (MAHO) Illustrate the frequency reuse concept. The design process of selecting and allocating channel groups for all of the cellular base stations within a system is called frequency reuse or frequency planning. 	7M 7M
3	a)	 Inis reduction in the cluster size from N = 7 to N = 5 results to 2.55 thiles increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. The handoffs are of following types: Hard Handoff Soft Handoff Queued Handoff Untersystem Handoff Intrasystem Handoff Network controlled Handoff (NCHO) Wein Mobile Assisted Handoff (MAHO) Illustrate the frequency reuse concept. The design process of selecting and allocating channel groups for all of the cellular base stations within a system is called frequency reuse or frequency planning. Consider a cellular system: Total number of duplex channels available for use: <i>S</i> channels 	7M 7M 7M
3	a) b)	In the cluster size from $N = 1$ to $N = 5$ results to 2.55 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. • When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. • The handoffs are of following types: i. Hard Handoff ii. Soft Handoff iii. Queued Handoff v. Delayed Handoff v. Intersystem Handoff vii. Intrasystem Handoff viii. Network controlled Handoff (NCHO) viiii. Mobile Assisted Handoff (MAHO) Illustrate the frequency reuse concept. The design process of selecting and allocating channel groups for all of the cellular base stations within a system is called frequency reuse or frequency planning. Consider a cellular system: • Total number of duplex channels available for use: S channels • Cluster size : N cells • No. of channels in and cell is $k = 501$ (where $K < 5$)	7M 7M
3	a)	This reduction in the cluster size from $N = 7$ to $N = 5$ results to 2.55 times increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. • When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. • The handoffs are of following types: i. Hard Handoff ii. Soft Handoff iii. Queued Handoff v. Intersystem Handoff v. Intersystem Handoff vi. Intrasystem Handoff vi. Intrasystem Handoff (MAHO) Illustrate the frequency reuse concept. The design process of selecting and allocating channel groups for all of the cellular base stations within a system is called frequency reuse or frequency planning. Consider a cellular system: • Total number of duplex channels available for use: <i>S</i> channels • No. of channels in each cell : $k=S/N$ (where $K < S$) • The total number of available radio acher plane are he avaraged on $S = k^*N$	7M 7M
3	a) b)	Init if $V = V$ to $V = S$ results to 2.55 titles increase in capacity for a system using microcell zone concept. (OR) Define Handoff. What are its types? Explain in detail. • When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. • The handoffs are of following types: i. Hard Handoff iii. Queued Handoff v. Delayed Handoff v. Intersystem Handoff vi. Intrasystem Handoff vi. Intrasystem Handoff vi. Network controlled Handoff (NCHO) viii. Mobile Assisted Handoff (MAHO) Illustrate the frequency reuse concept. The design process of selecting and allocating channel groups for all of the cellular base stations within a system is called frequency reuse or frequency planning. Consider a cellular system: • Total number of duplex channels available for use: S channels • Cluster size : N cells • No. of channels in each cell : $k=S/N$ (where $K < S$) • The total number of available radio channels can be expressed as $S = k*N$	7M 7M
3	a) b)	In the cluster size from $N = J$ results to 2.35 times inclease in clapacity (OR) Define Handoff. What are its types? Explain in detail. • When a mobile moves into a different cell while a conversation is in progress, the MSC automatically transfers the call to a new channel belonging to the new base station. This procedure is called handoff. • The handoffs are of following types: i. Hard Handoff iii. Queued Handoff v. Delayed Handoff v. Intersystem Handoff vi. Intrasystem Handoff vi. Intrasystem Handoff vi. Intrasystem Handoff viii. Network controlled Handoff (NCHO) viiii. Mobile Assisted Handoff (MAHO) Illustrate the frequency reuse concept. The design process of selecting and allocating channel groups for all of the cellular base stations within a system is called frequency reuse or frequency planning. Consider a cellular system: • Total number of duplex channels available for use: S channels • Cluster size : N cells • No. of channels in each cell : $k=S/N$ (where $K < S$) • The total number of available radio channels can be expressed as $S = k^*N$ • Capacity of a cluster : $C = k^*N = S$ Channels • If a queue is analized to the mode that langreging in grot the system: $C = M^*k^*N = M^*s^*$	7M 7M

