Hall Ticket Number:

July/August,2023

Fourth Semester
Time: Three Hours

II/TV B.Tech (Regular\Supplementary) DEGREE EXAMINATION

20CS401

Computer Science and Engineering

Microprocessors & Microcontrollers
Maximum: 70 Marks

Answer question 1 compulsory.
Answer one question from each unit.

1 a)
b)
¢)
d)
e)
f)

g)
h)
i)

7
k)
D

b)

b)

b)

b)

b)

b)

What is pipelining operation in 8086?

How does 8086 generate physical address?

What is Editor?

Define accumulator?

Explain MOVSB instruction in 8086.

What is Macro and when it is used?

Explain REP instruction of 8086.

What is the function of EQU directive in 80867

What is the difference between minimum mode and maximum mode configurations of

8086.

Define Machine cycle.

Give software interrupt instruction of 8086.

What is embedded computer system?

Write any two single-bit instructions of 80517

What is the difference between the Microprocessor and Microcontroller
Unit-1

Explain the register organization of 8086.

Discus the writing of 8086 program for use with an assembler.

(OR)
Write an 8086 assembly language program to multiply two 16 bit numbers.
What are the various instruction sets of 80867 Explain them in detail.

Unit-11
Explain various addressing modes of 8086.
Explain the following Assembler Directives
1) SEGMENT ii)) ASSUME iii) PROC iv) DW

(OR)
Explain Jump and call instructions of 8086.
Build an 8086 assembly language program to transfer a block of SOH data bytes stored in
memory location from 4000H onwards to a memory location starting from 5000H using
String instructions.

Unit-TT1
Demonstrate the memory write cycle operation of 8086 pup with a neat timing diagram.
Draw and explain the pin diagram of 8086 in minimum mode configuration.

(OR)
Draw and explain the interrupt structure of 8086.
Explain 8259A priority interrupt controller.

Unit-1V
Draw and explain the block diagram of 8051 microcontroller.
Write about addressing modes of 80517

(OR)
Draw the pin diagram of 8051 and explain about I/O port pins.
Write the assembly code for the 8051 microcontroller to toggle the pins of PORTI.

CO

COo1
COo1
CO1
Co1
CcO2
CO2
CcOo2
CO2
COo3

CO3
COo3
CO4
CO4
CO4

CO1
CcO2

CcOo2
CO1

CcO2
CO1

CcOo2
CcOo2

CO3
CO1

COo3
COo3

CO4
CO4

CO4
CO4

(14X1 = 14Marks)
(4X14=56 Marks)

BL M
L1 1M
L3 1M
L1 1M
L2 1M
L2 1M
L2 1M
L2 1M
L1 1M
L1 1M
L1 1M
L2 1M
L1 1M
L2 1M
L2 1M
L1 7™M
L2 7™
L3 7™
L2 7™
L1 7™M
L1 7™M
L2 7™
L3 7™
L3 4M
L2 10M
L2 7™
L2 7™
L2 10M
L3 4M
L1 10M
LS 4M

Hall Ticket Number:

July/August,2023

Fourth Semester
Time: Three Hours

II/TV B.Tech (Regular\Supplementary) DEGREE EXAMINATION

20CS401

Computer Science and Engineering

Microprocessors & Microcontrollers
Maximum: 70 Marks

Answer question 1 compulsory.
Answer one question from each unit.

1 a)

b)

d)

g)

h)

What is pipelining operation in 80867

Pipelining is the feature of fetching the next instruction while executing the current
instruction. Instructions are stored in memory, therefore, it has to be fetched,
decoded and then executed.

How does 8086 generate physical address?

To access a specific memory location from any segment we need 20- bit physical
address. The 8086 generates this address using the contents of segment register
and the offset register associated with it.

Physical address=segment address*10H+offset address

What is Editor?

An Editor is a program which allows / provide environment for the programmer to
create,edit, update an ALP program. The Editor stores the ASCII codes for letters
and numbers in successive RAM locations.

Define accumulator?

It consists of two 8-bit registers AL and AH, which can be combined together and
used as a 16-bit register AX. AL in this case contains the low order byte of the
word, and AH contains the high-order byte. Multiplication and Division
instructions also use the AX or AL.

Explain MOVSB instruction in 8086.

The MOVSB (move string, byte) instruction fetches the byte at address SI, stores it
at address DI and then increments or decrements the SI and DI registers by one.
What is Macro and when it is used?

A macro is a set of instructions that can be defined once and then used multiple
times in a program. A MACRO is group of small instructions that usually
performs one task. It is a

reusable section of a software program.A macro can be defined anywhere in a
program using directive MACRO &ENDM.

Explain REP instruction of 8086.

REP — Used to repeat the given instruction till CX # 0

What is the function of EQU directive in 80867

The EQU directive is used to give name to some value or symbol. Each time the
assembler finds the given names in the program, it will replace the name with the
value or a symbol.

What is the difference between minimum mode and maximum mode
configurations of 8086.

In Minimum mode, 8086 is the only processor in the system and 8086 is
operated in minimum mode when MN/MX” pin to logic 1.

In Maximum mode, we can connect more processors to 8086. 8086 max mode
is basically for implementation of allocation of global resources and passing bus
control to other co processor (i.e. second processor in the system), because two
processors can not access system bus at same instant. 8086 is operated in
minimum mode when MN/MX’ pin to logic 0.

CO
CO1

COo1

CO1

CO1

CO2

CcO2

CO2

CO2

CO3

(14X1 = 14Marks)
(4X14=56 Marks)

BL M

L1 1M
L3 1M
Ll 1M
L2 1M
L2 1M
L2 1M
L2 1M
L1 1M
L1 1M

)

k)

)

Define Machine cycle.
Machine cycle refers to a sequence of steps that a computer's central processing
unit (CPU) goes through in order to execute a single machine language instruction.
(or) a machine cycle is the time required to execute one instruction.
Give software interrupt instruction of 8086.
Software Interrupts — These are instructions inserted within the program to
generate interrupts. The instructions are of the format INT type.
What is embedded computer system?
An embedded computer system is a combination of computer hardware and
software designed for a specific function.
Write any two single-bit instructions of 80517
1. SETBC,
2. CLRC,
3. CPL C or any other
What is the difference between the Microprocessor and Microcontroller
Microprocessor consists of only a Central Processing Unit, whereas Micro
Controller contains a CPU, Memory, I/O all integrated into one chip. The
microprocessor is useful in Personal Computers whereas Micro Controller is
useful in an embedded system

Unit-1
Explain the register organization of 8086.

(Architecture-2M, Segment Registers-2.5M, General Purpose registers-2.5M)

MEMORY
INTERFACE

[; = —o —1 In 8086, the BIU has 4

i : | memenor segment registers. Namely

i %%: , Suste CS,DS,ES,DS registers

5 g ‘ gives the starting address of

z ; I:: the physical segments.

