UNIT — 11
COUPLED CIRCUITS & RESONANCE

Magnetically Coupled Circuits

When' the two circuits are placed very close to each other such that a magnetic flux
produced by one circuit links with both the circuits, then the two circuits are said to be
Magnetically Coupled Circuits.

A wire of certain length, when twisted into coil becomes a basic inductor. If a current
is made to pass through an inductor, an electromagnetic field is developed. A change in
the magnitude of the current, changes the electromagnetic field and hence induces a
voltage in coil according to Faraday’s law of electromagnetic induction.

When two or more coils are placed very close to each other, then the current in one
coil affects other coils by inducing voltage in them. Such coils are said to be mutually
coupled coils. Such induced voltages in the coils are functions of the self inductances of
the coils and mutual inductance between them. Let us study concept of self induced e.m.f.
and mutually induced e.m.f.

Self inductance:
Consider a coil having N turns carrying current i as shown in the Fig. 2.1.

Due to the current flow, the flux ¢ is produced in the coil. The flux is measured in Wb
(weber). The flux produced by the coil links with the coil i
itself. Thus the total flux linkage of the coil will be (N¢) *
Whb-turns. If the current flowing through the coil changes, the '
flux produced in the coil also changes and herice flux linkage \
®
also changes.

According to Faraday’s law, due to the rate of change of
flux linkages, there will be induced em.f. in the coil. This ~
Fig. 2.1
phenomenon is called self induction. The e.m.f. or voltage induced in the coil due to the
change of its own flux linked with it, is called self induced e.m.f.

According to Lenz's law the direction of this induced e.m.f. will be so as to oppose the
cause producing it. The cause is the current I hence the self induced e.m.f. will try to set
up a current which is in opposite direction to that of current I. When current is increased,
self induced e.m.f. reduces the current tries to keep it to its original value. If current is
decreased, self induced e.m.f. increases the current and tries to maintain it back to its
original value. So any change in current through coil is opposed by the coil.

This property of the coil which opposes any change in the current passing through it
is called Self Inductance or Only Inductance.

From the Faraday's law of electromagnetic induction, self induced e.mf. can be
expressed as
v = = ﬂ
dt
Negative sign indicates that direction of this e.m.f. is opposing change in current
due to which it exists.

The flux can be expressed as,
¢ = (Flux/ Ampere )x Ampere = %xl
Now for a circuit, as long as permeability W' is constant, ratio of flux to current

(ie. BfH) remains constant.



Rate of change of flux = -?-x Rate of change of current
de _ o dl
dt 1 dt
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The constant —b-i—* in this expression is nothing but the quantitative measure of the

property due to which coil opposes any change in current.
So this constant PJTE is called coefficient of self inductance and denoted by L'

N¢

L——-I

It can be defined as flux linkages per ampere current in it. Its unit is henry (H).
A circuit possesses a self inductance of 1 H when a current of 1 A through it
produces flux linkages of 1 Wb-turn in it.

dl
v = _La_t volts

Expressions for Coefficient of Self Inductance (L)

_ N¢
L=-71
M.M.F. NI
But ¢ = Reluctance S
M-I
L =93
2
L = N henries
S
Now S = —I—
pa
2
L RS

(55)
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where l Length of magnetic circuit

Area of cross-section of magnetic circuit
through which flux is passing.
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Example 1 : If a coil has 500 turns is linked with a flux of 50 mWb, when carrying a
current of 125 A. Calculate the inductance of the coil. If this current is reduced to zero
uniformly in 0.1 sec, calculate the self induced e.m.f. in the coil.

Solution : The inductance is given by,

_ N¢
2
where N =500, ¢=50 mWb = 50x10° Wb, I=25A
500%50x10*
di
v = "'L-a—t
[Final value of I =Initial value of I]
= -L .
Time
v = —Ozx(g:%zé) = 250 volts

This is positive because current is decreased. So this ‘v’ will try to oppose this
decrease, means will try to increase current and will help the growth of the current.

