
1

20CB/CS/DS/IT404

Hall Ticket Number:

II/IV B.Tech (Regular\Supplementary) DEGREE EXAMINATION

July/August, 2023 Common to CB,CS,DS & IT Branches

Fourth Semester Design And Analysis of Algorithms
Time: Three Hours Maximum: 70 Marks

Answer question 1 compulsory. (14X1 = 14Marks)
Answer one question from each unit. (4X14=56 Marks)

 CO BL M
1 a) Define an algorithm. CO1 L1 1

 b) Define pseudocode. CO1 L2 1
 c) Name the criteria to be satisfied by an algorithm. CO1 L1 1
 d) How to calculate the time complexity? CO1 L2 1
 e) Identify the difference between divide and conquer and greedy method. CO2 L2 1
 f) Label the time complexity of quick sort. CO2 L1 1

 g) Why is it necessary to have auxiliary array in merge function? CO2 L2 1
 h) What is job sequencing with deadlines? CO2 L1 1
 i) Differentiate connected and biconnected components. CO3 L2 1

 j) Where do we use dynamic programming? CO3 L2 1

 k) State the principal of optimality. CO3 L1 1

 l) Summarise the advantages of backtracking. CO4 L2 1

 m) When is a problem considered to be NP-hard? CO4 L1 1

 n) What is backtracking? CO4 L1 1

Unit-I
2 a) What is asymptotic notation? Explain the usage of different types of notations. CO1 L2 7M
 b) Label the master theorem and inspect the implementation of the master theorem. CO1 L4 7M

 (OR)
3 a) Show and describe the Pseudocode conventions with syntax and examples. CO1 L2 7M

 b) How to devise, validate, analyze, and test an algorithm? Discuss in detail. CO1 L3 7M

Unit-II
4 a) Illustrate the solution for executing the single source shortest path problem. CO2 L2 7M

 b) Consider the array, a[l:10] = (310,285,179,652,351,423,861,254,450,520).
Show the merge sort algorithm and sort the above array using merge sort.

CO2 L3 7M

 (OR)
5 a)

Compute a minimum cost spanning tree for the graph using Kruskal's algorithm.

CO2 L3 7M

 b) Demonstrate the strategy followed by the divide and conquer approach. CO2 L2 7M

2

P.T.O

20CB/CS/DS/IT404

Unit-III
6 a) Elucidate the mechanism for solving the 0/1 knapsack problem using dynamic

programming.
CO3 L2 7M

 b) Differentiate the implementation of depth first traversal and breadth first traversal. CO3 L3 7M

 (OR)
7 a) Find the longest common subsequence of X and Y using dynamic programming.

X=<ABCDAF>, Y=<ACBCF>
CO3 L2 7M

 b) Inspect the traveling salesperson problem to find a tour of minimum cost. CO3 L4 7M

Unit-IV
8 a) Elucidate the N queens problem using backtracking to solve 4-Queens

problem.
CO4 L2 7M

 b) Illustrate the following sum of subsets problem instance where n=4, m=31,
w(1:4)=(7,11,13,24).

CO4 L2 7M

 (OR)
9 a) Construct the portion of the state space tree generated by LC branch and bound of 0/1

knapsack problem for instance n = 4, (p1,p2,p3,p4) = (10,10,12,18),
(w1,w2,w3,w4)=(2,4,6,9) and m=15.

CO4 L2 7M

 b) How are P and NP problems related? With a neat diagram explain the relevance of NP-hard
and NP-complete problems.

CO4 L3 7M

3

20CB/CS/DS/IT404

II/IV B.Tech (Regular\Supplementary) DEGREE EXAMINATION

July/August, 2023 Common to CB,CS,DS & IT Branches

Fourth Semester Design And Analysis of Algorithms
Time: Three Hours Maximum: 70 Marks

Answer question 1 compulsory. (14X1 = 14Marks)
Answer one question from each unit. (4X14=56 Marks)

 CO BL M
1 a) Define an algorithm.

