
1.

a) Write Syntax of Verilog Module.
module < module name >(terminal list);

module internals

endmodule

b) List out the various levels of abstraction.
◦ Behavioral level
◦ Data flow level
◦ Gate level
◦ switch level

c) How an array will be declared in Verilog HDL.
Syntax:
<data_type> <var_name>[start_idx : end_idx];
Examples:
integer count[0:7]; // An array of 8 count variables

d) Write the syntax to represent comments in Verilog HDL.
◦ a=b&&c;//one-line comment
◦ /*multiple line comment*/

e) Write the difference between $display and $monitor in Verilog HDL.
The need to call $display every time when we want to print values, but in the case of $monitor,
we need to call it only one time, and it will print a value of a variable every time when its value
is getting changed.

f) What are the logic values supported by Verilog HDL.
0, 1, X, Z

g) Write a Verilog HDL code for AND gate in Dataflow modelling.
module AND_2_data_flow (output Y, input A, B);
assign Y = A & B;
endmodule

h) Write about conditional Operator.
In Verilog, conditional statements are used to control the flow of execution based on certain
conditions.
 condition ? value_if_true : value_if_false

i) If A= 8’H32, B = 1’d0 and C = 1’b1, then find Y = {A[6:3],3{B},C}.
Y=01000001.

j) Define rise delay.
The time taken for the output of a gate to change from some value to 1 is called a rise delay.

k) Explain about implicit continuous assignment.
An equivalent method is to use an implicit continuous assignment to specify both a delay and
an assignment on the net.
//implicit continuous assignment delay
wire #10 out = in1 & in2;
//same as
wire out;
assign #10 out = in1 & in2;

l) Why Initial block is not allowed in Designing Hardware in Verilog.
An initial block is not synthesizable and hence cannot be converted into a hardware schematic
with digital elements.

m) Write a Verilog HDL code to swap two numbers without temporary variable.
always @ (posedge clock)
a<=b;
always @ (posedge clock)
b<=a;

n) Write syntax to define a task in Verilog HDL.
task (name);
input port list;
output port list;
begin
statement
end
endtask

Unit-I
2 Illustrate digital design methodologies in Verilog HDL using a example.
Design methodologies:
There are two types of design methodology.

◦ Top-down design methodology
◦ Bottom-up design methodology

(OR)
3 a) Explain the components of simulation with a neat block diagram.

 b) Discuss in detail about VLSI Design flow with neat flow chart and example

UNIT-II
4 a) Explain different data types in Verilog HDL with examples

Value level

0
1
X
Z

Nets
◦ Used to represent connections between

HW elements
◦ Values continuously driven on nets.
◦ Keyword: wire
◦ Default: One-bit values
 unless declared as vectors
◦ Default value: z
 except the trireg net, which defaults to x
◦ Examples:
◦ wire a;
Registers

◦ Registers represent data storage elements
◦ Retain value until next assignment
◦ This is not a hardware register or flipflop
◦ Keyword: reg
◦ Default value: x

◦ Values of registers can be changed anytime
in a simulation by assigning a new value to
the register.

◦ Example:
reg reset;
Vectors
◦ Net and register data types can be

declared as vectors (multiple bit widths)
◦ Syntax:
◦ wire/reg [msb_index : lsb_index]

data_id;
◦ Vectors can be declared at [high# :

low#] or [low# : high#]
◦ Example
wire [0:3] a;
wire [7:0] bus;
Integer

◦ general purpose register data type used for
manipulating quantities.

 integer variables are signed numbers.
 reg vectors are unsigned numbers.
◦ Keyword: integer

 Bit width: implementation-dependent (at
least 32-bits)

 Designer can also specify a width:
 integer [7:0] tmp;

◦ Examples:
 integer counter;
 initial
 counter = -1;
Real

◦ Real : It is also a register data type.
◦ Keyword: real
◦ Values:
 Default value: 0
 Decimal notation: 12.24
 Scientific notation: 3e6 (=3x106)
◦ Cannot have range declaration
◦ Example:

real delta;
initial
begin
 delta=4e10;
 delta=2.13;
end
integer i;
initial
 i = delta; // i gets the value 2 (rounded
value of 2.13)
 Time

◦ Register data type used to store values of
simulation time.