Code Segment Register :
16-bit CS contains the base
or start of the current code
segment; I[P contains the
distance or offset from this

DI l—j—ﬁ
— s S— address to the next
FIGURE 8086 internal block diagram. tintel Corp.) instruction byte to be

fetched.

BIU computes the 20-bit physical address by logically shifting the contents of CS
bits to the left and then adding the 16-bit contents of IP.

That is, all instructions of a program are relative to the contents of the CS register
multiplied by 16 and then offset is added provided by the IP.

Data Segment Register: 16-bit register Points to the current data segment;
operands for most instructions are fetched from this segment. The 16-
bit contents of the Source Index (SI) or Destination Index (DI) or a 16-
bit displacement are used as offset for computing the 20-bit physical
address.

Stack Segment Register: 16-bit register Points to the current stack. The 20-bit
physical stack address is calculated from the Stack Segment (SS) and
the Stack Pointer (SP) for stack instructions such as PUSH and POP. In
based addressing mode, the 20-bit physical stack address is calculated
from the Stack segment (SS) and the Base Pointer (BP).

Extra Segment Register: 16-bit register Points to the extra segment in which data
(in excess of 64K pointed to by the DS) is stored. String instructions
use the ES and DI to determine the 20-bit physical address for the

CO3

CO3

CO4

CO4

CO4

CO1

L1

L2

L1

L2

L2

L1

M

M

IM

M

M

™

b)

destination.
The EU has 4 general purpose registers:

Accumulator Register (AX): Consists of two 8-bit registers AL and AH, which
can be combined together and used as a 16-bit register AX. AL in this
case contains the low order byte of the word, and AH contains the
high-order byte. The I/O instructions use the AX or AL for inputting /
outputting 16 or 8 bit data to or from an I/O port. Multiplication and
Division instructions also use the AX or AL.

Base Register (BX): Consists of two 8-bit registers BL and BH, which can be
combined together and used as a 16-bit register BX. BL in this case
contains the low-order byte of the word, and BH contains the high-
order byte. This is the only general purpose register whose contents
can be used for addressing the 8086 memory. All memory references
utilizing this register content for addressing use DS as the default
segment register.

Counter Register (CX) : Consists of two 8-bit registers CL and CH, which can be
combined together and used as a 16-bit register CX. When combined,
CL register contains the low order byte of the word, and CH contains
the high-order byte. Instructions such as SHIFT, ROTATE and LOOP
use the contents of CX as a counter.

Data Register (DX) : Word multiply, word divide, indirect I/O (Used to hold I/O
address during I/O instructions. If the result is more than 16-bits, the
lower order 16-bits are stored in accumulator and higher order 16-bits
are stored in DX register)

Discus the writing of 8086 program for use with an assembler. CO2 L2
(Assembly level programming-2M, Instruction format:3M Explanation-2M)

Assembly level programming is very important to low-level embedded
system design is used to access the processor instructions to manipulate
hardware. It is a most primitive machine level language is used to make efficient
code that consumes less number of clock cycles and takes less memory as
compared to the high-level programming language. It is a complete hardware
oriented programming language to write a program the programmer must be
aware of embedded hardware. Here, we are providing basics of assembly level
programming 8086. type of low-level computer programming language consisting
mostly of symbolic equivalents of a particular computer's machine language.
Computers produced by different manufacturers have different machine languages
and require different assemblers and assembly languages. Used two or three
mnemonics to represent each instruction type.

Assembly language program statement format :

Standard form to write statements in assembly language has four fields.

Next: ADD AL,07H ;ADD CORRE
CTION FACT
OR

1. A label is symbol or group of symbols used to represent an address which is not
specially known at the time the statement is written. Labels are not required in a
statement; they are inserted where they are needed.

2. The opcode (operation codes) contains the mnemonic for the instruction to be

™

https://www.elprocus.com/ieee-projects-on-embedded-systems/
https://www.elprocus.com/ieee-projects-on-embedded-systems/
https://www.elprocus.com/embedded-system-programming-using-keil-c-language/

b)

performed.
3. Operand field contains the data, the memory address, the port address, or the

name of the register on which the instruction is be performed.
4. Comments field starts with a semicolon. They are not part of programs but used

to remind the statement purpose.
Assembly language should be converted into binary codes for execution.
Assembler is a software program which converts assembly statements into
equivalent binary codes.

A sample Assembly language program:

mov dx, msg ;the address or message in dx
mov ah, 9 ; ah=9 - "print string" sub-function

int 0x21 ; call dos services

mov ah, Ox4c ; "terminate program" sub-function
int 0x21 ; call dos services

msg db 'Hello, World!",

(OR)
Write an 8086 assembly language program to multiply two 16 bit numbers. COo2 L3 7™
; 8086 PROGRAM F3-14.ASM '_nkthjemsmr},

; locations called MULTIPLICAND and MULTIPLIER. The result

; is stored in the memory location, PRODUCT

{ JABSTRACT : This program multiplies the two 16-bit word
|
| ;REGISTERS : Uses CS, DS, AX, DX

¢ @
Plncludy the START: [abel and the

r ams t+ o N ke

ograms to be downloaded and run need

| iPORTS : None used
| DATA_HERE SEGMENT
i MULTIPLICAND DW 204AH ; First word here
MULTIPLIER DW 3B2AH ; Second word here
: PRODUCT DW 2 DUP(0) ; Result of multiplication here
| DATA_HERE ENDS
| CODE_HERE SEGMEN
| ASS CS:CODE_HERE, DS:DATA_HERE
{ START: MOV , DATA_HERE ; Initialize DS register
MOV , AX
MOV , MULTIPLICAKND ; Get one word
MUL MULTIPLIER ; Multiply by se
MOV PRODUCT, AX
MOV PR 2 : i
In; 3V09UCT*<' bx ; Store high word of result
| ; Wait for mmand from
| CODE_HERE EMDS comand from user
, END START
|
|
| : Programs 3 si a :
; grams to be run using a debugger in DOS mus
\

; START after the END fol lowed by a carriage retur
2turn,

\J only the END directive fol lowed by a carriage ret
e o ERep Ly $itlnten & age return.

Assembly language source program to multiply two 16-f -

itresult.

it binary numbers to qivo;;; b
(> d oZ-

(Or any equivalent code -7M)
What are the various instruction sets of 8086? Explain them in detail.

(Explain any two/three instructions from each set-7M)

8086 supports 6 types of instructions

1. Data Transfer Instructions

2. Arithmetic Instructions
3.Logical Instructions

4. String manipulation Instructions
5. Process Control Instructions

6. Control Transfer Instructions

Data Transfer Instructions

These instructions are used to transfer the data from the source operand to the
destination operand. Following are the list of instructions under this group —

COl

L2 7™

Instruction to transfer a word

MOV - Used to copy the byte or word from the provided source to the
provided destination.

PUSH — Used to put a word at the top of the stack.

POP — Used to get a word from the top of the stack to the provided location.
XCHG - Used to exchange the data from two locations.

XLAT — Used to translate a byte in AL using a table in the memory.

Arithmetic Instructions

These instructions are used to perform arithmetic operations like addition,
subtraction, multiplication, division, etc.