An Algorithm is a finite set of instructions that, if followed, accomplishes a
particular task.

CO1 L1 1

 b) Define pseudocode.

Pseudo code is a compact and informal high-level description of a computer

programming language. In this method, we should typically describe algorithms as

program, which resembles language like Pascal & C.

CO1 L2 1

 c) Name the criteria to be satisfied by an algorithm.

1. Input

2. Output

3. Definiteness

4. Finiteness

5. Effectiveness

CO1 L1 1

 d) How to calculate the time complexity?

The time complexity of an algorithm is the amount of computer time it needs to run

to compilation. The time t(P) taken by a program P is the sum of the compile time

and the run time(execution time).

CO1 L2 1

 e) Identify the difference between divide and conquer and greedy method.

In summary, the main difference between greedy algorithms and divide and

conquer algorithms is in their approach to solving problems. Greedy algorithms

make locally optimal choices at each step, while divide and conquer algorithms

divide a problem into smaller subproblems and solve each subproblem

independently.

CO2 L2 1

 f) Label the time complexity of quick sort.

Worst Case Analysis: T(n) = O()

Best Case Analysis: T(n) = O (n logn)

CO2 L1 1

4

 g) Why is it necessary to have auxiliary array in merge function?

It is possible to merge the subarrays without using a second array, but this is

extremely difficult to do efficiently and is not really practical. Merging the two

subarrays into a second array, while simple to implement, presents another

difficulty. The merge process ends with the sorted list in the auxiliary array.

CO2 L2 1

 h) What is job sequencing with deadlines?

 Jobs.

CO2 L1 1

 i) Differentiate connected and biconnected components.

Connected component (graph theory), a set of vertices in a graph that are linked to

each other by paths. Connected component (topology), a maximal subset of a

topological space that cannot be covered by the union of two disjoint open sets.

A graph is Biconnected if it has no vertex such that its removal increases the

number of connected components in the graph. And if there exists such a vertex

then it is not Biconnected.

(or)

An articulation point of a graph is a vertex v such that when we remove v and all

edges incident upon v , we break a connected component of the graph into two or

more pieces. A connected graph with no articulation points is said to be

biconnected.

CO3 L2 1

 j) Where do we use dynamic programming?

Dynamic programming is used where we have problems, which can be divided into

similar sub-problems, so that their results can be re-used. Mostly, these algorithms

are used for optimization. Before solving the in-hand sub-problem, dynamic

algorithm will try to examine the results of the previously solved sub-problems.

CO3 L2 1

 k) State the principal of optimality.

Principle of Optimality states that an optimal sequence of decisions has the property

that whatever the initial state and decision are, the remaining decisions must

constitute an optimal decision sequence with regard to the state resulting from the

first decision.

CO3 L1 1

5

 l) Summarise the advantages of backtracking.

Backtracking has a brute-force nature; due to this reason, it can solve maximum

problems. Backtracking problems are very intuitive to code. The step-by-step

representation of the backtracking solution is straightforward to understand. You

can easily debug backtracking code.

CO4 L2 1

 m) When is a problem considered to be NP-hard?

A problem L is NP-hard if and only if satisfiabiliy reduces to L (satisfiability α L).

(or)

A Problem X is NP-Hard if there is an NP-Complete problem Y, such that Y is

reducible to X in polynomial time. NP-Hard problems are as hard as NP-Complete

problems. NP-Hard Problem need not be in NP class.

CO4 L1 1

 n) What is backtracking?

Backtracking is one of the most general algorithm design techniques. Many

problems which deal with searching for a set of solutions or which ask for an

optimal solution satisfying some constraints can be solved using the backtracking

formulation.

(or)

Depth first node generation with bounding function is called backtracking.

CO4 L1 1

Unit-I
2 a) What is asymptotic notation? Explain the usage of different types of notations.

Algorithms perform f(n) basic operations to accomplish task. Asymptotic refers to

study of function f as n approaches infinity.