Mutually Induced E.M.F. and Mutual Inductance (M)

If the flux produced by one coil links with the other coil, placed sufficiently close to
the first coil, then due to the change in the flux produced by first coil, there is induced
em.f. in second coil. Such induced e.m.f. in the second coil is called mutually induced
e.m.f.

Consider two coils which are placed very close to each other as shown in the Fig.

Let coil 1 has N, turns, while coil 2 has N, turns. The current flowing through coil 1
is i;. Due to this current, the flux produced in coil 1 is ¢,. The part of this flux links with

coil 2. This flux is called mutual flux. : =™~ v Mutual flux 6,

It is denoted by ¢,, as it is a part o +ﬂ—-1—,’”‘ \ o +
flux ¢, linking with coil 2. When current [0y
through coil 1 changes, the flux produced Ly ! L, v,
in coil 1 ie. ¢, changes. Thus flux E
associated with coil 2 ie. ¢,, changes. So Col 1} w~-" /| Coil2
according to the Faraday’s law, there will - te- o -
be induced e.m.f. in coil 2. Fig.

Magnitude of Mutually Induced E.M.F.
Let N, = Number of turns of coil 1

N, = Number of turns of coil 2
I, = Current flowing through coil 1
¢, = Flux produced due to current I, in webers.
.~ ¢, = Flux linking with coil 2
According to Faraday's law, the induced e.m.f. in coil B is,

do,

V2 = Nagy



Negative sign indicates that this em.f. will set up a current which will oppose the
change of flux linking with it.

Now ¢, = %2-)-:11

If permeability of the surroundings is assumed constant then ¢, o<1, and hence ¢, /I,
is constant.

Rate of change of ¢, = ?—1.&: Rate of change of current I,
1
d¢; _ ¢, df,
dt 1, dt
¢, dI,
W = =y
2 2T, dt
vy = (Nats)dl
: I, )dt
N, o, ). .. )
Here I is called coefficient of mutual inductance denoted by M.
1
_ L
\-"2 = - T VD]tE

Coefficient of mutual inductance is defined as the property by which emf. gets
induced in the second coil because of change in current through first coil.
Coefficient of mutual inductance is also called mutual inductance. It is measured in
henries.
Coefficient of Coupling or Magnetic Coupling Coefficient (k)

Consider two coils having self inductances L, and L, placed very close to each other.
Let the number of turns of the two coils be N; and N, respectively. Let coil 1 carries
current i; and coil 2 carries current i,.

Due to current i;, the flux produced is ¢, which links with both the coils. Then from
the previous knowledge mutual inductance between two coils can be written as

M = Nt - (1)

L
where ¢§,, is the part of the flux ¢, linking with coil 2. Hence we can write, $,;, =k, ¢;.
1
Similarly due to current i,, the flux produced is ¢, which links with both the coils.
Then the mutual inductance between two coils can be written as

M = N2t )

iy _
where#u mhpﬂﬂﬂf&l&ﬂlﬂ#: hIlhn.gm&.mﬂlemmwn'hﬁjz‘kz*z.
. M = Na(kats) . (4)
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Multiplying equations (2) and (4),
MZ = Ni(k; ;) Nj(k:9,)
iy iy

o e

iy iy




= Self inductance of coil 1 = L,
——= = Self inductance of coil 2=1L,

kikyLy Ly
JRk
KyTilz

-..F.,.|_Z
zl,.2 & "F e

n

where k is called coefficient of coupling.
M

g

w (5)

. (6)

mmp Example 2 : The number of turns in two coupled coils are 600 and 1200 respectively.
When a current of 4 A flows in coil 1, the total flux in coil 1 is 0.5 mWb and the flux
linking coil 2 is 0.4 mWb. Determine the self inductances of the coils and mutual inductance

between them. Also calculate coefficient of coupling.
Solution :

For coil 1, N; = 600
i, = 4A
¢, = 05 mWb
_ Ny¢; _ (600) (0.5% 107)