Following is the list of instructions under this group —

Instructions to perform addition

ADD — Used to add the provided byte to byte/word to word.

ADC — Used to add with carry.

INC — Used to increment the provided byte/word by 1.

AAA — Used to adjust ASCII after addition.

DAA — Used to adjust the decimal after the addition/subtraction operation.

Instructions to perform subtraction

SUB — Used to subtract the byte from byte/word from word.

SBB — Used to perform subtraction with borrow

DEC — Used to decrement the provided byte/word by 1.

CMP — Used to compare 2 provided byte/word.

AAS — Used to adjust ASCII codes after subtraction.

DAS — Used to adjust decimal after subtraction.
Instruction to perform multiplication

MUL — Used to multiply unsigned byte by byte/word by word.
IMUL — Used to multiply signed byte by byte/word by word.

Instructions to perform division
DIV — Used to divide the unsigned word by byte or unsigned double word by
word.
IDIV — Used to divide the signed word by byte or signed double word by
word.

Bit Manipulation Instructions/ Logical Instructions

These instructions are used to perform operations where data bits are involved, i.e.
operations like logical, shift, etc.

Following is the list of instructions under this group —

Instructions to perform logical operation

NOT — Used to invert each bit of a byte or word.

AND — Used for adding each bit in a byte/word with the corresponding bit in
another byte/word.

OR — Used to multiply each bit in a byte/word with the corresponding bit in
another byte/word.

XOR — Used to perform Exclusive-OR operation over each bit in a byte/word
with the corresponding bit in another byte/word.

TEST — Used to add operands to update flags, without affecting operands.

Instructions to perform shift operations

SHL/SAL — Used to shift bits of a byte/word towards left and put zero(S) in
LSBs.
SHR — Used to shift bits of a byte/word towards the right and put zero(S) in
MSBs.

Instructions to perform rotate operations

ROL — Used to rotate bits of byte/word towards the left, i.e. MSB to LSB and
to Carry Flag [CF].

ROR — Used to rotate bits of byte/word towards the right, i.e. LSB to MSB
and to Carry Flag [CF].

RCR — Used to rotate bits of byte/word towards the right, i.e. LSB to CF and
CF to MSB.

RCL — Used to rotate bits of byte/word towards the left, i.e. MSB to CF and
CF to LSB.

String Instructions

String is a group of bytes/words and their memory is always allocated in a
sequential order.

Following is the list of instructions under this group —

REP — Used to repeat the given instruction till CX # 0.
REPE/REPZ — Used to repeat the given instruction until CX = 0 or zero flag

ZF = 1.

REPNE/REPNZ — Used to repeat the given instruction until CX = 0 or zero
flag ZF = 1.

MOVS/MOVSB/MOVSW — Used to move the byte/word from one string to
another.

COMS/COMPSB/COMPSW — Used to compare two string bytes/words.
LODS/LODSB/LODSW — Used to store the string byte into AL or string
word into AX.

Program Execution Transfer Instructions (Branch and Loop Instructions)

These instructions are used to transfer/branch the instructions during an execution.
It includes the following instructions —

Instructions to transfer the instruction during an execution without any condition —

CALL — Used to call a procedure and save their return address to the stack.
RET — Used to return from the procedure to the main program.
JMP — Used to jump to the provided address to proceed to the next instruction.

Instructions to transfer the instruction during an execution with some conditions —

JA/JINBE — Used to jump if above/not below/equal instruction satisfies.
JAE/JNB — Used to jump if above/not below instruction satisfies.

JBE/JNA — Used to jump if below/equal/ not above instruction satisfies.

JC — Used to jump if carry flag CF =1

JE/JZ — Used to jump if equal/zero flag ZF = 1

JG/JNLE — Used to jump if greater/not less than/equal instruction satisfies.
JGE/JNL — Used to jump if greater than/equal/not less than instruction satisfies.
JL/JNGE — Used to jump if less than/not greater than/equal instruction satisfies.
JLE/JNG — Used to jump if less than/equal/if not greater than instruction satisfies.
JNC — Used to jump if no carry flag (CF = 0)

JNE/JNZ — Used to jump if not equal/zero flag ZF =0

JNO — Used to jump if no overflow flag OF =0

JNP/JPO — Used to jump if not parity/parity odd PF =0

JNS — Used to jump if not sign SF =0

JO — Used to jump if overflow flag OF = 1

JP/JPE — Used to jump if parity/parity even PF =1
JS — Used to jump if sign flag SF = 1

Processor Control Instructions

These instructions are used to control the processor action by setting/resetting the
flag values.

Following are the instructions under this group —

STC — Used to set carry flag CF to 1

CLC — Used to clear/reset carry flag CF to 0

CMC — Used to put complement at the state of carry flag CF.

STD — Used to set the direction flag DF to 1

CLD — Used to clear/reset the direction flag DF to 0

STI — Used to set the interrupt enable flag to 1, i.e., enable INTR input.
CLR — Used to clear the interrupt enable flag to 0, i.e., disable INTR input.

Unit-11
Explain various addressing modes of 8086. CO2 LI
(Any 7 addressing modes-7M)

Every instruction of a program has to operate on a data. The different ways in
which a source operand is denoted in an instruction are known as addressing
modes.

Immediate Addressing Mode

The operands are specified within the instructions in this type of mode.

The first operand is never an immediate value. Instead, it contains a destination
field that specifies the length of the data and can be either a register or a memory
address.

MOV AL, 28H ; It moves the 8-bit data 28H into AL.

Register Addressing Mode

The data is referred to using the specific register in which it is stored. Both
operands in this particular addressing mode are registers.

MOV AX, BX

MOV CL, DL

Direct Addressing Mode

The instruction specifies the effective address as displacement when using this sort
of addressing mechanism.

This indicates that the value is immediately fixed and immutably entered into the
instruction.

MOV AX, [5000H] ;The square brackets around the S000H imply the contents of
the memory location. When it is executed, this instruction will copy the contents of
the memory location into the AX register.

Register Indirect Addressing Mode

In this Addressing Mode, the offset registers indirectly derive the address of the
memory region containing the data or operand.

The base register, source index, or destination index (BX, SI, or DI register,
respectively) contains the offset address of the data. Either DS or ES are the
default segments.

MOV BX, [AX] Suppose the register AX holds 4895H, then its data, 4895H, is
moved to BX.

Based Addressing Mode
Based Addressing specifies a signed 8-bit or an unsigned 16-bit displacement and

™

stores the base value for the effective address in BX or BP.

When there is an 8-bit displacement, the sign is 16-bit extended before being
added to the base value. When BX contains the base value of EA, DS, and BX are
combined to form a 20-bit physical address. BP and SS are used when BP holds
the base value of EA.

MOV AX, [BX + 04] ; Given instruction indicates that there is a value stored in
the BX register and this is added with 4 bits displacement value and will store in
the AX register.

Indexed Mode

The SI or DI register stores the index value for memory data, and the instruction
will specify either a signed 8-bit or an unsigned 16-bit displacement.