Asymptotic Analysis is used to compare two algorithms with running times f(n) and

g(n), we need a rough measure that characterizes how fast each function grows.

1. Big-oh Notation (O) :

O(g(n)) = { f(n) : there exists positive constants c and n0, such that 0 f(

n) cg(n) for all n n0 }

 O(g(n)) is the set of functions with smaller or same order of growth as g(n).

 g(n) is an asymptotic upper bound for f(n).

Consider relavent examples.
Big-oh Visualization

CO1 L2 7M

6

2. Omega Notation () :

(g(n)) = { f (n) : there exists positive constants c and n0, such that 0

cg(n) f(n) for all n n0 }

 (g(n)) is the set of functions with larger or same order of growth as g(n).

 g(n) is an asymptotic lower bound for f(n).

Consider relavent examples.

3. Theta Notation () :

(g(n)) = { f(n) : there exists positive constants c1, c2, and n0, such that

 0 c1g(n) f(n) c2g(n) for all n n0 }

 (g(n)) is the set of functions with the same order of growth as g(n).

 g(n) is an asymptotically tight bound for f(n).

For any two functions g(n) and f(n), f(n) = (g(n)) iff f(n) = O(g(n)) and f(n)
= (g(n)).
Consider relavent examples.

4. Little-oh Notation (o) :

o(g(n)) = { f(n) : c > 0, n0 > 0 such that n n0, we have 0 f(n) <
cg(n) }.

 f(n) becomes insignificant relative to g(n) as n approaches infinity:

 lim [f(n) / g(n)] = 0

 n

 g(n) is an upper bound for f(n) that is not asymptotically tight.

7

5. Little omega Notation (w) :

w(g(n)) = { f(n) : c > 0, n0 > 0 such that n n0, we have 0 cg(n) <
f(n) }.

 f (n) becomes arbitrarily large relative to g(n) as n approaches infinity:

 lim [f(n) / g(n)] = .

 n

 g(n) is a lower bound for f(n) that is not asymptotically tight.

Consider relavent examples.

 b) Label the master theorem and inspect the implementation of the master theorem.

The Master Theorem applies to recurrences of the following form:

 T (n) = a T (n/b) + f (n)

where a ≥ 1 and b > 1 are constants and f(n) is an asymptotically positive function.

There are 3 cases:

Consider relavent examples.

CO1 L4 7M

8

Consider relavent examples.

 (OR)
3 a) Show and describe the Pseudocode conventions with syntax and examples.

Pseudo-code: Pseudo code is a compact and informal high-level description of a

computer programming language. In this method, we should typically describe

algorithms as program, which resembles language like Pascal & C.

Pseudo-Code Conventions:

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces { and }.

3. An identifier begins with a letter. The data types of variables are not

explicitly declared.

4. Compound data types can be formed with records. Here is an example,

Node Record
{
 data type – 1 data-1;
 .
 .
 .

 data type – n data – n;
 node * link;
 }

Here link is a pointer to the record type node. Individual data items of a record can

be accessed with and period.

CO1 L2 7M

9

5. Assignment of values to variables is done using the assignment statement.

<Variable> := <expression>;

6. There are two Boolean values TRUE and FALSE. In order to produce these

values we need

Logical Operators AND, OR, NOT

Relational Operators <, <=, >, >=, =, !=

7. The following looping statements are employed.

While Loop:
 while < condition > do
 {
 <statement-1>
 .
 .
 <statement-n>
 }
For Loop:

 for variable := value-1 to value-2 step step do
 {
 <statement-1>
 .
 .
 <statement-n>
 }
repeat-until:
 repeat
 {
 <statement-1>
 .
 .

 <statement-n>
 }until<condition>

8. A conditional statement has the following forms.

 if <condition> then <statement-1>

if <condition> then <statement-1>
else <statement-2>

Case statement:
case
{

 : <condition-1> : <statement-1>
 .
 .