=0075 H

1 4

The self inductance of a coil is directly proportional to the square of the

number of turns ie. L o< N,

L _ N
L, N3
(N, (1200Y? B
L-z - (?\T) .L]: - (m] {ﬂ.[}?fl}— l].3 H
The flux linking with coil 2 is ¢,, = 0.4 mWb
M = N2.¢2I

L

(1200)x (0.4% 10~ 3)

4
= 012 H
Hence the coefficient of coupling is given by,
M 0.12

k =

JLL,  J0075) 03



Dot Conventions

The sign of mutually induced voltage depends on direction of winding of the coils. But
it is very inconvenient to supply the information about winding direction of the coils.
Hence dot conventions are used for purpose of indicating direction of winding. The dot
conventions are interpreted as below :

1. If a current enters a dot in one coil, then mutually induced voltage in other coil
is positive at the dotted end.

2. If a current leaves a dot in one coil, then mutually induced voltage in other coil
is negative at the dotted end.

Consider two magnetically coupled coils L, and L, wound on same core. Let current
through coils L; and L, be i; and i, respectively. All the possible combinations of the dot
convention between the magnetically coupled coils are as shown in the Fig. 2.4 (a), (c), (e)
and (g). The equivalent circuits of all possible dot convention are as shown in the
Fig. 2.4 (b), (d), (f) and (h) respectively.

Consider a magnetically coupled circuit with dots placed as shown in the Fig. 2.4 (a).
Both the currents, i; and i, are entering the dotted terminals. Hence according to the dot
convention, the mutually induced e.m.f. in both the coils has the polarity same as self

i M i i i
-|-¢>—’-—1 278 3 + +0 - 2 —0+
a 2
3 L Ly L,
vy 1 V2 Vi V2
di di
- s |
Mdt M
-0 o~ - -0~
(a) (b)
i M i i i
+© ! " X! 0+ +© ; éﬂ+
L ]
Ly L,
vy L,g ELZ 73 vy 5 vy
-2 =1
. Mdt Mdt
-o = =0~ =
(c) (d)
i M i i
PR Y _cxe. W RO S b AR
2 Ly L,
V1 L,g ELz Vz V1 Vz
di di
o -2 s
Mdt Mdt
-0— o= -0 o=
(e) M
i i i i
\ 1 M 2 .. i b o
) ) Ly Lz
vy 1§ g 2 V2 ¥y Va2
di di
s} e |
. [ ] M 5t T
-0 o- -0 0~
(a) (h)

Fig. 2.4 Magnetically coupled circuits and equivalent
circuits with different dot conventions



induced em.f. in respective coil. The equivalent circuit is as shown in the Fig. 2.4 (b).
Applying KVL, the network equations of the equivalent circuit can be written as :

di, di,

I'|."'-|. = Ll ?t" + M —dT aas (1)
di di
vy = L d—: + Ttl .. (2)

Now consider magnetically coupled circuit as shown in the Fig. 2.4 (c) with dot placed
at lower terminal of coil L,. Hence current i, enters through dotted terminal of L, while
current i, leaves through dotted terminal of L,. So according to dot convention, the
polarity of mutually induced em.f. in L, due to i, in L, will be opposite to that of self
induced e.m.f. in coil L;. Also the polarity of mutually induced e.m.f. in coil L, due to the
current i; in coil L; will be opposite to that of self induced e.mf. in coil L,. The
equivalent circuit is as shown in the Fig. 2.4 (d). By using KVL, the network equations can
be written as,

- 1 di di, :
vi = L at M at . (3)
di, di
vy = Ly—2-M— .. (4)

For the equivalent circuit shown in the Fig. 24 (f). Applying KVL, the network
equations can be written as,

di di
di di
vy = L—2-M— . (6)

For last possible combination, both the dots are placed at lower terminals of coils L,

and L,. Also both the currents leave dot as shown in the Fig. 2.4 (g). The equivalent
circuit is as shown in the Fig. 2.4 (h). By applying KVL, the network equations can be
written as,

L

L dip . di

vy, = Ll H"l"M —"EF' - m
di di

1-"2 = Lz ?:'-"‘ -d__!‘ilr wan [s]

Uptill now we have discussed the coupled circuits in which two coils are magnetically
coupled. But practically we may have to analyze a network with several windings.