To produce the EA, displacement is added to the index value in the SI or DI
register. When there is an 8-bit displacement, the sign is 16-bit extended before
being added to the base value.

MOV CX, [SI+16] ;Given instruction indicates that there is a value stored in
the SI (Source Index) register and this is added with 16 bits displacement value
and will store in the BX register.

Based Indexed Mode

In the based index addressing of 8086, a base register (BX or BP), an index
register (SI or DI), and a displacement are added to determine the effective
address.

MOV DX, [BX + SI] ;Given instruction indicates that there is a value stored in the
SI (Source Index) register and this is added to the value of the BX register and will
store in the AX register.

Based Indexed Displacement Mode

In this addressing mode, the operand offset is calculated by summing the content
of the base register. The index records the content and an 8- or 16-bit offset.

MOV AX, [BX+DI+08] ;Given instruction indicates that there is a value stored in
the SI (Source Index) register and this is added to the value of the BX register
along with the 8-bit displacement value and will store in the AX register.

String Addressing Mode

Used to manipulate string data when performing string operations.

Effective addresses (EAs) for source and destination data are maintained in ST and
DI registers. DS and ES are the segment registers used to determine the base
addresses of the source and destination data, respectively.

MOVSB
REP MOVSB

Input/Output Mode

Accessing data from commonly used I/O mapped devices or ports is done using
these addressing modes.

Examples of Input/Output modes are given below.

IN AL, [09H]

PORTadder = 09H

(AL) < (PORT)

The content of the port with address 091 is moved to the AL register

Relative Addressing

An 8-bit signed displacement is used in this addressing mode to specify the
effective address of a program instruction in relation to the Instruction Pointer (IP).
Examples of Relative Addressing Modes are given below.

JNC START

b)

If CY=0, then PC is assigned with current PC contents plus 8 bit signed value of
START,
otherwise, the next instruction is executed.

Implied Addressing Mode
This kind of mode's instructions has no operands, and the data that the instruction
will act on will be given explicitly in the instruction.

CLC

This clears the carry flag to zero.

Explain the following Assembler Directives

1) SEGMENT (2M) ii) ASSUME 2M) iii) PROC (2M) iv) DW (1M)

SEGMENT : The SEGMENT and ENDS directives are used to identify a group
of data items or a group of instructions that put together in a particular segment.
That segment is called logical segment.

<<name to logical segment>> SEGMENT

<<name to logical segment>> ENDS

To specify the name for logical segment :Can not use spaces to separate words but
underscore. Can not use instruction mnemonics as segment names or labels.

i1) ASSUME: Informs the assembler the name of the program/ data segment that
should be used for a specific segment

Ex: ASSUME CS:CODE, DS:DATA ;Tells the assembler that the
instructions of the program are stored in the segment CODE and data are stored in
the segment DATA

iii) PROC: Indicates the beginning of a procedure
<<name of procedure>> PROC

_____________ Body of procedure

<<name of procedure>> ENDP

iv) DW : Define Word used to initialize 16-bit value
Ex: valuel DW 5089H

(OR)
Explain Jump and call instructions of 8086.
(JUMP INSTRUCTION- 3.5M CALL instruction-3.5M)

A CALL instruction is utilized to call a sub-routine. Using a CALL instruction,
the program control is transferred to a location in memory that is not a part of the
main program. A CALL instruction necessarily requires the initialization of a
Stack Pointer (SP). It is basically a control transfer type instruction because it is
used to invoke the subroutine. Once all the CALL instructions called the
subroutine and the execution of these subroutine is completed, then the program
control is transferred back to the caller by using the RET instruction. . There are
two basic types of CALLs, 1.near and 2.far.

COol L1 7™M

CcOo2 L2 "™

b)

A near CALL is a call to a procedure which is in the same code segment as the
CALL instruction. When the 8086 executes a near CALL instruction it decrements
the stack pointer by two and copies the offset of the next instruction after the
CALL on the stack. It loads IP with the offset of the first instruction of the
procedure in same segment. The near CALL is also known as intra segment CALL

A far CALL is a call to a procedure which is in a different segment from that
which contains the CALL instruction. When the 8086 executes a far CALL it
decrements the stack pointer by two and copies the contents of the CS register to
the stack. It then decrements the stack pointer by two again and copies the offset of
the instruction ,after the CALL to the stack. Finally, it loads CS with the segment
base of the segment which contains the procedure and IP with the offset of the first
instruction of the procedure in that segment. The far CALL is also known as inter
segment CALL.

Jump Instruction: There are 2 types of jump instructions.

1. Unconditional Jump (JMP)
2. Conditional Jump

Unconditional jump /JMP Instruction :

This instruction will always cause the Program Execution Transfer Instructions in
8086 Microprocessor to fetch its next instruction from the location specified in the
instruction rather than from the next location after the JMP instruction.

There are two basic types of JMPs, near and far. A near JMP is a jump where
destination location is in the same code segment. In this case only IP is changed. A
near JMP is known as intrasegment JMP. A far JMP is a jump where destination
location is from a different segment. In this case both IP and CS are changed as
specified in the destination. A far IMP is known as Inter segment JMP

J cond — Conditional Transfer Instructions:

These instructions will cause a jump to a label given in the instruction if the
desired condition(s) occurs in the program before the execution of the instruction.
The destination must be in the range of — 128 bytes to + 127 bytes from the
address of the instruction after the conditional transfer instruction. If the jump is
not taken, Program Execution Transfer Instructions in 8086 Microprocessor
simply goes on to the next instruction.

(Refer Q.No 3b. Conditional Transfer Instructions from program execution
transfer instructions)

Build an 8086 assembly language program to transfer a block of 50H data bytes
stored in memory location from 4000H onwards to a memory location starting
from 5000H using String instructions.

Mnemonics Comments

MOV SI, 4000H SI<-4000h

MOV DIL,5000H DI<-5000h

MOV AX, 0000 AX<-0000

MOV DS,AX DS<-AX

MOV ES,AX ES<-AX

MOV CX,50H CX<-50H

Cld clears the directional flag

rep movsb repeat until CX is not equal to zero and CX=CX-

1 at every step transfer the data from source to
destination memory location

CO2

™

b)

int 21h Interrupt the program execution

END end of the program

(OR) Any Equivalent Code -7TM

Unit-111
Demonstrate the memory write cycle operation of 8086 pup with a neat timing CO3 L3
diagram. (Diagram: 2M, Explanation:2M)

The following steps have to be followed in a typical write cycle:
Place the address of the location to be written on the address bus.
Place the data to be written on the data bus.

Activate the memory write control signal on the control bus.
Wait for the memory to store the data at the address location..