 : <condition-n> : <statement-n>

 : else : <statement-n+1>
}

10

9. Input and output are done using the instructions read & write.

10. There is only one type of procedure:

Algorithm, the heading takes the form,

 Algorithm Name (Parameter lists)

 b) How to devise, validate, analyze, and test an algorithm? Discuss in detail.

Issues or study of Algorithm:

The study of algorithm includes many important and active areas of

research. These are,

 How to devise algorithms : creating an algorithm.

 How to validate algorithms : checking correctness.

 How to analyze algorithms : time and space complexity.

 How to Testing a program : checking for error.

Consider explanation of each one with relevant examples.

After devising algorithm we need to convert it into program using

programming language. A Program is the expression of an algorithm in a

programming language.

CO1 L3 7M

Unit-II
4 a) Illustrate the solution for executing the single source shortest path problem.

Graphs can be used to represent the highway structure of a state or country with

vertices representing cities and edges representing sections of highway. The edges

can then be assigned weights which may be either the distance between the two

cities connected by the edge or the average time to drive along that section of

highway. A motorist wishing to drive from city A to B would be interested in

answers to the following questions:

1. Is there a path from A to B?

2. If there is more than one path from A to B? Which is the shortest path?

The problems defined by these questions are special case of the path problem

we study in this section. The length of a path is now defined to be the sum of the

weights of the edges on that path. The starting vertex of the path is referred to as the

source and the last vertex the destination.

CO2 L2 7M

11

In the problem we consider, we are given a directed graph G = (V, E), a

weighting function cost for the edges of G, and a source vertex v0. The problem is

to determine the shortest path from v0 to all the remaining vertices of G.

 It is assumed that all the weights associated with the edges are positive.

 The shortest path between v0 and some other node v is an ordering among a

subset of the edges. Hence this problem fits the ordering paradigm.

To formulate a greedy based algorithm to generate the cheapest paths, we must

conceive a multistage solution to the problem and also of an optimization measure.

 One possibility is to build the shortest paths one by one.

 As an optimization measure we can use the sum of the lengths of all paths

so far generated.

 For this measure to be minimized, each individual path must be of minimum

length.

 If we have already constructed i shortest paths, then using this optimization

measure, the next path to be constructed should be the next shortest

minimum length path.

 The greedy way to generate the shortest paths from v0 to the remaining

vertices is to generate these paths in non-decreasing order of path length.

 First, a shortest path to the nearest vertex is generated. Then a shortest path

to the second nearest vertex is generated, and so on.

In order to generate the shortest paths, we need to be able to determine,

1. The next vertex to which a shortest path must be generated and

2. A shortest path to this vertex.

Let S denotes the set of vertices (including v0) to which the shortest paths have

already been generated. For w not in S, let dist[w] be the length of the shortest

path staring from v0, going through only those vertices that are in S, and ending at

w.

Algorithm ShortestPaths(v, cost, dist, n)

// dist[j], 1 ≤ j ≤ n, is set to the length of the shortest path from vertex v to

// vertex j in a digraph G with n vertices. dist[v] is set to zero. G is

represented

// by its cost adjacency matrix, cost[1 : n, 1 : n]

{

12

for i := 1 to n do //initialize set S

{

S[i] := false; dist[i] := cost[v, i];

 }

S[v] := true; dist[v] := 0.0; // put vertex v in set S

for num := 2 to n - 1 do

{ // Determine n - 1 paths from vertex v

choose u from among those vertices not in S such that

dist[u] is minimum;

S[u] := true; // put vertex u in set S

for(each w adjacent to u with S[w] = false) do

{ //update distances

if(dist[w] ˃ dist[u] + cost[u, w]) then

dist[w] = dist[u] + cost[u, w];

}
}

}

The set S is maintained as a bit array with S[i] =

cost[i, j] =

 b) Consider the array, a[l:10] = (310,285,179,652,351,423,861,254,450,520).
Show the merge sort algorithm and sort the above array using merge sort.