The analysis of multiwinding inductor networks can be carried out for each pair of
windings using same dot convention. In case of multiwinding inductor networks, the
relationship between each pair of windings is represented by different forms of the dots
such as @ , A , ® , % etc. The analysis of such multiwinding networks is illustrated in
Example 2.4 and Example 2.5.

nmp Example 3 : Calculate effective inductance of the circuit shown (Fig. 2.5) across
terminals a and b.

./M=2H
]
4H
5H
3H "
i praaiy M=25H

Fig. 2.5



Solution : Assume that current 'i' is

. . . . M=2H
flowing in series circuit and voltage _ .‘..--'
developed across terminals a and b is shown a j
in following Fig. 2.5 (a). ‘1‘ H

4

Applying KVL for the above circuit. The H 5H
current flowing through all the coils is same l aH i}
e 'i. b Ll M=25H
Fig. 2.5 (a)

While writing the equations follow the
convention that the current entering in the
dot of one coil produces positive at the dotted end of the another coil while the current
leaving from the dotted end of one coil produces the negative at the dotted end of the
another coil.

di di di di di di di

-434-IE*EE+EE*2.EE'3E—'2.EE+V=D
di di
L —— 13'&; = Lel-rd'—t'

Effective inductance across terminals a and b is L
Ly = 13H
Inductive Coupling in Series

When two inductors having self inductances L, and L, are coupled in series, mutual
inductance M exists between them. Two kinds of series connection are possible as follows.

Series Aiding
In this connection, two coils are connected in series
such that their induced fluxes or voltages are additive
in nature. :
Here currents i, and i, is nothing bul current i
which is entering dots for both the coils.

Self induced voltage in coil 1 = v, = ]_ng_i
Self induced voltage in coil 2 = v, = L:% Fig. 2.8

Mutually induced voltage in coil 1 due to change in current in coil 2 = v =—Mg—:

Mutually induced voltage in coil 2 due to change in current in coil 1 = v = —M—-—

Total induced voltage = v+ v,+ v| + v;

di
= —(L dt +L, d+Md+Mdt]

di
- + L +2M) 3

If L is equivalent inductance across terminals a-b then total induced voltage in single
inductance would be equal to - L ; g—: Comparing two voltages,

L

ar = Ly +Ly +2M




Series Opposing

In this connection, two coils are connected in such a
way that, the induced fluxes or voltages are of opposite
polarities.

Here i; and i, is same series current 'i' which is
entering dot for coil L and leaving dot for coil L,.

di

dt

di Fig. 2.9
2dt

Self induced voltage incoil 1 = =L
Self induced voltage incoil 2 = - L
Mutl.tallymducedvaItagemmillduetuc}ungeinmrrmtinmil‘.!:v{=+M$

Also Mutually induced wvoltage in coil 2 due to change in current in

. . di
coil 1 =v,=+M 3
Therefore total induced voltage = v, + v, +v] + v}

di di di di
= _LIE*LIE*_ME“M—

di
=(L +L-2M) 3

If L is equivalent inductance across terminals a and b then total induced voltage in
single inductance would be equal to - Ly &I Comparing two voltages,

Inductive Coupling in Parallel

When two inductors having self inductances L, and L, are coupled in parallel, we
have two kinds of connections as follows.