◦ Keyword: time
◦ Bit width: implementation-dependent (at

least 64)
◦ $time system function gives current

simulation time
◦ Example:

time save_sim_time;
initial
 save_sim_time = $time;

◦ Simulation time is measured in terms of
simulation.

 seconds. The unit is denoted by s, the
same as real time.
Arrays
◦ One-dimensional arrays and multi-

dimensional arrays are supported.
◦ Allowed for wire, reg, integer, time,real

data types
◦ Syntax:
◦ <data_type> <var_name>[start_idx :

end_idx];
◦ Examples:
◦ integer count[0:7]; // An array of 8

count variables
Memories
◦ RAM, ROM, and register-files used

many times in digital systems.
◦ Memory is an array of registers in

Verilog
◦ Word is an element of the array
◦ Can be one or more bits
◦ Examples:
reg membit[0:1023];
Parameters
◦ But can be overridden for each module

at compile-time
◦ cannot be used as variables.
◦ Syntax:
parameter <const_id>=<value>;
◦ Gives flexibility
◦ Allows to customize the module
◦ Example:
parameter port_id=5; // Defines a constant
port_id
parameter cache_line_width=256;
Strings
◦ Strings are stored in reg variables.
◦ 8-bits required per character
◦ Example:
reg [8*18:1] string_value;
initial
 string_value = “Hello World!”;

(OR)
5 a) Explain about the components of the Verilog module.

• The module name, port list, port declarations, and optional parameters must come first in a
module definition.

• Port list and port declarations are present only if the module has any ports to interact with the
external environment.

• The components can be in any order and at any place in the module
• The endmodule statement must always come last in a module definition.
• All components except module, module name, and endmodule are optional and can be mixed

and matched as per design needs.

b) Explain port declaration with an example using Verilog code.

• All ports in the list of ports must be declared in the module.
• Ports can be declared as follows:
• Verilog keyword types of port

• Input input port

• Output output port

• Inout bidirectional port

Unit-III

6 a) Design and write Verilog HDL code for a 4-bit Adder in gate level modelling.
Full Adder
module full_adder(
 input a,
 input b,
 input cin,
 output s,
 output cout,
 wire p,q,r);

xor(p,a,b);
and(r,a,b);
xor(sum,p,cin);
and(q,p,cin);
or(cout,q,r);
endmodule
4-bit Adder
module four_bit_adder(

 input [3:0] A,
 input [3:0] B,
 input C0,
 output [3:0] S,
 output C4);
 wire C1,C2,C3;
 full_adder fa0 (A[0],B[0],C0,S[0],C1);
 full_adder fa1 (A[1],B[1],C1,S[1],C2);
 full_adder fa2 (A[2],B[2],C2,S[2],C3);
 full_adder fa3 (A[3],B[3],C3,S[3],C4);
endmodule
Test bench
module test_4_bit();

 reg [3:0] A;
 reg [3:0] B;
 reg C0;
 wire [3:0] S;
 wire C4;
 four_bit_adder dut(A,B,C0,S,C4);
 initial begin
 A = 4'b0011;B=4'b0011;C0 = 1'b0; #10;
 A = 4'b1011;B=4'b0111;C0 = 1'b1; #10;
 A = 4'b1111;B=4'b1111;C0 = 1'b1; #10;
 end
endmodule