Drop the memory write control signal to terminate the write cycle
|

[Vo T e IT IT :
Tl e e Ve e

ALE
ADD /STATUS jxt‘%ffxlm)("”57,5.5'_ ><
ADD / DATA ¥ A1s—4, | ValiddataD,.— D,
WR
DEXN
DT/R \
Draw and explain the pin diagram of 8086 in minimum mode configuration. COl L2

(Diagram: 3M, Explanation:7M)

Pin Diagram and Description of 8086 Microprocessor

Definition: 8086 is a 16-bit microprocessor and was created by Intel in 1978. Like
the pin configuration of 8085 microprocessor, the 8086 microprocessor also
contains 40 pins dual in line. However, unlike the 8085 microprocessor, an 8086 to
have better performance, operates in 2 modes that are minimum and maximum
mode.

The minimum mode is a single processor configuration while the maximum mode
1s a multiple processor configuration. Due to this reason, in the 40 pin IC of 8086
microprocessor, 8 pins i.e., pin numbered from 24 to 32 are assigned different
configurations separately according to the two modes.

Pin Diagram 8086 Microprocessor

An 8086 microprocessor is also a 40 pin IC but has few separate pin configuration
for minimum and maximum mode

The figure below represents the pin diagram of 8086 microprocessor:

4M

10M

https://electronicsdesk.com/8086-microprocessor.html
https://electronicsdesk.com/microprocessor.html
https://electronicsdesk.com/pin-diagram-of-8085-microprocessor.html
https://electronicsdesk.com/8085-microprocessor.html

MAX MIN
MODE MODE

Vss(GNDY O 1 40 Vec (5P
AD14 [2 38 QO AD15
AD13 O3 38 [0 A16/53
AD12 4 37 O A17/s4
AD11 O 5 B0 Alamss
AD10 [O6 35[0 A19/56
ADS O7 34 O BHE/ST
ADS & 33 0 MNK
ADT 9 320 RD
ADE OJ10 8 31 RAET0 HoLD
as Q11 2 3300 RQ/GTT HLDA
AD4 12 20 O TOCK WR
AD3 []13 280 52 MAO
ADZ2 []14 27 57 DT/R
AD1 015 20 S0 DEN
ADD [] 16 25 1 Qso ALE
MMl O 17 24 0 Qs1 TNTA
INTR []18 23 TEST
CLK 019 22 0 READY
Vss (GND) []20 21 [0 RESET

Here, from the above figure it is clear that from pin number 24 to 31, we have
shown the different configuration for minimum and maximum mode. However,
excluding these 8 pins, the rest 32 pins are the same for both minimum as well as
maximum mode.

So, let us move further to understand the operation of each pin in the pin
configuration of 8086.

Pin description of 8086 Microprocessor

Vcc — Pin number 40 — At this pin, the external power supply of + 5V is provided
to the processor.

Vss — Pin number 1 and 20 — These two pins acts as the ground. This pin directs
the extra current of the microprocessor to ground.

ADo — AD15— Pin number 2 to 16 and 39 — These are the multiplexed address and
data bus.

We know that the 8086 microprocessor has 20-bit address bus and 16-bit data bus.
So, the 16 lines of the address and data bus are multiplexed together so as to
reduce the number of lines inside the IC.

We are aware of the fact that at a time either address or data will be transmitted by
the bus. So, at a particular time only either the address or the data bus will be
enabled from the multiplexed buses.

A16/S3, A17/S4, A18/Ss and A19S¢— Pin number 35 to 38 — Out of 20 address bits, 4
are present in the multiplexed form with the status signals. In the case of memory
operations, these pins act as an address bus and contain the memory address of any
particular instruction or data.

However, from I/O operations these pins are low that shows the status of the
processor.

Basically, the signal at S; and S4 show that which segment is currently accessed by
the microprocessor among the four segments present in it.

The table below will show the encoding of S5 and Sy:

S; Sy STATUS

0 0 ES

0 1 SS

1 0 CS oridle

1 1 DS
Table 1

Also, Ss, when enabled, shows the presence of an interrupts in the microprocessor.
So, basically, it serves as an interrupt flag.

The signal at S¢ shows the status of the bus master for the current operation. More
simply we can say, whether the 8086 is the bus master or any other proficient
device is acting as the bus master.

When 0 is present as the signal at this pin then it indicates the 8086 is holding the
access of the bus otherwise it is high i.e., 1.

BHE’ / S7 — Pin number 34 — BHE is an acronym for Bus High Enable. The
combination of the BHE signal and S7 status informs about the existence of the
data on the bus. Also, different combinations show whether the bus is containing
overall 16 bit, upper byte or lower byte of the data.

MN/MX’ — Pin number 33 —The status at this particular pin shows whether the
processor is operating in the minimum mode or maximum mode.

A signal 0 at this pin informs that the 8086 is operating in maximum mode i.e.,
multiple processors. While signal 1 shows the operation under minimum mode i.e.,
single processor.

RD’> — Pin number 32 — An active low signal at this pin shows that the
microprocessor is performing read operation with either memory or I/O devices.

CLK — Pin number 19 — A signal at this pin provides the timing to the internal
operations that are being executed inside the microprocessor.

NMI — Pin number 17 — NMI is Non-maskable interrupt. These are basically
uncontrollable interrupts generated inside the processor. When an NMI occurs,
then an interrupt service routine is generated by the interrupt vector table. An edge
triggered input, causes a type-2 interrupt. NMI is not maskable internally by
software.

TEST — Pin number 23 — This pin basically shows the wait instruction. Whenever
a low signal at this pin occurs then the processing inside the processor continues.
As against, in case of the high signal, the processor has to wait for the disabling of
this pin.

INTR — Pin number 18 — INTR stands for an interrupt request. The processor
after each clock cycle samples the INTR and if the signal at this pin is found to be
high then the processor controls that interrupt internally.

READY — Pin number 22 — This signal is used by the peripherals and memory
devices in order to show the readiness for the next operation.

RESET — Pin number 21 — Whenever this pin is enabled then it resets the
processor and other devices connected to the system by immediately terminating
the recent task. Reset causes the processor to immediately terminate its present
activity. To be recognized, the signal must be active high for at least four clock

cycles. It causes the 8086 to initialize registers DS, SS, ES, IP and flags to all
zeros. It also initializes CS to FFFF H. Upon removal of the RESET signal from
the RESET pin, the 8086 will fetch its next instruction from the 20 bit physical
address FFFFOH.

Pins in Minimum mode

INTA’ — Pin number 24 — It is an interrupt acknowledge pin. Whenever an INTR
signal is generated, then the microprocessor generates INTA signal, as a response
to that interrupt.

ALE — Pin number 25 — ALE is an abbreviation for address latch enable.
Whenever an address is present in the multiplexed address and data bus, then the
microprocessor enables this pin.

This is done to inform the peripherals and memory devices about fetching of the
data or instruction at that memory location.

DEN’ — Pin number 26 — DEN is used for data enable. This is an active low pin
that means whenever a 0 is present at this pin then the transceiver gets enabled and
it separates the data from the multiplexed address and data bus.

DT/R’ — Pin number 27 — This pin is used to show whether the data is getting
transmitted or is received. A high signal at this pin indicates that data is being
transmitted. While a low indicates reception of data.