Parallel Aiding
Consider parallel coupling of two inductors as shown in Fig. 2.10.
i Applying Kirchhoff's voltage law to both

+ T - L™ . loops, we get,
oL Nl —joL, i, —joMi, +v=0
' " 2 —j0L, i, ~joMi, +v=0
_l iev=joL i +joMi, ... (1)
Fig. 2.10 v=jol, i, +joM i, 2

We have, joL, i +joM- i, = jolL,- i, +joM-j
But =i+ i,
ie. 1, = i=- 1,

Putting value of i, in above equation, we get

joL, (i-1,) +joM i

joL, i +jo M@i-i)

joi (L, + L, -2M) = joi (L, - M)



_ L,-M ],
T AL -2

L-M 1.
L,+L,-2M

14

Similarly,
Putting values of i, and i, in equation (1), we get,

N e DI (Tl I P
VeI AL, M L AL, - oM

o - Me,M-M2T
v o= ]l'.l} LI'I'LE—:M 1

[rL,-m ],
"zl‘“m] -+ @)

If L is effective inductance of parallel combination then,
v = joLg-i

Comparing equations (3) and (4) we have

L - LILE_
of = L AL,-2M

Parallel Opposing
Consnder two inductors connected in parallel as shown in Fig. 2.11.
Applying KVL to both loops, we get,

joL, i, +joMi, +v=0

joL, i, +joMi +v=0

f o1 \é‘l

v L1
°
) iejoL, i, -joMi,=v
Flo- 211 jOL, i, -joMi, = v
But i = i+ i,

15

Substituting value of i, in above equation we have,
joL, (i-1,) -joM i,

joL, i, +jo M(i-i)

joi (L, + L, +2M) joi (L, + M)

i [ L, +M ]

h L+, +2M |
- : L, +M :
Snmlarly, lZ [m]

Putting values of i, and i, in equation (5) we get,
[ L, (L,+M) M(L, +M) ]i

VE DRI, LA, v M
_ ,m'l.,L2+L, M-L, M-M?|.
b L, +L,+2M :

-

[ LiLa - ,
Pl +2M

.. (4)

.. (5)
.. (6)

. ()



If L is effective inductance of parallel combination,
v = joLg-i v (8)

Comparing equations (7) and (8) we have,

Lo Ll -M
" L+L,+2M

mmp Example  : If a coil of 800 pH is magnetically coupled to another coil of 200 pH. The
coefficient of coupling between two coils is 0.05. Calculate inductance if two coils are
connected in,
(i) Series aiding (i) Series opposing (iti) Parallel aiding (iv) Parallel opposing

Solution : The mutual inductance between two coils is given by
M = k- JL, L, =(005),/(800x10~¢) (200x10-6)

= 20uH
Let the effective inductance for magnetically coupled coil be L.
(i) Series aiding : L=1L+L,+2M
= (800%10-%)+(200%10~%)+(2x20x10-%)
= 1040 pH
(ii) Series opposing : L=1L+L,-2M
= (800x107%)+(200x10-¢)~(2x20%x10¢)
= 960 uH
z _ LL,-Mm?
(iii) Parallel aiding : L s m
_ (800x107% x200x10-%)~(20x10~°)?
B 960x10~°
01596 x10-#
= —— = 166.25
960x10~° W
: N _ LiL,- M?
(IV) Parallel opposing : L = m
_ (800x10~* x200x10~*)=(20x10~%)?
N 1040 %10~
_ 01596x10-°
© 1040%1076

153.46 pH



RESONANCE

Introduction:

Electrical resonance occurs in an electric circuit at a particular resonant frequency when
the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the
impedance between the input and output of the circuit is almost zero

SERIES RESONANCE
A L c
NS TR {1

v=V,sin wt

Series circuit

Resonance is a very important phenomenon in many electrical applications. The study of resonance is very
useful in the telecommunication field. A circuit containing reactance is said to be in resonance 1f the voltage
across the circuit is in phase with the current through it. At resonance, the circuit thus behaves as a pure

resistor and the net reactance 1s zero.

As X; = 2 n fL. As frequency is changed from 0 to =, X; increases linearily and graph
of X, against f is straight line passing through origin. '

M&:T'%E,asfrequencyisdungedfmmﬂtuw,xcredummdtheguphaf}(c
against f is rectangular hyperbola. Mathematically sign of X; is opposite to X hence graph
of X Vs f is shown in the first quadrant while X Vs f is shown in the third quadrant.

At f = f, the value of X = X at this frequency.

As X = X; = X, the graph of X against f is shown in the Fig. 4.1.

