Hall Ticket Number:

II/IV B.Tech (Regular\Supplementary) DEGREE EXAMINATION

July/August, 2023

Electronics and Instrumentation Engineering

Fourth Semester

Time: Three Hours

Signals & Systems

Maximum: 70 Marks

Ans	Answer question 1 compulsory. (14X		X1 = 14N	1 = 14Marks)		
Ans	Answer one question from each unit. (4X			(farks))	
			CO	BL	Μ	
1	a)	Differentiate Energy and Power signals	CO1	L2	1M	
		Signal with finite energy is known as "Energy Signal" and Signal with finite Avg. Power is				
	1.)	known as "Power Signal".	CO1	1.0	11/	
	D)	Sketch the signal $x(t) = u(-t+3)$		L2		
	c)	What is the fundamental period of the signal $x(t) = 1 + e^{-\pi t} + e^{-5\pi t}$	COI	L2	IM	
	d)	Evaluate the integral	CO1	L3	1M	
		$\int t^2 \cdot \delta(t^2 - 5) dt$				
	\ \			T 1	11.4	
	e)	Write the relationship between input, output and Impulse response of a continuous-	02	LI	1 M	
		time L'H system.				
	0	$y(t) = x(t)^*h(t)$		1.2	11.4	
	1)	What are the basic elements of block diagram representation of a system? Show	02	L3	1 M	
		their symbols.				
		Multiplier, Adder, Differentiators or Integrators.				
	g)	State Dirichlet's conditions for Fourier series.	CO2	L2	1M	
		i. The signal should have a finite number of maxima and finite number of				
		minima over the range of time period.				
		ii. The signal should have a finite number of discontinuities over the range of				
		time period.				
		iii Signal should be absolutely integrable over the range of time period				
	b)	State the differentiation property of Fourier Series	<u> </u>	12	1M	
	11)	State the unreferitiation property of Fourier Series. If $r(t)$ is a periodic function with time period T and with Fourier series coefficient C. If	02	12	1101	
		n n n n n n n n n n				
		FS $\mathbf{x}(t) \leftrightarrow C$				
		Alt) · · · On				
		Then, the time differentiation property of continuous-time Fourier series states that				
		dx(t) FS				
		$\frac{dt}{dt} \rightarrow jn\omega_0 C_n$		X Q	1) (
	1)	What is the inverse Fourier transform of the function $X(j\omega) = \delta(\omega)$?	CO3	L2	IM	
	•	Ans: $1/2\pi$		1.0	1) (
	J)	State the symmetry properties of Fourier transform.	CO3	L2	IM	
		$X(-j\omega) = X^*(j\omega)$				
	k)	Draw the frequency response of an Ideal Low Pass Filter.	CO3	L3	1M	
		$ H_{LPF}(j\omega) \qquad \qquad$				
		1				
		$-e_2 \circ j \sim e_2 \omega \circ (-t_0 \omega)$				
<u> </u>	D.	(a) Amplitude frequency. (b) Phase-frequency.	CO4	13	1M	
	- '	Fs<2Fm		1.5	1111	