M/1OQ’ — Pin number 28 — This pin indicates whether the processor is performing
an operation with memory or I/O devices. Whenever a high is present at this pin
then it shows the operation is carried out through the memory. While a low signal
shows operation through I/O devices.

WR’ — Pin number 29 — An active low signal at this pin indicates that the
processor is performing write operation from either memory or I/O devices.

HOLD — Pin number 31 — When an external device enables this pin then the
processor stops accessing the buses immediately after the recent task gets over.

HLDA — Pin number 30 — This pin is used as a response pin for the hold request.
Once request for accessing the buses is produced by an external entity. Then the
microprocessor acknowledges the device that its request will be considered once it
gets over by the current operation.

(OR)
Draw and explain the interrupt structure of 8086.
(Definition of Interrupt-1M, Interrupt Sources-2M, response-2M, Types-2M)

Interrupt is the method of creating a temporary halt during program execution
and allows peripheral devices to access the microprocessor. The microprocessor
responds to that interrupt with an ISR (Interrupt Service Routine), which is a short
program to instruct the microprocessor on how to handle the interrupt.

An 8086 interrupt can come from any one the three sources:

1. Exernal signal: An 8086 can get interrupt from an external signal applied to the
nonmaskable interrut (NMI) input pin, or the interrupt (INTR) input pin.

2. Special instruction: An execution of the Interrupt instruction (INT). This is
referred as software interrupt.

3. Condition produced by Instruciton: An 8086 is interrupted by some condition
produced in the program by the execution of an instruction.

Co3 L2 ™

For example divide by zero: program execution will automatically be interrupted if
you attempt to divided an operand by zero.

At the end of each instruction cycle, 8086 checks to see if any interrupts have
been requested. If an interrupt has been requested, the 8086 responds to interrupt
by stepping through the following series of major steps:

1. It decrements the stack pointer by 2 pushes the flag register on the stack.

2. It disables the 8086 INTR interrupt input by clearing the interrupt flag(IF) in the
flag register.

3. It resets the trap flag (TF) in the flag register.

4. It decrements the stack pointer by 2 and pushes the current code segment
register contents on the stack.

5. It decrements the stack pointer again by 2 and pushes the current instruction
pointer contents on the stack.

6. It does an indirect far jump to start of the procedure by loading the CS and IP
values for the start of the interrupt service routine.

INTERRUPT
SERVICE
PROCEDURE

MAINLINE PUSH FLAGS PUSH REGISTERS
PROGRAM CLEARIF
CLEARTF
PUSH CS
PUSH IP
FETCH ISR ADDRESS

POP IP

POP CS
POP FLAGS
POP REGISTERS

IRET

8086 Interrupt response

INTERRUPT TYPES:

Interrupts

T

Hardware Software
Interrupt Interrupt

N

Non-Maskable

Maskable Interrupt
Interrupt

Hardware Interrupts

Hardware interrupt is caused by any peripheral device by sending a signal through
a specified pin to the microprocessor.

The 8086 has two hardware interrupt pins, i.e. NMI and INTR. NMI is a non-
maskable interrupt and INTR is a maskable interrupt having lower priority. One
more interrupt pin associated is INTA called interrupt acknowledge.

NMI

It is a single non-maskable interrupt pin (NMI) having higher priority than the
maskable interrupt request pin (INTR)and it is of type 2 interrupt.

INTR

The INTR is a maskable interrupt because the microprocessor will be interrupted
only if interrupts are enabled using set interrupt flag instruction. It should not be

b)

enabled using clear interrupt Flag instruction.

The INTR interrupt is activated by an I/O port. If the interrupt is enabled and NMI
is disabled, then the microprocessor first completes the current execution and
sends ‘0’ on INTA pin twice. The first ‘0’ means INTA informs the external
device to get ready and during the second ‘0’ the microprocessor receives the 8 bit,
say X, from the programmable interrupt controller.

Software Interrupts

Some instructions are inserted at the desired position into the program to create
interrupts. These interrupt instructions can be used to test the working of various
interrupt handlers. It includes —

INT- Interrupt instruction with type number

It is 2-byte instruction. First byte provides the op-code and the second byte
provides the interrupt type number. There are 256 interrupt types under this group.

TYPE 0 interrupt represents division by zero situation.

TYPE 1 interrupt represents single-step execution during the debugging of a
program.

TYPE 2 interrupt represents non-maskable NMI interrupt.
TYPE 3 interrupt represents break-point interrupt.

TYPE 4 interrupt represents overflow interrupt.

The interrupts from Type 5 to Type 31 are reserved for other advanced
microprocessors, and interrupts from 32 to Type 255 are available for hardware
and software interrupts.

Explain 8259A priority interrupt controller. (Diagram: 2M, Explanation:5M)

The 8259A (PIC) has eight interrupt request inputs — IR7 - IR0.

The 8259A uses its INT output to interrupt the 8085A via INTR pin. The 8259A
receives interrupt acknowledge pulses from the at its INTA input. Vector address,
used by the 8085A to transfer control to the service subroutine of the interrupting
device, is provided by the 8259A on the data bus. The 8259A is a programmable
device that must be initialized by command words sent by the microprocessor.
After initialization the 8259A mode of operation can be changed by operation
command words from the microprocessor.

Data bus buffer:

This 3- state, bidirectional 8-bit buffer is used to interface the 8259A to the system
data bus. Control words and status information from the microprocessor to PIC

and from PIC to microprocessor respectively, are transferred through the data bus
buffer.

Co3 L2 ™

INT INTA

3 L

Data Bus
Buffer

Control Logic

] J

75— | |l

Jm
}

7\

WR —sg Read/MWrite r P
Control 1 le— IR
Logic In- Interruptfe— &,
A0 — Service |, | Priority |, [Request«— IR
e Reg. Resolver Reg. :::
(ISR) (RR) [
l— |R7
- P
i Cascade Buffer 8 1 1
CAS1 =—> c t 7 8
CAS2 «—> ikl # Interrupt Mask Reg. (IMR)

IR7Read/Write & Control Logic: The function of this block is to accept output
commands sent from the CPU. It contains the initialization command word (ICW)
registers and operation command word (OCW) registers which store the various
control formats for device operation. This function block also allows the status of
8259A to be transferred to the data bus.

Interrupt Request Register (IRR): Interrupt request register (IRR) stores all the
interrupt inputs that are requesting service. It is an 8-bit register — one bit for each
interrupt request. Basically, it keeps track of which interrupt inputs are asking for
service. If an interrupt input is unmasked, and has an interrupt signal on it, then the
corresponding bit in the IRR will be set. The content of this register can be read to
know the status of pending interrupts.

Interrupt Mask Register (IMR): The IMR is used to disable (Mask) or enable
(Unmask) individual interrupt request inputs. This is also an 8-bit register. Each bit
in this register corresponds to the interrupt input with the same number. The IMR
operates on the IRR. Masking of higher priority input will not affect the interrupt
request lines of lower priority. To unmask any interrupt the corresponding bit is set
‘0.