Consider the array of ten elements a [1:10] = (310, 285, 179, 652, 351, 423, 861,

 254, 450, 520)

The merge sort algorithm first divides the array as follows

a[1:5] and a[6:10] and then

a[1:3] and a[4:5] and a[6:8] and a[9:10] and then into

a[1:2] and a[3:3] and a[6:7] and a[8:8] and finally it will look like

a[1:1],a[2:2],a[3:3],a[4:4],a[5:5],a[6:6],a[7:7],a[8:8],a[9:9],a[10:10]

Pictorially the file can now be viewed as

(310|285|179|652,351|423,861,254,450,520)

Elements a[1] and a[2] are merged as

(285,310|179|652,351|423,861,254,450,520)

And then a[3] is merged with a[1:2]

CO2 L3 7M

13

(179,285, 310 |652,351|423,861,254,450,520)next a[4] and a[5]

(179,285, 310 |351,652|423,861,254,450,520)and then a[1:3] and a[4:5]

(179,285, 310,351,652|423,861,254,450,520)

Repeated recursive calls are invoked producing the following array

(179,285, 310 ,351,652|254,423, 450,520,861) and finally

(179, 254, 285, 310, 351, 423, 450, 520, 652, 861)

14

 (OR)
5 a)

Compute a minimum cost spanning tree for the graph using Kruskal's algorithm.

Consider the edges in non-decreasing order of the edge costs.

E (G) = { (1, 5), (5, 8), (2, 7), (6, 8), (2, 4), (4, 7), (1, 2), (7, 8), (2, 5),
 (1, 3), (4, 5), (2, 3), (4, 8) }

Minimum-
Cost
Edge Selected

Action Disjoint Sets
Cost Of the
Spanning
Tree

Initial
(1, 5)
(5, 8)
(2, 7)
(6, 8)
(2, 4)
(4, 7)
(1, 2)
(7, 8)
(2, 5)
(1, 3)
(4, 5)
(2, 3)
(4, 8)

--
Add
Add
Add
Add
Add
Discard
Add
Discard
Discard
Add
Discard
Discard
Discard

{ 1 } { 2 } { 3 } { 4 } { 5 } { 6 } { 7 } { 8 }
 { 1, 5 } { 2 } { 3 } { 4 } { 6 } { 7 } { 8 }
 { 1, 5, 8 } { 2 } { 3 } { 4 } { 6 } { 7 }
 { 1, 5, 8 } { 2, 7 } { 3 } { 4 } { 6 }
{ 1, 5, 6, 8 } { 2, 7 } { 3 } { 4 }
{ 1, 5, 6, 8 } { 2, 4, 7 } { 3 }
{ 1, 5, 6, 8 } { 2, 4, 7 } { 3 }
{ 1, 2, 4, 5, 6, 7, 8 } { 3 }
{ 1, 2, 4, 5, 6, 7, 8 } { 3 }
{ 1, 2, 4, 5, 6, 7, 8 } { 3 }
{ 1, 2, 3, 4, 5, 6, 7, 8 }
{ 1, 2, 3, 4, 5, 6, 7, 8 }
{ 1, 2, 3, 4, 5, 6, 7, 8 }
{ 1, 2, 3, 4, 5, 6, 7, 8 }

0.0
2
7
13
20
28
28
39
39
39
52
52
52
52

minimum cost of the spanning tree is = 52

CO2 L3 7M

15

 b) Demonstrate the strategy followed by the divide and conquer approach.

GENERAL METHOD:

 Given a function to compute on ‘n’ inputs the divide-and-conquer strategy

suggests splitting the inputs into ‘k’ distinct subsets, 1 ˂ k ≤ n, yielding ‘k’

sub problems.

 These sub problems must be solved, and then a method must be found to

combine sub solutions into a solution of the whole.

 If the sub problems are still relatively large, then the divide-and-conquer

strategy can possibly be reapplied.

 Often the sub problems resulting from a divide-and-conquer design are of

the same type as the original problem.