	m)	Compare convolution and correlation.	CO5	L2	1M			
		• Convolution is the calculation of the area under the product of two signals in						
		LTI systems where as correlation is measurement of similarity between two						
		signals.						
		• Correlation is measurement of the similarity between two signals/sequences.						
		Convolution is measurement of effect of one signal on the other signal.						
	n)	What is the energy spectral density of $x(t) = \delta(t-1)$	CO5	L2	1M			
	<u>Unit-I</u>							
2	a)	Explain about classification of systems with examples.	CO1	L2	7M			
		Linear and Non-linear Systems						
		Time Variant and Time Invariant Systems						
		Static and Dynamic Systems						
		Causal and Non-causal Systems						
		• Invertible and Non-Invertible Systems						
		Stable and Unstable Systems						
	b)	Determine whether the following signals are energy signals or power signals	CO1	L3	7M			
		i) $x(t) = e^{2t} u(-t+3)$ ii) $x(t) = 1 + \sin(\pi t)$	<u> </u>					
3	a)	(OR) (OR)	CO1	12	7M			
5	<i>u)</i>	(i) $v(t) - v(t+2)$ ii) $v(t) - v(t-3)$ iii) $v(t) - v(2t-1)$ iv) $v(t) - v(-3t+1)$		1.2	/ 11/1			
	b)	Test whether the following system is linear, causal, time-invariant and stable with	CO1	L4	7M			
	- /	appropriate test conditions.						
		$y(t) = x(t+2).\cos(\omega_0 t)$						
		Unit-II	<u> </u>	1				
4	a)	Compute and Sketch the convolution of the following signals	CO2	L4	7M			
		$x(t) = e^{-2t} u(t)$ and $h(t) = e^{-t} u(t+2)$						
	b)	Determine the trigonometric Fourier Series coefficients of the signal	CO2	L3	7M			
		x(t) = t; 0 < t < 2 with fundamental period $T = 2$ sec.						
		(OR)						
5	a)	Consider a continuous-time LTI system with impulse response $h(t) = u(t+3)$.	CO2	L4	7M			
		Determine the response of the system to the input $x(t) = e^{t} u(-t+3)$						
	b)	Find the exponential Fourier series representation of a periodic signal	CO2	L3	7M			
		$x(t) = cos(\pi t)$; $-1 < t < 1$ with fundamental period T = 2 sec.						
Unit-III								
6	a)	Compute the Fourier transform of a signal $x(t) = sin(\pi t).u(t-1)$	CO3	L3	7M			
	b)		CO3	L4	7M			
		R						
		RC C						
		Low Pass						
		••						
		V = V - I						
		$\sqrt{1+\omega^2 R^2 C^2}$						
		Determine the frequency response of RC low Pass Filter and draw the magnitude						
		and phase response plots.						
7	a)	(OR) State and prove time scaling and modulation properties of Equation Transforms	CO3	13	71/			
/	a)	State and prove time scaling and modulation properties of Fourier Transform. Scaling Property			/ 101			
		Sound Property.						

$x(t) \stackrel{\mathfrak{F}}{\longleftrightarrow} X(j\omega),$ $x(at) \stackrel{\mathfrak{F}}{\longleftrightarrow} \frac{1}{ a } X\left(\frac{j\omega}{a}\right),$ Modulation Property: $ {}^{\mathrm{Modulation \ property: \ }s(t) \cdot \cos(2\pi f_c t)} \stackrel{F\{\ \}}{\Leftrightarrow} \frac{1}{2} [S(f - f_c) + S(f + f_c)].$ $(a) \ v(t) = A \cdot \operatorname{tri}\left(\frac{t}{a}\right) \cos(\omega_c t) = \left\{ A\left(1 - \frac{ t }{a}\right) \cos(\omega_c t), t < a \right\}$			
$\begin{aligned} x(at) & \longleftrightarrow \frac{\mathfrak{F}}{ a } X\left(\frac{j\omega}{a}\right), \\ \text{Modulation Property:} \\ & \text{Modulation property:} \ s(t) \cdot \cos(2\pi f_c t) \stackrel{F\left\{ \right. \right\}}{\Leftrightarrow} \frac{1}{2} \left[S(f - f_c) + S(f + f_c) \right]. \\ & (a) \ v(t) = A \cdot \operatorname{tri}\left(\frac{t}{a}\right) \cos(\omega_c t) = \left\{ \begin{array}{c} A\left(1 - \frac{ t }{a}\right) \cos(\omega_c t), \ t < a \end{array} \right\} \end{aligned}$			
Modulation Property:			
· Modulation property: $s(t) \cdot \cos(2\pi f_c t) \xrightarrow{F\left\{\frac{1}{2}\right\}} \frac{1}{2} \left[S(f - f_c) + S(f + f_c)\right].$ (a) $v(t) = A \cdot \operatorname{tri}\left(\frac{t}{a}\right) \cos(\omega_c t) = \begin{cases} A\left(1 - \frac{ t }{a}\right) \cos(\omega_c t), t < a \end{cases}$			
(a) $v(t) = A \cdot \operatorname{tri}\left(\frac{t}{a}\right) \cos(\omega_{o}t) = \begin{cases} A\left(1 - \frac{ t }{a}\right) \cos(\omega_{o}t), t < a \end{cases}$			
0, elsewhere			
Consider the continuous time LTI system described by $dy(t)$	CO3	L4	7M
$\frac{dy(t)}{dt} + 5y(t) = x(t)$			
Determine the output $y(t)$ of the system to the input $x(t) = e^{-2t} u(t-3)$.			
Unit-IV			
State and Prove Sampling theorem for bandlimited signals.	CO4	L3	7M
$x_p(t) = \sum_{n=-\infty}^{+\infty} x(nT)\delta(t-nT).$			
From the multiplication property (Section 4.5), we know that			
$X_p(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) P(j(\omega - \theta)) d\theta.$			
and from Example 4.8,			
$P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_s).$			
Since convolution with an impulse simply shifts a signal [i.e., $X(j\omega) * \delta(\omega - \omega_0 X(j(\omega - \omega_0)))$], it follows that			
$X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_s)).$			
$\begin{array}{c c} X_{p}(j\omega) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ -\omega_{M} & 0 \\ (C) \\ (\omega_{s} - \omega_{M}) \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			
$\begin{array}{c c} X_{p}(j\omega) \\ \hline \\ $			
	$\frac{dy(t)}{dt} + 5y(t) = x(t)$ Determine the output y(t) of the system to the input x(t) = e ^{-2t} u(t-3). Unit-IV State and Prove Sampling theorem for bandlimited signals. $x_{p}(t) = \sum_{n=-\infty}^{+\infty} x(nT)\delta(t - nT).$ From the multiplication property (Section 4.5), we know that $x_{p}(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j(\omega - \theta))d\theta.$ and from Example 4.8, $P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_{s}).$ Since convolution with an impulse simply shifts a signal [i.e., $X(j\omega) * \delta(\omega - \omega_{0})$ $X_{p}(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_{s})).$ $\sum_{k=-\infty}^{+\infty} x_{p}(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_{s})).$ $\sum_{k=-\infty}^{+\infty} x_{p}(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_{s})).$	$\frac{dy(t)}{dt} + 5y(t) = x(t)$ Determine the output y(t) of the system to the input x(t) = e ^{-2t} u(t-3). Unit-IV State and Prove Sampling theorem for bandlimited signals. $x_{p}(t) = \sum_{n=-\infty}^{+\infty} x(nT)\delta(t - nT).$ From the multiplication property (Section 4.5), we know that $X_{p}(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta)P(j(\omega - \theta))d\theta.$ and from Example 4.8, $P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_{s}).$ Since convolution with an impulse simply shifts a signal [i.e., $X(j\omega) * \delta(\omega - \omega_{t})$ $X_{p}(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_{s})).$ $x_{p}(j\omega)$ $\frac{1}{T}$	$\frac{dy(t)}{dt} + 5y(t) = x(t)$ Determine the output y(t) of the system to the input $x(t) = e^{-2t} u(t-3)$. $\frac{Unit-IV}{State and Prove Sampling theorem for bandlimited signals.}$ State and Prove Sampling theorem for bandlimited signals. $x_p(t) = \sum_{n=-\infty}^{+\infty} x(nT)\delta(t - nT).$ From the multiplication property (Section 4.5), we know that $x_p(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta)P(j(\omega - \theta))d\theta.$ and from Example 4.8, $P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_x).$ Since convolution with an impulse simply shifts a signal [i.e., $X(j\omega) * \delta(\omega - \omega_t)$ $X_p(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_x)).$ $\sum_{k=0}^{+\infty} (\omega - \omega_k) \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_k)).$