In-service Register (ISR): The in-service register keeps track of which interrupt
inputs are currently being serviced. For each input that is currently being serviced
the corresponding bit of in-service register (ISR) will be set. In 8259A, during the
service of an interrupt request, if another higher priority interrupt becomes active,
it will be acknowledged and the control will be transferred from lower priority
interrupt service subroutine (ISS) to higher priority ISS. Thus, more than one bit of
ISR will be set indicating the number of interrupts being serviced. Each of these 3-
registers can be read as status register.

Priority Resolver: This logic block determines the priorities of the interrupts set
in the IRR. It takes the information from IRR, IMR and ISR to determine whether
the new interrupt request is having highest priority or not. If the new interrupt
request is having the highest priority, it is selected and processed. The
corresponding bit of ISR will be set during interrupt acknowledge machine cycle.

Cascade Buffer/Comparator: This function block stores and

compares the IDs of all 8259A’s in the system. The associated 3-1/0O lines (CAS2-
CASO) are outputs when 8259A is used as a master and are inputs when 8259A is
used as a slave. As a master, the 8259A sends the ID of the interrupting slave
device onto the CAS2-0 lines. The slave 8259As compare this ID with their own
programmed ID. Thus selected 8259A will send its pre-programmed subroutine
address on to the data bus during the next one or two successive INTA’ pulses.

Unit-1V
Draw and explain the block diagram of 8051 micro controller.
(Diagram: 3M, Explanation:7M)

The internal architecture of 8051 Micro controller represented in form of block
diagram as shown below:

External Interrupts
4K byte Counter
Interrupt Control ROM Inputs
Y Y i
Bus
'FJSC Control VO Ports
i1
= TXD RXD
POP2 M1 P3
(Address/Data)

Basic components present internally inside 8051 Microcontroller architecture are:

CPU (Central Processing Unit): CPU act as a mind of any processing machine. It
synchronizes and manages all processes that are carried out in microcontroller.
User has no power to control the functioning of CPU. It interprets the program
stored in ROM and carries out from storage and then performs it projected duty.
CPU manage the different types of registers available in 8051 microcontroller.

Interrupts: Interrupts is a sub-routine call that given by the microcontroller when
some other program with high priority is request for acquiring the system buses the
n interrupts occur in current running program.

Interrupts provide a method to postpone or delay the current process, performs a
sub-routine task and then restart the standard program again.

Types of interrupt in 8051 Microcontroller:
Let's see the five sources of interrupts in 8051 Microcontroller:

o Timer 0 overflow interrupt - TFO
o Timer 1 overflow interrupt - TF1
o External hardware interrupt - INTO
o External hardware interrupt - INT1

COo4 L2

10M

b)

o Serial communication interrupt - RI/TI

Memory: For operation Micro-controller required a program. This program guides
the microcontroller to perform the specific tasks. This program installed in
microcontroller required some on chip memory for the storage of the program.

Microcontroller also required memory for storage of data and operands for the
short duration. In microcontroller 8051 there is code or program memory of 4 KB
that is it has 4 KB ROM and it also comprise of data memory (RAM) of 128 bytes.

Bus : Bus is a group of wires which uses as a communication canal or acts as
means of data transfer. The different bus configuration includes 8, 16 or more
cables. Therefore, a bus can bear 8 bits, 16 bits all together.

o Address Bus: 8051 microcontrollers is consisting of 16 bit address bus. It
is generally be used for transferring the data from Central Processing Unit
to Memory.

o Data bus: 8051 microcontroller is consisting of 8 bits data bus. It is
generally be used for transferring the data from one peripherals position to
other peripherals.

Oscillator: As the microcontroller is digital circuit therefore it needs timer for
their operation. To perform timer operation inside microcontroller it required
externally connected or on-chip oscillator. Microcontroller is used inside an
embedded system for managing the function of devices. Therefore, 8051 uses the
two 16 bit counters and timers. For the operation of this timers and counters the
oscillator is used inside microcontroller.

Write about addressing modes of 80517

(Any 4 addressing modes-4M)
The addressing modes of 8051 are:

Immediate AddressingMode
Register AddressingMod

Direct AddressingMode

Register IndirectAddressing Mode
Indexed AddressingMode

Implied AddressingMode

Immediate addressing mode
In this Immediate Addressing Mode, the data is provided in the instruction itself.
The data is provided immediately after the opcode. These are some examples of
Immediate Addressing Mode.

MOVA, #0AFH:;
MOVR3, #45H;
MOVDPTR, #FE00H:;

In these instructions, the # symbol is used for immediate data. In the last
instruction, there is DPTR. The DPTR stands for Data Pointer. Using this, it points
the external data memory location. In the first instruction, the immediate data is
AFH, but one 0 is added at the beginning. So when the data is starting with A to F,
the data should be preceded by 0.

Register addressing mode
In the register addressing mode the source or destination data should be present in
a register (RO to R7). These are some examples of RegisterAddressing Mode.

MOVA, RS;

Cco4 L3

4M

MOVR2, #45H;
MOVRO, A;

In 8051, there is no instruction like MOVRS, R7. But we can get the same result
by using this instruction MOV RS, 07H, or by using MOV 05H, R7.

Direct Addressing Mode
In the Direct Addressing Mode, the source or destination address is specified by

using 8-bit data in the instruction. Only the internal data memory can be used in
this mode. Here some of the examples of direct Addressing Mode.

MOVS0H, R6;
MOVR2, 45H;
MOVRO, 05H;

The first instruction will send the content of registerR6 to port PO (Address of Port
0 is 80H). The second one is forgetting content from 45H to R2. The third one is
used to get data from Register RS (When register bank RBO is selected) to register
RS.

Register indirect addressing Mode

In this mode, the source or destination address is given in the register. By using
register indirect addressing mode, the internal or external addresses can be
accessed. The RO and R1 are used for 8-bit addresses, and DPTR is used for 16-bit
addresses, no other registers can be used for addressing purposes. Let us see some
examples of this mode.

MOVOE5H, @RO:;
MOV@R1, 80H

In the instructions, the @ symbol is used for register indirect addressing. In the
first instruction, it is showing that theRO register is used. If the content of RO is
40H, then that instruction will take the data which is located at location 40H of the
internal RAM. In the second one, if the content of R1 is 30H, then it indicates that
the content of port PO will be stored at location 30H in the internal RAM.

MOVXA, @R1;
MOV@DPTR, A;

In these two instructions, the X in MOVX indicates the external data memory. The
external data memory can only be accessed in register indirect mode. In the first
instruction if the RO is holding 40H, then A will get the content of external RAM
location40H. And in the second one, the content of A is overwritten in the location
pointed by DPTR.

Indexed addressing mode

In the indexed addressing mode, the source memory can only be accessed from
program memory only. The destination operand is always the register A. These
are some examples of Indexed addressing mode.