 For those cases the reapplication of the divide-and-conquer principle is

naturally expressed by a recursive algorithm.

 DAndC (Algorithm) is initially invoked as DandC(P), where ‘P’ is the

problem to be solved.

 Small(P) is a Boolean-valued function that determines whether the input

size is small enough that the answer can be computed without splitting.

 If this so, the function ‘S’ is invoked.

 Otherwise, the problem P is divided into smaller sub problems.

 These sub problems P1, P2 ,…, Pk are solved by recursive application of

DAndC.

 Combine is a function that determines the solution to P using the solutions

to the ‘k’ sub problems.

 If the size of ‘P’ is n and the sizes of the ‘k’ sub problems are n1, n2,….,nk,

respectively, then the computing time of D And C is described by the

recurrence relation.

 T(n) =

 Where T(n) is the time for DAndC on any input of size ‘n’.

CO2 L2 7M

16

 g(n) is the time of compute the answer directly for small inputs.

 f(n) is the time for dividing P & combining the solution to sub problems.

Control Abstraction for DAndC Algorithm:

 We can write a control abstraction that mirrors the way an algorithm based

on DAndC will look. By a control abstraction we mean a procedure whose flow of

control is clear but whose primary operations are specified by other procedures

whose precise meanings are left undefined.

Algorithm DAndC(P)

{

if small(P) then return S(P);

else

{

divide P into smaller instances P1, P2,…., Pk, k ≥ 1;

apply DAndC to each of these sub problems;

return combine(DAndC(P1), DAndC(P2) ,……., DAndC(

Pk));

 }

}

The complexity of many divide-and-conquer algorithms is given by recurrences
of the form,

 T(n) =

Where a & b are known constants.

We assume that T(1) is known & ‘n’ is a power of b i.e., n =

17

Unit-III

6 a) Elucidate the mechanism for solving the 0/1 knapsack problem using dynamic
programming.

CO3 L2 7M

18

 b) Differentiate the implementation of depth first traversal and breadth first traversal.

BFS:

• In BFS, start at vertex v and mark it as having been reached (visited). The

vertex at this time said to be unexplored.

• A vertex is said to have been explored by an algorithm when the algorithm

has visited all vertices adjacent from it.

• All unvisited vertices adjacent from v are visited next. These are new

unexplored vertices. Vertex v has now been explored.

• The newly visited vertices haven’t been explored and are put onto the end of

a list of unexplored vertices. The first vertex on this list is the next to be

explored. Exploration continues until no unexplored vertex is left.

• The list of unexplored vertices operates as a queue.

CO3 L3 7M

19

DFS:

• A DFS of a graph differs from a BFS in that the exploration of a vertex v is

suspended as soon as a new vertex is reached.

• At this time the exploration of the new vertex u begins.

• When this new vertex has been explored, the exploration of v continues.

• The search terminates when all reached vertices have been fully explored.

20

 (OR)
7 a) Find the longest common subsequence of X and Y using dynamic programming.