I.cosé
1 |

|
z X, poreesnecs I
]

= o gl o B o

-—capa-:.il.iveaT—— Inductive —=

Resistive Resistive
Fig. 4.1 Characteristics of series resonance

For f < £, the X > X and net reactance X is capacitive while for f > f, the X; > X
and net reactance X is inductive.

NowZ=R+jX=R+j(Xp-Xc)butatf=£ X =Xc:and X = 0 hence the net
impedance Z= R which is purely resistive. So impedance is minimum and purely
resistive at series resonance. The graph of Z against f is also shown in the Fig. 4.1.


https://en.wikipedia.org/wiki/Electrical_network
https://en.wikipedia.org/wiki/Resonance
https://en.wikipedia.org/wiki/Electrical_impedance
https://en.wikipedia.org/wiki/Admittance

Key Point: As impedance is minimum, the current 1 = VIZ is maximum at series
resonance.

Now power factor cos ¢=R/Z and at f = f, as Z = R, the power factor is unity and

at its maximum at series resonance. For f < £, it is leading in nature while for f > £, it is
lagging in nature.

Resonant Frequency
Let f, be the resonant frequency in Hz at which,
% = X
&L = mic
2 _ 1
€& = 4n?LC
f= —1_ Hz
f 2n4LC
1
ie. O = TE rad/sec

Bandwidth of Series R-L-C Circuit

At series resonance, current is maximum and impedance Z is minimum. Now power
consumed in a circuit is proportional to square of the current as P = R. So at series
resonance as current is maximum, power is also at its maximum ie. P, The Fig. 4.2
shows the graph of current and power against frequency.

It can be observed that at two frequencies f; and f;, the power is half of its maximum
value. These frequencies are called half power frequencies.

) G A B, | .. Maximum
current
Ol Al d SN Half of
2 maximum
power

L i s e e

-.h—-————-

-—— Bandwidth ——

The difference between the half power frequencies f; and f, at which power is half of
its maximum is called bandwidth of the series R-L-C circuit.

B.W. = fl - f]



Expressions for Lower and Upper Cut-off Frequencies
The current in a series RLC circuit is given by the equation,

1= butZ=R+j (% - X0
S JR2+(mL-T)lC-)
At resonance, I, =% (maximum value) .. (2
and P, = I3R
2
At half power 't,Ps—Pﬁ-QR- —I—'-"— R
TR Eem: R el b
I = Iiz at half power frequency
Equating equations (1) and (2),
V =__v_

5 _ 1)2 2R

JR +(mL e

2 1Y 3
% R"’(“’L";.'c) =4J2R
qu{mL-i]i =2 R?

—=] =
1)? _ p2
(mL_E] =R
1
wl-— =%R (3

From the equation (3) we can find two values of half power frequencies which are @,
and w, corresponding to f; and f,.

L- o= = +R . (4)
and m,L—ﬁ - -R . (5)
o @+ L- [“*“]E“ ... Adding equations (4) and (5)
(o +a) L = m1+mz %
o0 = rlf .. (6)
but w, = J%

ff, = (£) e (7)




The equation (7) shows that the resonant frequency is the geometric mean of the
two half power frequencies.

£, = JhHf . (8)

Subtracting equation (5) from equation (4) we get,

1 131
(-3t -
(0, - wy) w0, C
_ (,-w) 1 2R s .
(0, — o) + oo, IC - T ... Dividing both sides by L
2R 1
(0 ) + (0 - ) = MW=E
R
{“-"1'“]1]=t
: R
Le. fl_fi =2—ﬂ't e {9}
R
Thus BW. = TnLl
The bandwidth is also denoted as,
B.W. = 2Af where
i - o - -
= InL as shown in the Fig. 4.3
From Fig. 4.3 we can write,
f] = ft"Af
and f, = f + Af
R T e S
]
In i
% [ -i ------- ‘E ----- -:r----Halfpowef
'
o L u
| | '
R ,
0 f, f, A



Quality Factor

The quality factor of R-L-C series circuit is the voltage magnification in the circuit at
resonance.
Voltage across L or C

Voltage magnification = Supply voltage

Now VL

Voltage across L =1, X, =1, @ L at resonance

and Imn% at resonance

Vo, L
R

A\ at resonance

Vo, L
Voltage magnification = -—5—- = 2{.{_1:

This is nothing but quality factor Q.