		 That is, Xp(iw) is a periodic function of w consisting of a superposition of shifted replicas of X(jw), scaled by 1/T. In Figure (c) ω_M < (ω_s - ω_M) or equivalently, ω_s > 2ω_M and thus there is no overlap between the shifted replicas of X(jw), whereas in Figure (d), with ω_s < 2ω_M, there is overlap. In Figure (c) X(jw) is faithfully reproduced at integer multiples of the sampling frequency. Consequently, if ω_s > 2ω_M , x(t) can be recovered exactly from xp(t) by means of a lowpass filter with gain T and a cutoff frequency greater than ω_M and less than (ω_s - ω_M). 							
	b)	Compute the Energy Spectral Density of the signal $x(t) = e^{- t }$	CO4	L3	7M				
	(OR)								
9	a)	State and prove the properties of cross correlation. The properties of cross correlation function for energy signals are given as follows – Property 1 The cross correlation functions of energy signals exhibit conjugate symmetry property, that is, $R_{12}(\tau) = R_{21}^*(-\tau)$ Property 2 The cross correlation functions of energy signals are not in general commutative, i.e., $R_{12}(\tau) = q R_{21}(-\tau)$	CO4	L3	7M				
		Property 3 If, $R_{12}(0) = \int_{-\infty}^{\infty} x_1(t) x_2^*(t) dt = 0$ Then, the two energy signals $x_1(t)$ and $x_2(t)$ are said to be <i>orthogonal signals</i> over the entire time interval. The cross correlation of orthogonal signals is zero.							
	b)	Compute the Power Spectral Density of the signal $x(t) = sin(3\pi t)$	CO4	L3	7M				