X=<ABCDAF>, Y=<ACBCF>

X = ‹ ABCDAF › and Y = ‹ ACBCF ›

 m = 6 and n = 5

 C[i, 0] = 0 for all 0 ≤ i ≤ 6

C[0, j] = 0 for all 0 ≤ j ≤ 5

Compare Xi and Yj where i = 1 and 1 ≤ j ≤ 5

X[1] = Y[1] then, C[1, 1] = C[0, 0] + 1 = 0 + 1 = 1

X[1] ≠ Y[2] and max(C[0, 2], C[1, 1]) is C[1, 1] then, C[1, 2] = C[1, 1] = 1

X[1] ≠ Y[3] and max(C[0, 3], C[1, 2]) is C[1, 2] then C[1, 3] = C[1, 2] = 1

X[1] ≠ Y[4] and max(C[0, 4], C[1, 3]) is C[1, 3] then C[1, 4] = C[1, 3] = 1

X[1] ≠ Y[3] and max(C[0, 5], C[1, 4]) is C[1, 4] then C[1, 5] = C[1, 4] = 1

Similarly compare Xi and Yj ,

When i = 2 and 1 ≤ j ≤ 5

When i = 3 and 1 ≤ j ≤ 5

When i = 4 and 1 ≤ j ≤ 5

When i = 5 and 1 ≤ j ≤ 5

When i = 6 and 1 ≤ j ≤ 5

CO3 L2 7M

21

Finally we get C[6, 5] = 4 as the length of the LCS and LCS = ‹ ABCF ›

 b) Inspect the traveling salesperson problem to find a tour of minimum cost.

 Let G(V, E) be a directed graph with edge cost cij. The variable cij is defined such

that cij > 0 for all i and j and cij = , if < i, j > E. Let = n and assume n > 1.

 A tour of G is a directed simple cycle that includes every vertex in V.

 The cost of a tour is the sum of the costs of the edges on the tour.

 The traveling salesman problem is to find a tour of minimum cost.

 Without loss of generality, regard a tour to be a simple path that starts and ends at

vertex 1.

 Every tour consists of an edge < 1, k > for some k V - { 1 } and a path from

vertex k to vertex 1.

 The path from vertex k to vertex 1 goes through each vertex in V - { 1, k }

exactly once.

 Let ɡ(i, S) be the length of a shortest path starting at vertex i, going through all

vertices in S, and terminating at vertex 1.

 The function ɡ(1, V - { 1 }) is the length of an optimal sales person tour. From

the principle of optimality it follows that,

ɡ(1, V - { 1 }) = ----(1)

CO3 L4 7M

22

Generalizing equation (1) , we obtain (for i ∉ S)

ɡ(i, S) = ----(2)

 Equation (1) can be solved for ɡ(1, V - { 1 }) if we know ɡ(k, V - { 1, k }) for

all choices of k. The ɡ values can be obtained by using equation (2).

 Clearly, ɡ(i, Ø) = . Hence we can use equation (2) to obtain ɡ(i,

S) for all S of size 1. Then we can obtain ɡ(i, S) for and so on.

 When , the values of i and S for which ɡ(i, S) is needed are such

that i ≠ 1, 1∉ S and i ∉ S.

Unit-IV
8 a) Elucidate the N queens problem using backtracking to solve 4-Queens

problem.

The n-queens problem is place n-queens on an n x n chessboard so that no two

queens attack i.e., no two queens are on the same row, or column, or diagonal.

If we imagine the squares of the chessboard being numbered as the indices of

the two dimensional array a[l : n, l : n], then we observe that every element on the

same diagonal which runs from the upper left to the lower right has the same "row –

column" value. Also, every element on the same diagonal which goes from the

upper right to the lower left has the same "row + column" value. Suppose two

queens are placed at positions (i, j) and (k, l). Then by the above they are on the

same diagonal only if

 i – j = k – l or i + j = k + l

 The first equation implies

 j – l = i – k

 The second equation implies

 j – l = k – i

Therefore two queens lie on the same diagonal if and only if .

The total number of nodes in the 8-queens state space tree is

CO4 L2 7M

23

 All solutions to n-queens problem can therefore be represented as n-tuples (

x1, …., xn), where xi is the column on which queen I is placed.

 Explicit constraints Si = { 1, 2, 3, 4, ……, n }, 1 ≤ i ≤ n

 Implicit constraints for this problem are that

o No two xi’s can be the same and

o No two queens can be on the same diagonal

Algorithm place (k, i)

// Return true if a queen can be placed in kth row and ith column.
Otherwise // it returns false. x[] is a global array whose first (k-1)
values have been // set. abs(r) returns the absolute value of r.

{

for j := 1 to k-1 do

{

if ((x [j] = i) // two in the same column.

or (abs(x [j] – i) = abs(j – k))) then

// or in the same diagonal

 return false;

 }

return true;

}

Algorithm Nqueens(k, n)

// Using backtracking, this procedure prints all possible placements
of n

// queens on an n x n chessboard so that they are non-tracking.