-":'r_L butm:l
Q-R. r

Jic

Qo
I
==
Ol

—

W as BW=(0; ~oy) =

]

o

It
=}
| =

Example 1 : A RLC series circuit with a resistance of 10 Q, impedance of 0.2 H and a
capacitance of 40WF is supplied with a 100 V supply at variable frequency. Find the
following w.r.t the series resonant circuit :-

i) the frequency at resonance ii) the current iii) power iv) power factor v) voltage across R,
L, C at that time vi) quality factor of the circuit vii) half power points viii) phasor diagram.
Solution : The given valuesare, R=10Q,L=02H, C=40pyF and V=100V
1

1
2nJLC  2x.f0.2x40x10-¢
56.2697 Hz

ii) I, = ¥=-1-%=10A ... Current is maximum at resonance

i) £ =

iii) X
iv) Power factor is unity, as impedance is purely resistive at resonance

I2, R = (10)* x 10 = 1000 W

v) Vg = I, R=10 x10=100 V
X, = 2nf L=2n x56.2697 x 0.2 = 70.7105 Q
Vy = I, X, =10x70.7105 = 707.105 V
and X = 1
2nf C

1
2n % 56.2697 x 40 x 10-%

70.7105




Ve = 1, Xc = 707.105 V

ThusV, = Ve  at resonance
. _ ol 2nfL
wi) Q = K "R = 7.071
_ R _ 10 _ ik
vii) o = 41‘:[._41!)({].2_3:9?83
f, = f - Af = 56.2697 — 3.9788
= 52.2909 Hz 0 - -
W
and f, = f + Af = 56.2697 + 3.9788 "
= 60.2485 Hz
viii) BW. = f, - f; = 60.2485 — 522909
= 7.9576 Hz Ve

Resonance in Parallel Circuit

Similar to a series a.c. circuit, there can be a resonance in parallel a.c. circuit. When the
power factor of a parallel a.c. circuit is unity i.e. the voltage and total current are in phase
at a particular frequency then the parallel circuit is said to be at resonance. The frequency
at which the parallel resonance occurs is called resonant frequency denoted as f, Hz.

4.3.1 Characteristics of Parallel Resonance
Consider a practical parallel circuit used

o ANA— T for the parallel resonance as shown in the
N~ Fig. 4.5.
o The one branch consists of resistance R in
1 series with inductor L. So it is series R-L
lc c circuit with impedance Z;. The other branch
I is pure capacitive with a capacitor C. Both the
branches are connected in parallel across a
—@'_ variable frequency constant voltage source.

The current drawn by inductive branch is
Fig. 4.5 Practical parallel circuit I, while drawn by capacitive branch is I..

IL=EV: where Z;, = R +j X
A" 1
and 'c=iz whmxc=-2—m

The current I; lags voltage V by angle ¢; which is decided by R and X while the
current I leads voltage V by 90°. The total current I is phasor addition of I; and I.. The
phasor diagram is shown in the Fig. 4.5 (a).

Fig. 4.5(a)



For the parallel resonance V and I must be in phase. To achieve this unity p.f.
condition,

and | Ic=1I sin ¢,

From the impedance triangle of R-L series circuit we can write,

X
tﬂnh,=~—]%'~fm5¢l. =z

N\

R

Fig. 4.5(b) Impedance triangle

As frequency is increased, X, = 27 f L increases due to which Z;, = \/R? + X] also
increases. Hence cos ¢; decreases and sin ¢; increases. As Z; increases, the current I; also
decreases.

At resonance f = f. and I; cos ¢, is at its minimum. Thus at resonance current is
minimum while the total impedance of the circuit is maximum. As admittance is

reciprocal of impedance, as frequency is changed, admittance decreases and is minimum
at resonance. The three curves are shown in the Fig. 4.6 (a), (b) and (c).