(OR)
7 a) Design and write Verilog HDL code for 4:16 decoder in dataflow modelling style

module Decoder4x16 (input [3:0] select,
input enable, output reg [16:0] out);
always @(select, enable)
begin
if(enable == 1'b0)
out = 16'b0000000000000000;
else if(enable == 1'b1)
if(select == 4'b0000)
out <= 16'b0000000000000001;
else if(select == 4'b0001)
out <= 16'b0000000000000010;
else if(select == 4'b0010)
out <= 16'b0000000000000100;
else if(select == 4'b0011)
out <= 16'b0000000000001000;
else if(select == 4'b0100)
out <= 16'b0000000000010000;
else if(select == 4'b0101)
out <= 16'b0000000000100000;
else if(select == 4'b0110)
out <= 16'b0000000001000000;
else if(select == 4'b0111)
out <= 16'b0000000010000000;
else if(select == 4'b1000)
out <= 16'b0000000100000000;
else if(select == 4'b1001)
out <= 16'b0000001000000000;
else if(select == 4'b1010)
out <= 16'b0000010000000000;
else if(select == 4'b1011)
out <= 16'b0000100000000000;

else if(select == 4'b1100)
out <= 16'b0001000000000000;
else if(select == 4'b1101)
out <= 16'b0010000000000000;
else if(select == 4'b111)
out <= 16'b0100000000000000;
else if(select == 4'b1111)
out <= 16'b1000000000000000;
end
endmodule
Testbench
module Decoder4x16_test;
reg [3:0] select;
reg enable;
wire [16:0] out;
parameter sim_time = 2800;
Decoder4x16 decoder(select, enable, out);
initial #sim_time $finish;
initial
begin
select = 4'b0000;
enable = 1'b0;
repeat(16) #10 begin
enable = 1'b1;
#85 $display("select = %b \t out = %b",
select, out);
select = select + 4'b0001;
end
end
endmodule

 b) Explain about Verilog HDL Operators with examples.
Arithmetic Operators

There are two types of arithmetic operators: binary and unary.
Binary operators
Binary arithmetic operators are multiply (*), divide (/), add (+), subtract (-), power (**), and
modulus (%). Binary operators take two operands.
A = 4'b0011; B = 4'b0100; // A and B are register vectors
D = 6; E = 4; F=2// D and E are integers
A * B // Multiply A and B. Evaluates to 4'b1100
D / E // Divide D by E. Evaluates to 1. Truncates any fractional part.
A + B // Add A and B. Evaluates to 4'b0111
B - A // Subtract A from B. Evaluates to 4'b0001
 Logical Operators
Logical operators are logical-and (&&), logical-or (||) and logical-not (!). Operators && and ||
are binary operators.
1. Logical operators always evaluate to a 1-bit value, 0 (false), 1 (true), or x (ambiguous).
2. If an operand is not equal to zero, it is equivalent to a logical 1 (true condition).
3. Logical operators take variables or expressions as operands.
// Logical operations
A = 3; B = 0;
A && B // Evaluates to 0. Equivalent to (logical-1 && logical-0)
A || B // Evaluates to 1. Equivalent to (logical-1 || logical-0)
Relational Operators
Relational operators are greater-than (>), less-than (<), greater-than-or-equal-to (>=), and less-
than-or-equal-to (<=).
If relational operators are used in an expression, the expression returns a logical value of 1 if
// A = 4, B = 3
// X = 4'b1010, Y = 4'b1101, Z = 4'b1xxx
A <= B // Evaluates to a logical 0
A > B // Evaluates to a logical 1
Equality Operators
Equality operators are logical equality (==), logical inequality (!=), case equality (===), and
case inequality (!==). When used in an expression, equality operators return logical value 1 if
true, 0 if false.