{

for i :=1 to n do

{

If(place (k, i)) then

 {

x[k] := i;

if (k = n) then write(x[1 : n]);

else Nqueens(k+1,n);

}

 }

}

24

Example: 4-queens.

Two possible solutions are

 Solutin-1 Solution 2
 (2, 4, 1, 3) (3, 1, 4, 2)

 Q

Q

 Q

 Q

 Q

 Q

Q

 Q

 b) Illustrate the following sum of subsets problem instance where n=4, m=31,
w(1:4)=(7,11,13,24).

We can design the state space tree in such a way that: For a node at level � we

create the children with �� = 1 ��� �� = 0, which indicate that weight �� is

included or not in the solution.

CO4 L2 7M

25

Step-1

Step-2

And soon finally we get,

26

Solution vectors are (1, 1, 1, 0) and (1,0, 0, 1)

 (OR)
9 a) Construct the portion of the state space tree generated by LC branch and bound of 0/1

knapsack problem for instance n = 4, (p1,p2,p3,p4) = (10,10,12,18),
(w1,w2,w3,w4)=(2,4,6,9) and m=15.

Step-1 : C(1) and U(1) calculation

Step-2 : C(2) and U(2) & C(3) and U(4) calculation

CO4 L2 7M

27

and soon finally we get,

Solution vector is (1, 1, 0, 1)
Maximum profit = 38

 b) How are P and NP problems related? With a neat diagram explain the relevance of NP-hard
and NP-complete problems.

An algorithm A is of polynomial complexity if there exists a polynomial P() such

that the computing time of A is Ο(P(n)) for every input of size n.

• The P in the P class stands for Polynomial Time.

• It is the collection of decision problems(problems with a “yes” or “no” answer) that

can be solved by a deterministic machine in polynomial time.

• The NP in NP class stands for Non-deterministic Polynomial Time.

• It is the collection of decision problems that can be solved by a non-deterministic

machine in polynomial time.

P problems : Problems whose solutions are bounded by polynomials of small degree.

• P Problems can be solved and verified in polynomial time.

• For input size n, if worst-case time complexity of an algorithm is O(nk), where k is

a constant, the algorithm is a polynomial time algorithm.

• Examples of P Problems: Insertion sort, Merge sort, Linear search, Matrix

multiplication, Finding minimum and maximum elements from the array, Single

Source Shortest Path, Minimum Spanning Tree etc.

• Ex : Ο(logn), Ο(n), Ο(nlogn), Ο(mn)

NP problems : Problems whose best-known algorithms are non-polynomial.

CO4 L3 7M

28

• The solution to NP problems cannot be obtained in polynomial time, but if the

solution is given, it can be verified in polynomial time.

• Examples of NP problems: Knapsack problem (O(2n)), Travelling salesman

problem (O(n!)), Tower of Hanoi (O(2n – 1)), Hamiltonian cycle (O(n!)).

• Ex : Ο(), Ο()

The classes NP-hard and NP- complete

Let L1 and L2 be problems. Problem L1 reduces to L2 (also written L1 α

L2) if and only if there is a way to solve L1 by a deterministic polynomial time

using a deterministic algorithm that solves L2 in polynomial time.

Two problems L1 and L2 are said to be polynomial equivalent if and only

if L1 α L2 and L2 α L1

 A problem L is NP-hard if and only if satisfiabiliy reduces to L

(satisfiability α L).

Ex : Optimization problems.

 A problem L is NP-complete if and only if L is NP-hard and L Є NP.

Ex : Decision problems

Optimization problems can’t be NP- complete whereas decision problems can.

A problem that is NP-complete has the property that it can be solved in polynomial

time if and only if all other NP-complete problems can also be solved in polynomial

time.

If an NP-hard problem can be solved in polynomial time, then all NP-complete

problems can be solved in polynomial time.