4a)Explain about the Practical link budget design using path loss models. i. Log-Distance Path Loss Model: The average large-scale path loss for an arbitrary T-R separation is expressed as a function of distance by using a path loss exponent, n. $\overline{PL}(d) \propto \left(\frac{d}{d_o}\right)^n$ $\overline{PL}(d) dB = \overline{PL}(d_o) dB + 10n \log\left(\frac{d}{d_o}\right)$ ii. Log-Normal Shadowing Path Loss Model Log-distance path loss gives only the average value of path loss. It does not consider the shadowing effects. Surrounding environment may be vastly different at two locations having the same T-R separation d. More accurate model includes a random variable to account for change in environment. $PL(d)[dB] = \overline{PL}(d)[dB] + X_{\sigma} = \overline{PL}(d_0)[dB] + 10n \log\left(\frac{d}{d_0}\right) + X_{\sigma}$ $P_r(d)[dBm] = P_t(d)[dBm] - PL(d)[dB]$ X_{σ} : Zero mean Gaussian random variable (dB) σ : Standard deviation (dB)b)Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering. Three basic propagation mechanisms which impact the propagation in mobile radio communication system are: Reflection, Diffraction, and Scattering. Reflection: It occurs when a propagating electromagnetic wave impinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls.	7M
ConstraintExplain about the Tractical mix four design using path loss models.i. Log-Distance Path Loss Model: The average large-scale path loss for an arbitrary T-R separation is expressed as a function of distance by using a path loss exponent, n. $\overline{PL}(d) \propto \left(\frac{d}{d_o}\right)^n$ $\overline{PL}(d)[dB] = \overline{PL}(d_o)[dB] + 10n \log\left(\frac{d}{d_o}\right)$ ii. Log-Distance Path Loss Model Log-distance path loss gives only the average value of path loss. It does not consider the shadowing effects. Surrounding environment may be vastly different at two locations having the same T-R separation d. More accurate model includes a random variable to account for change in environment. $PL(d)[dB] = \overline{PL}(d)[dB] + X_{\sigma} = \overline{PL}(d_0)[dB] + 10n \log\left(\frac{d}{d_0}\right) + X_{\sigma}$ $P_r(d)[dBm] = P_r(d)[dBm] - PL(d)[dB]$ X_{σ} : Zero mean Gaussian random variable (dB) σ : Standard deviation (dB)b)Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering. 	/ 101
The average large-scale path loss for an arbitrary T-R separation is expressed as a function of distance by using a path loss exponent, n. $\overline{PL}(d) \propto \left(\frac{d}{d_o}\right)^n$ $\overline{PL}(d)[dB] = \overline{PL}(d_o)[dB] + 10n \log\left(\frac{d}{d_o}\right)$ ii. Log-Normal Shadowing Path Loss Model Log-distance path loss gives only the average value of path loss. It does not consider the shadowing effects.Surrounding environment may be vastly different at two locations having the same T-R separation d. More accurate model includes a random variable to account for change in environment. $PL(d)[dB] = \overline{PL}(d)[dB] + X_{\sigma} = \overline{PL}(d_0)[dB] + 10n \log\left(\frac{d}{d_0}\right) + X_{\sigma}$ $P_r(d)[dBm] = P_t(d)[dBm] - PL(d)[dB]$ $\chi_{\sigma}: Zero$ mean Gaussian random variable (dB) $\sigma :$ Standard deviation (dB) b)Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering.Three basic propagation mechanisms which impact the propagation in mobile radio communication system are: Reflection, Diffraction, and scattering.a. Reflection: It occurs when a propagating electromagnetic wave impinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls.	
$\overline{PL}(d) \propto \left(\frac{d}{d_o}\right)^n$ $\overline{PL}(d)[dB] = \overline{PL}(d_o)[dB] + 10n \log\left(\frac{d}{d_o}\right)$ ii. Log-Normal Shadowing Path Loss Model Log-distance path loss gives only the average value of path loss. It does not consider the shadowing effects. Surrounding environment may be vastly different at two locations having the same T-R separation <i>d</i> . More accurate model includes a random variable to account for change in environment. $PL(d)[dB] = \overline{PL}(d)[dB] + X_{\sigma} = \overline{PL}(d_0)[dB] + 10n \log\left(\frac{d}{d_0}\right) + X_{\sigma}$ $P_r(d)[dBm] = P_i(d)[dBm] - PL(d)[dB]$ $X_{\sigma}: \text{ Zero mean Gaussian random variable (dB)}$ $\sigma: \text{ Standard deviation (dB)}$ b) Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering. Three basic propagation mechanisms which impact the propagation in mobile radio communication system are: Reflection, Diffraction, and Scattering. e Reflection: It occurs when a propagating electromagnetic wave impinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls.	