Z Ik

i
i
i
I
I
I
I
I
I
i
i
T

(a) Impedance {b) Current {c) Admittance
Fig. 4.6 Characteristics of parallel resonance
Expression for Resonant Frequency

At resonance I- = I sin ¢
V _ VX VX
Xe - Z Zp B Z:
7 = XX
2 2 _ b _
R:+(2nf, Ly = (2nf, L]x‘lnfrc as f = f
R? +(2nf, L)? = -E
@nf, L = E-R
1 R?
2 - — e —
(2mf)* = e~ 1
(. L[1LE
~ 2m\yLC L
. . R? 1
Thus if R is very small compared to L and C, L—zqcrﬁ

f, = o
v 2aJLC ... Neglecting effect of R




Dynamic Impedance at Resonance

The impedance offered by the parallel circuit at resonance is called dynamic
impedance denoted as Zj, This is maximum at resonance. As current drawn at resonance
is minimum, the parallel circuit at resonance is called rejector circuit. This indicates that it
rejects the unwanted frequencies and hence it is used as filter in radio receiver.

From I = I; sin ¢; we have seen that,

z: = =

While I

L[]
o
g
=
[]

I=

where Iy = -I{"—C-=D)mmicimpedm

Quality Factor of Parallel Circuit
The parallel circuit is used to magnify the current and hence known as current
resonance circuit.
The quality factor of the parallel circuit is defined as the current magnification in the
circuit at resonance.
The current magnification is defined as,
Current in the inductive branch I

2 t magnificaion = Eirrent in supply at resonance 1

N

=0
Zy,

- é"l <|£"| <

_R—C_lJT
" RIC 4
C

S

This is nothing but the quality factor at resonance.




Example 2 : An inductive coil of resistance 10 Q and inductance 0.1 Henrys is
connected in parallel with a 150 WF capacitor to a variable frequency, 200 V supply. Find
the resonant frequency at which the total current taken from the supply is in phase with the
supply voltage. Also find the value of this current. Draw the phasor diagram.

Solution : The circuit is shown in the Fig. 4.7.

—A\W O
1
- i
[
)
L&
Fig. 4.7
The resonant frequency is,
g - L1 _R
r T 2ryLC 2
_ 1 1 _ (0)?
T 2my0.1x150%10°¢  (0.1)2
= 37.8865 Hz
Now Z, = R+jX.=10+j (2=nf, L)
= 10 + j 23.805 = 25.82 £ 6721° Q
\' 200 £ 0° -
v 200 £0° 200 £0° >
_ and lc_x_c_ 1 A_goo_zsé_goo-zusz-o-wA
2xnf C
where Ze = 0-jXc=0-j28=28Z -90°Q

z, = Ll BLNPxB8LET
T Zc+z, 0-j28+10+;23805

722.96 £~ 22.79°
10-4.195

72296 £L~-22.79
10844 £-22.79

= 66.67 Q pure resistive

A _ L ,
- J ~CR ?.143:E~.__
w-t."‘h.
— ﬂal u .1+'|____| o
150x10-¢ x10 \%Hm
= 6667 Q Y
T.T45 A
[ = Vo200 _54

Z, 66.67



Comparison of Resonant Circuits

Sr. No. Parameter Series Resonant Parallel Resonant
1. Circuit L R L
_._.-._m_m_
R L c
A | | S—
iy U % c
P
© ?
W
2. Type of circuit Purely resistive Purely resistive
3. Power factor Unity Unity
4, Impedance Minimum £ = R Dynamic but maximum
AR
RC
5. Frequency f=_1 £
' 2nfiC F mJLC
6. Current =V =V
Maximum | =" Minimum | y
T. Magnification Voltage magnification " Current magnification
B. Quality factor ol _ o g 1JE
Q= aw Q= riE
a, Mature Acceptor Rejector
10. Practical used Radio circuits sharpness | Impedance for matching,
of tunning circuit tuning, as a filter