// A = 4, B = 3
// X = 4'b1010, Y = 4'b1101
// Z = 4'b1xxz, M = 4'b1xxz, N = 4'b1xxx
A == B // Results in logical 0
X != Y // Results in logical 1
Bitwise Operators

• Bitwise operators are negation (~), and(&), or (|), xor (^), xnor (^~, ~^). Bitwise operators
perform a bit-by-bit operation on two operands.
Example:
// X = 4'b1010, Y = 4'b1101
// Z = 4'b10x1
~X // Negation. Result is 4'b0101
X & Y // Bitwise and. Result is 4'b1000
Reduction Operators
• Reduction operators are and (&), nand (~&), or (|), nor (~|), xor (^), and xnor (~^, ^~).
• Reduction operators take only one operand.
// X = 4'b1010
&X //Equivalent to 1 & 0 & 1 & 0. Results in 1'b0
|X//Equivalent to 1 | 0 | 1 | 0. Results in 1'b1
Concatenation Operator
• The concatenation operator ({, }) provides a mechanism to append multiple operands.
// A = 1'b1, B = 2'b00, C = 2'b10, D = 3'b110
Y = {B , C} // Result Y is 4'b0010
Replication Operator
• Repetitive concatenation of the same number can be expressed by using a replication constant.
• A replication constant specifies how many times to replicate the number inside the brackets (
{ })
reg A;
reg [1:0] B, C;
reg [2:0] D;
A = 1'b1; B = 2'b00; C = 2'b10; D = 3'b110;
Y = { 4{A} } // Result Y is 4'b1111
Conditional Operator
The conditional operator(?:) takes three operands.
Usage: condition_expr ? true_expr : false_expr ;

Unit-IV
8 a) Design decade counter using behavioural style-based Verilog HDL with testbench.
 Decade Counter Verilog Code
module decade_counter(en, clock, count);
input en, clock;
output reg [3:0] count;
always @(posedge clock)
begin
if(en)
begin
if (count>=4'd0 && count<4'd10)
count<=count+4'd1;
else
count<=4'd0;
end
else

count<=4'd0;
end
endmodule
Testbench:
module decadecounter_tb;
wire [3:0] count;
reg en,clock;
decade_counter dut(.en(en), .clock(clock),
.count(count));
initial begin
$display($time," Starting the Simulation");
en=0;
clock=0;

#20 en=1'd1;
end
always
#5 clock=~clock;

initial
$monitor ($time , "clock= %b, count=
%d, en= %b", clock,count, en);
endmodule

 b) Develop a Verilog HDL code for 4:2 encoder using case statement.
4:2 encoder
module 4_2_ENC(
input [3:0]din,
output [1:0]dout);
reg [1:0]dout;
always @ (din)
case (din)
1 : dout[0] = 0;
2 : dout[1] = 1;
4 : dout[2] = 2;
8 : dout[3] = 3;
default : dout = 2’bxx;
endcase
endmodule

Testbench
initial begin
// Initialize Inputs
din = 0;
// Wait 100 ns for global reset to finish
#100;
#100; din=1;
#100; din=2;
#100; din=4;
#100; din=8;
end
initial begin
#100
$monitor(“din=%b, dout=%b”, din, dout);
end
endmodule

(OR)
9 a) Distinguish blocking and non-blocking assignments with examples.
 There are two types of Procedural assignments : Blocking and Non-Blocking
assignments.
Blocking assignments:

A blocking assignment statements are executed in the order they are specified in a sequential
block. The execution of next statement begin only after the completion of the present blocking
assignments. A blocking assignment will not block the execution of the next statement in a
parallel block.The blocking assignments are made using the operator =.
Example: initial
 begin
 a = 1;
 b = #5 2;
 c = #2 3;
 end

◦ In the above example, ‘a’ is assigned value 1 at time 0, ‘b’ is assigned value 2 at time
5, and ‘c’ is assigned value 3 at time 7.

Non-blocking assignments:

 The nonblocking assignment allows assignment scheduling without blocking the procedural
flow. The nonblocking assignment statement can be used whenever several variable
assignments within the same time step can be made without regard to order or dependence
upon each other. Non-blocking assignments are made using the operator <=.comparison
operator and not as non-blocking assignment.
Example: initial

 begin
 a <= 1;
 b <= #5 2;
 c <= #2 3;
 end
 b) Explain about functions in Verilog HDL and write the difference between task and
function.