$\overline{PL}(d)[dB] = \overline{PL}(d_o)[dB] + 10n \log\left(\frac{a}{d_o}\right)$ ii. Log-Normal Shadowing Path Loss Model Log-distance path loss gives only the average value of path loss. It does not consider the shadowing effects. Surrounding environment may be vastly different at two locations having the same T-R separation <i>d</i> . More accurate model includes a random variable to account for change in environment. $PL(d)[dB] = \overline{PL}(d)[dB] + X_{\sigma} = \overline{PL}(d_o)[dB] + 10n \log\left(\frac{d}{d_o}\right) + X_{\sigma}$ $P_r(d)[dBm] = P_i(d)[dBm] - PL(d)[dB]$ $X_{\sigma} : \text{Zero mean Gaussian random variable (dB)}$ $\sigma : \text{Standard deviation (dB)}$ b) Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering. Three basic propagation mechanisms which impact the propagation in mobile radio communication system are: Reflection, Diffraction, and Scattering. a Reflection: It occurs when a propagating electromagnetic wave impinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls.	
h. Log-Normal Shadowing Path Loss ModelLog-distance path loss gives only the average value of path loss. It does not consider the shadowing effects.Surrounding environment may be vastly different at two locations having the same T-R separation d. More accurate model includes a random variable to account for change in environment. $PL(d)[dB] = \overline{PL}(d)[dB] + X_{\sigma} = \overline{PL}(d_0)[dB] + 10n \log \left(\frac{d}{d_0}\right) + X_{\sigma}$ $P_r(d)[dBm] = P_r(d)[dBm] - PL(d)[dB]$ X_{\sigma}: Zero mean Gaussian random variable (dB) σ : Standard deviation (dB)b)Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering.Threebasicpropagation in mobile radio communication system are: Reflection, Diffraction, and Scattering.©Reflection: It occurs when a propagating electromagnetic wave implinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls.	
Surrounding environment may be vastly different at two locations having the same T-R separation d. More accurate model includes a random variable to account for change in environment. $PL(d)[dB] = \overline{PL}(d)[dB] + X_{\sigma} = \overline{PL}(d_0)[dB] + 10n \log\left(\frac{d}{d_0}\right) + X_{\sigma}$ $P_r(d)[dBm] = P_t(d)[dBm] - PL(d)[dB]$ $X_{\sigma} : Zero mean Gaussian random variable (dB)$ $\sigma : Standard deviation (dB)$ b)Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering. Three basic propagation mechanisms which impact the propagation in mobile radio communication system are: Reflection, Diffraction, and Scattering. b Reflection: It occurs when a propagating electromagnetic wave impinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls.	
$PL(d)[dB] = \overline{PL}(d)[dB] + X_{\sigma} = \overline{PL}(d_0)[dB] + 10n \log\left(\frac{d}{d_0}\right) + X_{\sigma}$ $P_r(d)[dBm] = P_r(d)[dBm] - PL(d)[dB]$ $X_{\sigma} : \text{Zero mean Gaussian random variable (dB)}$ $\sigma : \text{Standard deviation (dB)}$ b) Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering. Three basic propagation mechanisms which impact the propagation in mobile radio communication system are: Reflection, Diffraction, and Scattering. B Reflection: It occurs when a propagating electromagnetic wave impinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls.	
 P_r(d)[dBm] = P_t(d)[dBm] - PL(d)[dB] X_σ: Zero mean Gaussian random variable (dB) σ : Standard deviation (dB) b) Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering. Three basic propagation mechanisms which impact the propagation in mobile radio communication system are: Reflection, Diffraction, and Scattering. Reflection: It occurs when a propagating electromagnetic wave impinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls. 	