MOVCA, @A +PC:
MOVCA, @A+DPTR;

The C in MOVC instruction refers to code byte. For the first instruction, let us
consider A holds 30H. And the PC value is1125H. The contents of program
memory location 1155H (30H + 1125H) are moved to register A.

Implied Addressing Mode
In the implied addressing mode, there will be a single operand. These types of
instruction can work on specific registers only. These types of instructions are also

known as register specific instruction. Here are some examples of Implied
Addressing Mode.

RLA;
SWAPA;

These are 1- byte instruction. The first one is used to rotate the A register content
to the Left. The second one is used to swap the nibbles in A.

(OR)
Draw the pin diagram of 8051 and explain about I/O port pins.
(Diagram: 3M, Explanation:7M)

8051 microcontroller is a 40 pin Dual Inline Package (DIP). These 40 pins serve
different functions like read, write, I/O operations, interrupts etc. 8051 has four
I/O ports wherein each port has 8 pins which can be configured as input or output
depending upon the logic state of the pins. Therefore, 32 out of these 40 pins are
dedicated to I/O ports. The rest of the pins are dedicated to VCC, GND, XTALI,
XTAL2, RST, ALE, EA’ and PSEN’. Pin diagram of 8051 microprocessor is

T
P01 40pvee
P12 39 [0 P0.0 (ADO)
P1.23 38 [0 P0.1 (AD1)
P1.3004 37 [0 PO.2 (AD2)
P1.405 36 [0 P0.3 (AD3)
P1.50]6 35 [0 P0.4 (AD4)
P1.607 34 [0 PO.5 (ADS)
P1.7(]8 33 [0 P0.6 (AD6)
RSTOQ9 32 [1 P0.7 (AD7)

(RXD)P3.0O10 8051 31 [EAVPP

(TXD) P3.1] 11 30 [J ALE/PROG

(INTO) P3.2[J 12 29 [0 PSEN

(INT1) P3.3Q13 28 [0 P2.7 (A15)

TO) P3.4] 14 27 [0 P2.6 (A14)

(1) P3.50 15 26 [0 P2.5 (A13)

(WR) P36]16 25 [0 P2.4 (A12)

RD) P3.7 17 240 P2.3 (A11)

XTAL2[] 18 23[dP2.2 (A10)
XTAL1] 19 22 [0 P2.1 (A9)
GND J20 21 [P2.0 (A8)

40 - PIN DIP

as

Description of the Pins :

Pin 1 to Pin 8 (Port 1) — Pin 1 to Pin 8 are assigned to Port 1 for simple I/O
operations. They can be configured as input or output pins depending on the logic
control i.e. if logic zero (0) is applied to the I/O port it will act as an output pin
and if logic one (1) is applied the pin will act as an input pin. These pins are also
referred to as P1.0 to P1.7 (where P1 indicates that it is a pin in port 1 and the
number after ‘.’ tells the pin number i.e. 0 indicates first pin of the port. So, P1.0
means first pin of port 1, P1.1 means second pin of the port 1 and so on). These
pins are bidirectional pins.

Pin 10 to Pin 17 (Port 3) — Pin 10 to pin 17 are port 3 pins which are also referred
to as P3.0 to P3.7. These pins are similar to port 1 and can be used as universal
input or output pins. These pins are bidirectional pins. These pins also have some
additional functions which are as follows:

P3.0 (RXD) : 10th pin is RXD (serial data receive pin) which is for serial input.
Through this input signal microcontroller receives data for serial communication.
P3.1 (TXD) : 11th pin is TXD (serial data transmit pin) which is serial output pin.
Through this output signal microcontroller transmits data for serial
communication.

P3.2 and P3.3 (INTO’, INT1’) : 12th and 13th pins are for External Hardware
Interrupt 0 and Interrupt 1 respectively. When this interrupt is activated(i.e. when
it is low), 8051 gets interrupted in whatever it is doing and jumps to the vector
value of the interrupt (0003H for INTO and O0O0I3H for INTI1) and starts

https://www.geeksforgeeks.org/introduction-to-8051-microcontroller/
https://www.geeksforgeeks.org/interrupts/

performing Interrupt Service Routine (ISR) from that vector location.

P3.4 and P3.5 (TO and T1) : 14th and 15th pin are for Timer 0 and Timer 1
external input. They can be connected with 16 bit timer/counter.

P3.6 (WR’) : 16th pin is for external memory write i.e. writing data to the
external memory.

P3.7 (RD’) : 17th pin is for external memory read i.e. reading data from external
memory.

Pin 21 to Pin 28 (Port 2) — Pin 21 to pin 28 are port 2 pins also referred to as
P2.0 to P2.7. When additional external memory is interfaced with the 8051
microcontroller, pins of port 2 act as higher-order address bytes. These pins are
bidirectional.

Pin 32 to Pin 39 (Port 0) — Pin 32 to pin 39 are port 0 pins also referred to as
P0.0 to PO.7. They are bidirectional input/output pins. They don’t have any
internal pull-ups. Hence, 10 K? pull-up registers are used as external pull-ups.
Port 0 is also designated as ADO-AD7 because 8051 multiplexes address and data
through port 0 to save pins.

b) Write the assembly code for the 8051 microcontroller to toggle the pins of PORT1. CO4 L5 4M
Port 1 can be used as input or output. Upon reset, port 1 is configured as an input
port
;Toggle all bits of P1 continucusly
MOV A, #5GH
BACK: MOV Pl,A
ACALL DELAY
CPL A jcomplement (Invert) reg. A
SJMP BACK
(OR any equivalent code)
Scheme Prepared by: M Karuna Dr. M. Rajesh Babu
Asst. Professor, HOD, CSE Dept.
CSE Dept.
Internal Faculty:
Facultyl:
Faculty2:

External Faculty:

	Data Transfer Instructions
	Instruction to transfer a word

	Arithmetic Instructions
	Instructions to perform addition
	Instructions to perform subtraction
	Instruction to perform multiplication
	Instructions to perform division

	Bit Manipulation Instructions/ Logical Instruction
	Instructions to perform logical operation
	Instructions to perform shift operations
	Instructions to perform rotate operations

	String Instructions
	Program Execution Transfer Instructions (Branch an
	Processor Control Instructions
	Immediate Addressing Mode
	Register Addressing Mode
	Direct Addressing Mode
	Register Indirect Addressing Mode
	Based Addressing Mode
	Indexed Mode
	Based Indexed Mode
	Based Indexed Displacement Mode
	String Addressing Mode
	Input/Output Mode
	Relative Addressing
	Implied Addressing Mode
	 J cond – Conditional Transfer Instructions:

	Pin Diagram and Description of 8086 Microprocessor
	Pin Diagram 8086 Microprocessor
	Pin description of 8086 Microprocessor
	Pins in Minimum mode

	INTERRUPT TYPES:
	Hardware Interrupts
	NMI
	INTR

	Software Interrupts
	INT- Interrupt instruction with type number

	Immediate addressing mode
	Register addressing mode
	Direct Addressing Mode
	Register indirect addressing Mode
	Indexed addressing mode
	Implied Addressing Mode