X _σ : Zero mean Gaussian random variable (dB) σ : Standard deviation (dB) b) Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering. Three basic propagation mechanisms which impact the propagation in mobile radio communication system are: Reflection, Diffraction, and Scattering. Reflection: It occurs when a propagating electromagnetic wave impinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls.	
 b) Discuss in detail about the basic propagation mechanisms of reflection, diffraction, and scattering. Three basic propagation mechanisms which impact the propagation in mobile radio communication system are: Reflection, Diffraction, and Scattering. ■ Reflection: It occurs when a propagating electromagnetic wave impinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls. 	
 Three basic propagation mechanisms which impact the propagation in mobile radio communication system are: Reflection, Diffraction, and Scattering. Reflection: It occurs when a propagating electromagnetic wave impinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls. 	7M
Reflection: It occurs when a propagating electromagnetic wave impinges upon an object which has very large dimensions when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls.	
when compared to the wavelength of the propagating wave. Reflection occurs from the surface of earth, buildings and walls.	
Diffraction: It occurs when the radio transmission path between the transmitter and receiver is obstructed by a surface that has sharp irregularities (edges)	
Secondary waves resulting from the obstructing surface are present	
throughtout the space and even behind the obstacle. The secondary waves causes bending of waves around the obstacle, even	
when a LOS path does not exist between the transmitter and receiver. Bendingof electromagnetic waves around sharp edges such as, sharp towers	
 Scattering: It occurs when medium has objects that are smaller or comparable 	
to the wavelength. Scattered waves are produced by rough surfaces, small objects, or by irregularities in the channel foliage, street signs atc	

	b)	Expla	ain the LTE architecture with neat sketc	ch.	7M
9	a)	• The i. S ii. H iii. N Polic Discu and c	GSM GERAN UMTS/HSPA UTRAN UTRAN UTRAN Control UTRAN CONTROL CONTROL USER Plane Other Access Technologies EPC includes four new elements: Serving Gateway (SGW), which terminates networks; Packet Data Network Gateway (PGW), which allocates IP addresses, enforces policy, and Mobility Management Entity (MME), which as well as authenticates and authorizes user by and Charging Rules Function (PCRF), which is so in detail the 2G and 3G wireless networks lemerits of both the standards.	GRAM: CSM/EDCE Radio Access Network Mini Mobility Management Bitts Derive Poler and Network Bitter Schert Data Service Notes Control of CPCF Control of CP	7M
		No	2G	3 G	
		1	2G is short for second-generation cellular technology.	3G, short for third generation, is the third generation of wireless mobile telecommunications technology.	
		2	2G technology offers a low level of security	3G technology offers a high level of security as compared to 2G technology	
		3	The downloading and uploading speeds available in 2G technologies are up to 236 Kbps.	3G technology the downloading and uploading speeds are up to 21 Mbps and 5.7 Mbps respectively.	
		4	Uses TDMA, CDMA	Uses CDMA2000, UMTS, EDGE	
		5	Was first commercially used in Finland	Was first commercially used in Japan	
		6	Narrowband internet service	Broadband internet service	
		7	Operating frequency between 800-1800 Mhz	Operating frequency is 2100 Mhz.	
		8	Carrier frequency is 200khz	Canier frequency is 5Mhz	
		9	Disadvantages Low network range Slow data rate	Disadvantages High power consumption Low network coverage, High cost 	

Technologies / Features	1G	2G/2.5G	3G	4G
Evolution	1970	1980	1990	2000
Deployment	1984	1999	2002	2010
Data Rate	2 kbps	14.4-64 kbps	2 Mbps	200 Mbps to 1 Gbps for low mobility
Famous Standards	AMPS	2G: GSM,C]DMA 2.5G: GPRS, EDGE, 1xRTT	WCDMA, CDMA-2000	LTA, WiMAX
Technology	Analog cellular	Digital cellular	Broad bandwidth	Undefined IP and
behind	technology	technology	CDMA, IP tech- nology	seamless combina- tion of broadband. LAN/WAN/PAN/ WLAN
Service	Voice	2G: Digital Voice, SMS 2.5G: Voice+Data	Integrated high quality audio, video and data	Dynamic informa- tion access, wear- able devices
Multiplexing	FDMA	TDMA,CDMA	CDMA	CDMA
Type of Switching	Circuit	2G: Circuit 2.5G: Circuit and packet	Packet	Packet
Handoff	Horizontal	Horizontal	Horizontal	Horizontal and Vertical
Core Network	PSTN	PSTN	Packet network	Internet